1887

Chapter 17 : Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap17-2.gif

Abstract:

This chapter explores the mechanism of interspecies cell-cell communication in the oral biofilm, with emphasis on the cariogenic organism . Bioluminescence in the marine organism was one of the first examples of quorum sensing behavior described to occur in nature. The gene required for autoinducer 2 (AI-2) production encodes the enzyme LuxS, which functions in the S-adenosylmethionine (SAM) utilization pathway. Biofilms are complex communities where close interactions between heterogeneous species are common. Alterations in AI-2 signaling might affect biofilm formation in several ways, and changes in the cells themselves during the physiologically distinct biofilm mode of growth might reciprocally affect AI-2 signaling. Exopolysaccharide (EPS) production occurs after attachment and is involved in the latter stages of biofilm maturation. The genetic basis for altered biofilm structure in mutants has been attributed to an overexpression of the general stress response genes encoding GroEL and DnaK or to increased glucosyltransferase expression. The majority of genes found to respond to the AI-2 signal were genes involved in protein synthesis and genes for hypothetical proteins. A convincing demonstration of complementing a deletion in another species would be helpful in establishing the true nature of this signal. Interference with AI-2-mediated signaling occurs between competing microorganisms that share the same niche.

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17

Key Concept Ranking

Furanosyl Borate Diester
0.4841978
Gene Expression and Regulation
0.48096165
DNA-Directed RNA Polymerase
0.4722423
Quorum Sensing
0.468929
0.4841978
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of quorum sensing systems in bacteria. (Top left) LuxI/R quorum sensing in gram-negative bacteria. AHL molecules are synthesized by a homologue of the LuxI autoinducer synthase and freely diffuse out of the cell. At a specific concentration, AHL binds a homologue of the LuxR response regulator which then activates transcription of target genes. (Bottom left) Peptide quorum sensing system of gram-positive bacteria. The quorum sensing signal is synthesized as a pre-peptide, which is processed upon export by an ABC transporter to generate the mature signal. The peptide binds to its cognate receptor protein, a histidine kinase sensor, which autophosphorylates on a conserved histidine residue. The phosphoryl group is subsequently transferred to a response regulator protein, which regulates transcription of target genes. (Top and bottom right) Quorum sensing in AI-1 is synthesized by LuxLM and sensed by LuxN. LuxS synthesizes the AI-2 furanone signal, which is detected at the cell surface by the LuxP periplasmic binding protein and the receptor LuxQ. Both pathways converge at the shared LuxU phosphorelay protein, and LuxO activates transcription of target genes.

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Simplified representation of the activated methyl cycle and production of AI-2.

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of the system developed by Yoshida et al. ( ) to study diffusible signal molecules. mutants are inoculated into the culture medium (far left). A tissue culture insert, containing a filter permeative to small molecules, is placed into the well, and the insert is inoculated with a second oral microorganism (middle). Both organisms are allowed to grow in the presence of diffusible (and reciprocal) signaling molecules. At the conclusion of the experiment, the tissue culture insert is removed and the phenotypic effect of signaling is measured on the biofilm (far right).

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Examples of chemical signaling within the oral biofilm. Solid black arrows represent signaling via AI-2, which has been shown to influence both monospecies and mixed-species biofilm formation in ( ). AI-2 signaling has also been implicated in monospecies biofilms ( ). Soluble factors (presumed to be AI-2) produced by , and have been shown to complement the mutant biofilm phenotype ( ). Besides AI-2, chemical signaling occurs between and to increase production of lactic acid (the preferred carbon source for ) in the former and foster a mutualistic partnership in the biofilm ( ) (open arrow). Finally, is known to regulate its competence response, stress tolerance response, and biofilm formation through its intraspecies peptide quorum sensing signal CSP (dashed arrow) ( ).

