Chapter 16 : Competence-Stimulating Peptides in Oral Bacterial Signaling: Possible Implications in a Community Life

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Competence-Stimulating Peptides in Oral Bacterial Signaling: Possible Implications in a Community Life, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap16-2.gif


The first studies focusing on the competence-stimulating peptide (CSP) system were prompted by investigations to understand competence development for natural transformation. CSP signals and regulatory pathways are found in most oral streptococci. The molecular mechanisms involved in CSP signaling have been described in more detail for than for other streptococci. The CSP autoinducing system is remarkably closely related to well-characterized bacteriocin autoinducing systems. Genetic competence and bacteriocin production appear to be closely linked in streptococci. It is possible, that the mechanisms involved in competence for genetic transformation are somehow uncoupled with the stress response to spectinomycin. The absence of one of the two components of the histidine kinase/response regulator ComDE impairs the increased biofilm formed in the presence of CSP, supporting the specificity of the response. The possible contribution of lysis and DNA binding to the CSP effect on biofilm formation is supported by the findings that mutants of deficient in the DNA binding and uptake machinery form less biofilm and that degradation of extracellular DNA reduces biofilm formation in streptococci. In the multicellular communities found in the oral cavity, natural interference with autoinducing signaling systems such as the CSP signaling pathway might be a natural scenario, depending on how the bacteria are structurally distributed in biofilms. Present efforts to sequence microbes commonly colonizing humans will certainly provide important tools to deepen our understanding of the interactions between microorganisms in complex communities, and the human responses to these communities.

Citation: Petersen F, Scheie A. 2011. Competence-Stimulating Peptides in Oral Bacterial Signaling: Possible Implications in a Community Life, p 235-246. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch16

Key Concept Ranking

Class II Bacteriocins
Streptococcus pneumoniae
Streptococcus sanguinis
Streptococcus pneumoniae
Streptococcus sanguinis
Streptococcus pneumoniae
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic representation of possible functional responses induced by CSP. The main regulatory elements, ComE and σ, activate the transcription of genes that may influence bacterial life in a multispecies community. The four upward-pointing arrows indicate upregulation events.