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch17
1. Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109:421424.
2. Bassler, B. L.,, and R. Losick. 2006. Bacterially speaking. Cell 125:237246.
3. Beloin, C.,, and J. M. Ghigo. 2005. Finding gene-expression patterns in bacterial biofilms. Trends Microbiol. 13:1619.
4. Blehert, D. S.,, R. J. Palmer, Jr.,, J. B. Xavier,, J. S. Almeida, and, P. E. Kolenbrander. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185:48514860.
5. Cao, J. G.,, and E. A. Meighen. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264:2167021676.
6. Chung, W. O.,, Y. Park,, R. J. Lamont,, R. McNab,, B. Barbieri, and, D. R. Demuth. 2001. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J. Bacteriol. 183:39033909.
7. Cotter, P. D.,, C. Hill, and, R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3:777788.
8. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
9. Derzelle, S.,, E. Duchaud,, F. Kunst,, A. Dan-chin, and, P. Bertin. 2002. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photo-rhabdus luminescens. Appl. Environ. Microbiol. 68:37803789.
10. Duan, K.,, C. Dammel,, J. Stein,, H. Rabin, and, M. G. Surette. 2003. Modulation of Pseudomonas aeruginosa gene expression by host micro-flora through interspecies communication. Mol. Microbiol. 50:14771491.
11. Eberhard, A.,, A. L. Burlingame,, C. Eber-hard,, G. L. Kenyon,, K. H. Nealson, and, N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:24442449.
12. Egland, P. G.,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
13. Federle, M. J.,, and B. L. Bassler. 2003. Interspecies communication in bacteria. J. Clin. Investig. 112:12911299.
14. Fong, K. P.,, W. O. Chung,, R. J. Lamont, and, D. R. Demuth. 2001. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect. Immun. 69:76257634.
15. Frias, J.,, E. Olle, and, M. Alsina. 2001. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69:34313434.
16. Gopishetty, B.,, J. Zhu,, R. Rajan,, A. J. Sobczak,, S. F. Wnuk,, C. E. Bell, and, D. Pei. 2009. Probing the catalytic mechanism of S-ribosylhomocysteinase (LuxS) with catalytic intermediates and substrate analogues. J. Am. Chem. Soc. 131:12431250.
17. Hale, J. D.,, Y. T. Ting,, R. W. Jack,, J. R. Tagg, and, N. C. Heng. 2005. Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl. Environ. Microbiol. 71:76137617.
18. Hamilton, W. D. 1964. The genetical evolution of social behaviour. I. J. Theor. Biol. 7:116.
19. Hamilton, W. D. 1964. The genetical evolution of social behaviour. II. J. Theor. Biol. 7:1752.
20. Hardie, K. R.,, and K. Heurlier. 2008. Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat. Rev. Microbiol. 6:635643.
21. Håvarstein, L. S.,, G. Coomaraswamy, and, D. A. Morrison. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92:1114011144.
22. Keller, L.,, and M. G. Surette. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249258.
23. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster, and, R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66:486505.
24. Kreth, J.,, J. Merritt,, L. Zhu,, W. Shi, and, F. Qi. 2006. Cell density- and ComE-dependent expression of a group of mutacin and mutacin-like genes in Streptococcus mutans. FEMS Microbiol. Lett. 265:1117.
25. Kreth, J.,, Y. Zhang, and, M. C. Herzberg. 2008. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 190:46324640.
26. Kuramitsu, H. K.,, X. He,, R. Lux,, M. H. Anderson, and, W. Shi. 2007. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71:653670.
27. Li, Y. H.,, M. N. Hanna,, G. Svensater,, R. P. Ellen, and, D. G. Cvitkovitch. 2001. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J. Bacteriol. 183:68756884.
28. Li, Y. H.,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183:897908.
29. Li, Y. H.,, N. Tang,, M. B. Aspiras,, P. C. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2002. A quorumsensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184:26992708.
30. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook, and, R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185:274284.
31. McNab, R.,, and R. J. Lamont. 2003. Microbial dinner-party conversations: the role of LuxS in interspecies communication. J. Med. Microbiol. 52:541545.
32. Merritt, J.,, J. Kreth,, W. Shi, and, F. Qi. 2005. LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol. Microbiol. 57:960969.
33. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson, and, W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71:19721979.
34. Miller, M. B.,, and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165199.
35. Miller, M. B.,, K. Skorupski,, D. H. Lenz,, R. K. Taylor, and, B. L. Bassler. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303314.
36. Nealson, K. H.,, T. Platt, and, J. W. Hastings. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313322.
37. Novak, J.,, P. W. Caufield, and, E. J. Miller. 1994. Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J. Bacteriol. 176:43164320.
38. Pakula, R.,, and W. Walczak. 1963. On the nature of competence of transformable streptococci. J. Gen. Microbiol. 31:125133.
39. Palmer, R. J., Jr.,, K. Kazmerzak,, M. C. Hansen, and, P. E. Kolenbrander. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69:57945804.
40. Qi, F.,, P. Chen, and, P. W. Caufield. 2001. The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl. Environ. Microbiol. 67:1521.
41. Qi, F.,, P. Chen, and, P. W. Caufield. 2000. Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl. Environ. Microbiol. 66:32213229.
42. Qi, F.,, P. Chen, and, P. W. Caufield. 1999. Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl. Environ. Microbiol. 65:38803887.
43. Rickard, A. H.,, S. R. Campagna, and, P. E. Kolenbrander. 2008. Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms. J. Appl. Microbiol. 105:20962103.
44. Rickard, A. H.,, R. J. Palmer, Jr.,, D. S. Blehert,, S. R. Campagna,, M. F. Semmel-hack,, P. G. Egland,, B. L. Bassler, and, P. E. Kolenbrander. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60:14461456.
45. Schauder, S.,, K. Shokat,, M. G. Surette, and, B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463476.
46. Siller, M.,, R. P. Janapatla,, Z. A. Pirzada,, C. Hassler,, D. Zinkl, and, E. Charpentier. 2008. Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells. BMC Micro-biol. 8:188.
47. Slaughter, J. C. 1999. The naturally occurring furanones: formation and function from pheromone to food. Biol. Rev. Camb. Philos. Soc. 74:259276.
48. Stock, A. M.,, V. L. Robinson, and, P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183215.
49. Sturme, M. H.,, M. Kleerebezem,, J. Nakayama,, A. D. Akkermans,, E. E. Vaugha, and, W. M. de Vos. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek 81:233243.
50. Surette, M. G.,, and B. L. Bassler. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95:70467050.
51. Surette, M. G.,, M. B. Miller, and, B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:16391644.
52. Sztajer, H.,, A. Lemme,, R. Vilchez,, S. Schulz,, R. Geffers,, C. Y. Yip,, C. M. Levesque,, D. G. Cvitkovitch, and, I. Wagner-Dobler. 2008. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J. Bacteriol. 190:401415.
53. Thiel, V.,, R. Vilchez,, H. Sztajer,, I. Wagner-Dobler, and, S. Schulz. 2009. Identification, quantification, and determination of the absolute configuration of the bacterial quorum-sensing signal autoinducer-2 by gas chromatography-mass spectrometry. Chembiochem 10:479485.
54. Tomasz, A.,, and R. D. Hotchkiss. 1964. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 51:480487.
55. Vendeville, A.,, K. Winzer,, K. Heurlier,, C. M. Tang, and, K. R. Hardie. 2005. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3:383396.
56. Wen, Z. T.,, and R. A. Burne. 2002. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68:11961203.
57. Wen, Z. T.,, and R. A. Burne. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186:26822691.
58. Xavier, K. B.,, and B. L. Bassler. 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750753.
59. Xavier, K. B.,, and B. L. Bassler. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6:191197.
60. Xavier, K. B.,, and B. L. Bassler. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187:238248.
61. Xu, L.,, H. Li,, C. Vuong,, V. Vadyvaloo,, J. Wang,, Y. Yao,, M. Otto, and, Q. Gao. 2006. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect. Immun. 74:488496.
62. Yoshida, A.,, T. Ansai,, T. Takehara, and, H. K. Kuramitsu. 2005. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71:23722380.

Tables

Generic image for table
TABLE 1

Effect of deletion of on oral microorganisms

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17
Generic image for table
TABLE 2

Genes regulated by AI-2 signaling in

Citation: Perry J, Cvitkovitch D. 2011. Autoinducer-2-Regulated Genes in and Impact on Oral Bacterial Communities, p 247-261. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error