Citation: Petersen F, Scheie A. 2011. Competence-Stimulating Peptides in Oral Bacterial Signaling: Possible Implications in a Community Life, p 235-246. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahn, S. J.,, Z. T. Wen, and, R. A. Burne. 2006. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect. Immun. 74:16311642.
2. Allesen-Holm, M.,, K. B. Barken,, L. Yang,, M. Klausen,, J. S. Webb,, S. Kjelleberg,, S. Molin,, M. Givskov, and, T. Tolker-Nielsen. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59:11141128.
3. Boedicker, J. Q.,, M. E. Vincent, and, R. F. Ismagilov. 2009. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chem. Int. Ed. Engl. 48:59085911.
4. Chen, I.,, and D. Dubnau. 2004. DNA uptake during bacterial transformation. Nat. Rev. Micro-biol. 2:241249.
5. Claverys, J. P.,, and L. S. Håvarstein. 2007. Cannibalism and fratricide: mechanisms and raisons d’etre. Nat. Rev. Microbiol. 5:219229.
6. Claverys, J. P.,, B. Martin, and, L. S. Håvarstein. 2007. Competence-induced fratricide in streptococci. Mol. Microbiol. 64:14231433.
7. Claverys, J. P.,, B. Martin, and, P. Polard. 2009. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol. Rev. 33:643656.
8. Fontaine, L.,, C. Boutry,, M. H. de Frahan,, B. Delplace,, C. Fremaux,, P. Horvath,, P. Boyaval, and, P. Hols. 2010. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J. Bacteriol. 192:14441454.
9. Gardan, R.,, C. Besset,, A. Guillot,, C. Gitton, and, V. Monnet. 2009. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol. 191:46474655.
10. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. Camb. 27:113159.
11. Håvarstein, L. S.,, G. Coomaraswamy, and, D. A. Morrison. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Nat. Acad. Sci. USA 92:1114011144.
12. Håvarstein, L. S.,, P. Gaustad,, I. F. Nes, and, D. A. Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol. Microbiol. 21:863869.
13. Heng, N. C.,, J. R. Tagg, and, G. R. Tompkins. 2007. Competence-dependent bacteriocin production by Streptococcus gordonii DL1 Challis. J. Bacteriol. 189:14681472.
14. Hense, B. A.,, C. Kuttler,, J. Muller,, M. Rothballer,, A. Hartmann, and, J. U. Kreft. 2007. Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5:230239.
15. Johnsborg, O.,, V. Eldholm,, M. L. Bjornstad, and, L. S. Håvarstein. 2008. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol. Microbiol. 69:245253.
16. Kilian, M.,, K. Poulsen,, T. Blomqvist,, L. S. Havarstein,, M. Bek-Thomsen,, H. Tettelin, and, U. B. Sörensen. 2008. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 3:e2683.
17. Kreth, J.,, D. C. Hung,, J. Merritt,, J. Perry,, L. Zhu,, S. D. Goodman,, D. G. Cvitkovitch,, W. Shi, and, F. Qi. 2007. The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology 153:17991807.
18. Kreth, J.,, J. Merritt,, W. Shi, and, F. Qi. 2005. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol. 57:392404.
19. Kreth, J.,, Y. Zhang, and, M. C. Herzberg. 2008. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 190:46324640.
20. Lemos, J. A.,, and R. A. Burne. 2008. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology 154:32473255.
21. Li, Y. H.,, M. N. Hanna,, G. Svensater,, R. P. Ellen, and, D. G. Cvitkovitch. 2001. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J. Bacteriol. 183:68756884.
22. Li, Y. H.,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183:897908.
23. Li, Y. H.,, N. Tang,, M. B. Aspiras,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184:26992708.
24. Li, Y. H.,, X. L. Tian,, G. Layton,, C. Norgaard, and, G. Sisson. 2008. Additive attenuation of virulence and cariogenic potential of Streptococcus mutans by simultaneous inactivation of the ComCDE quorum-sensing system and HK/RR11 two-component regulatory system. Microbiology 154:32563265.
25. Loo, C. Y.,, D. A. Corliss, and, N. Ganesh-kumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182:13741382.
26. Mann, E. E.,, K. C. Rice,, B. R. Boles,, J. L. Endres,, D. Ranjit,, L. Chandramohan,, L. H. Tsang,, M. S. Smeltzer,, A. R. Horswill, and, K. W. Bayles. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4:e5822.
27. Martin, B.,, Y. Quentin,, G. Fichant, and, J. P. Claverys. 2006. Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol. 14:339345.
28. Mashburn-Warren, L.,, D. A. Morrison, and, M. J. Federle. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78:589606.
29. Moscoso, M.,, E. Garcia, and, R. Lopez. 2006. Biofilm formation by Streptococcus pneumoniae:role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 188:77857795.
30. Perez, J. C.,, and E. A. Groisman. 2009. Evolution of transcriptional regulatory circuits in bacteria. Cell 138:233244.
31. Perry, J. A.,, M. B. Jones,, S. N. Peterson,, D. G. Cvitkovitch, and, C. M. Lévesque. 2009. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol. Microbiol. 72:905917.
32. Petersen, F. C.,, G. Fimland, and, A. A. Scheie. 2006. Purification and functional studies of a potent modified quorum-sensing peptide and a two-peptide bacteriocin in Streptococcus mutans. Mol. Microbiol. 61:13221334.
33. Petersen, F. C.,, D. Pecharki, and, A. A. Scheie. 2004. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J. Bacteriol. 186:63276331.
34. Petersen, F. C.,, L. Tao, and, A. A. Scheie. 2005. DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J. Bacteriol. 187:43924400.
35. Peterson, S. N.,, C. K. Sung,, R. Cline,, B. V. Desai,, E. C. Snesrud,, P. Luo,, J. Walling,, H. Li,, M. Mintz,, G. Tsegaye,, P. C. Burr,, Y. Do,, S. Ahn,, J. Gilbert,, R. D. Fleischmann, and, D. A. Morrison. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51:10511070.
36. Prudhomme, M.,, L. Attaiech,, G. Sanchez,, B. Martin, and, J. P. Claverys. 2006. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:8992.
37. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365370.
38. Rice, K. C.,, E. E. Mann,, J. L. Endres,, E. C. Weiss,, J. E. Cassat,, M. S. Smeltzer, and, K. W. Bayles. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Nat. Acad. Sci. USA 104:81138118.
39. Tamura, S.,, H. Yonezawa,, M. Motegi,, R. Nakao,, S. Yoneda,, H. Watanabe,, T. Yamazaki, and, H. Senpuku. 2009. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral Micro-biol. Immunol. 24:152161.
40. Tomasz, A.,, and J. L. Mosser. 1966. On the nature of the pneumococcal activator substance. Proc. Natl. Acad. Sci. USA 55:5866.
41. Vickerman, M. M.,, S. Iobst,, A. M. Jesionowski, and, S. R. Gill. 2007. Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J. Bacteriol. 189:77997807.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error