1887

Chapter 18 : Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap18-2.gif

Abstract:

Caries and periodontal disease are biofilm-mediated diseases that remain widespread and serious health problems. The dental biofilm is a complex microbial community that can comprise up to 700 bacterial species. Recent studies have made substantial progress in defining these signaling circuits and the impact that bacterial communication has on the formation and persistence of the dental biofilm. Several distinct classes of autoinducers have been identified, including numerous structurally distinct acylhomoserine lactones (AHLs), oligopeptides, quinolones, and derivatives of tetrahydrofuran. LuxS is an enzyme in the activated methyl cycle which functions in the turnover of S-adenosylhomocysteine (SAH) and generation of S-adenosylmethionine. To determine if influenced virulence properties, the expression of several genes that contribute to virulence was analyzed after inactivation of . Real-time PCR revealed that the expression of numerous genes encoding proteins involved in iron acquisition and storage was significantly altered in the mutant. Biofilm growth was restored to wild-type levels either by transforming the mutant strain with a functional copy of or by the addition of partially purified AI-2 to the growth medium. To determine if AI-2 represents a true quorum-sensing signal, Rezzonico and Duffy compiled and searched a microbial genome database for known AI-2 receptors, i.e., LuxQP and LsrB, and then compared the distribution of these proteins with published studies that examined quorum-sensing phenotypes in the organisms. The widespread distribution of LuxS in both gram-negative and gram-positive bacteria has led to the suggestion that AI-2 represents a universal quorum-sensing system that mediates interspecies communication.

Citation: Demuth D, Novak E, Shao H. 2011. Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development, p 263-280. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch18

Key Concept Ranking

Gene Expression and Regulation
0.40419123
Confocal Laser Scanning Microscopy
0.40335464
0.40419123
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The AI-2 quorum-sensing circuit of is integrated with two other quorum-sensing pathways that respond to an AHL signal (HAI-1) and a signal of unknown structure (CAI-1). AI-2 is bound by the periplasmic receptor LuxP, which interacts with the sensor kinase LuxQ. At low cell density (LCD), LuxQ functions as a kinase and initiates a phosphorelay through LuxU and the σ-dependent response regulator LuxO. Activation of LuxO results in the induction of a family of small quorum regulatory RNAs (Qrr sRNAs), which, in conjunction with Hfq, regulate the expression of LuxR, the master regulator of the AI-2 response. At high cell density (HCD), LuxQ functions as a phosphatase and phosphate flow is reversed. The expression of the sRNAs is reduced, leading to increased expression of LuxR and induction of the luciferase operon and other AI-2-dependent genes.

Citation: Demuth D, Novak E, Shao H. 2011. Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development, p 263-280. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Biofilm growth of fimbriated is AI-2 dependent. Biofilms of wild-type (DF2200N) and LuxS-deficient (DF2200N_luxS) strains were grown for 16 h in 96-well polystyrene plates and quantified by staining with crystal violet and measuring the optical density at 575 nm (O.D.575nm). Total biomass was greater for the fimbriated strains than for afimbriated strains (not shown) but exhibited the same dependency for AI-2. Sham-infected wells were incubated with brain heart infusion (BHI) broth without bacteria.

Citation: Demuth D, Novak E, Shao H. 2011. Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development, p 263-280. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Potential model integrating LsrR-mediated regulation of genes involved in the cellular response to AI-2 and the operon itself in ( ) and proposed for This mechanism is dependent on LsrR interaction with both unphosphorylated and phosphoryated forms of AI-2. At low cell density, LsrR represses the operon as well as numerous other genes that contribute to biofilm formation. As cell density increases, AI-2 is imported via an Lsr-independent mechanism and intracellular concentrations of the signal increase but remain below the level at which AI-2 is efficiently phosphorylated by LsrK. Binding of AI-2 by LsrR results in derepression of quorum-sensing-regulated genes such as those involved in biofilm growth. As cell density increases further, intracellular levels of AI-2 increase, AI-2 is phosphorylated by LsrK, and the operon is derepressed. As a result, extracellular AI-2 is rapidly internalized by the Lsr transporter and catabolized by LsrFG, effectively terminating the quorum-sensing response.

Citation: Demuth D, Novak E, Shao H. 2011. Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development, p 263-280. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch18
1. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2:582587.
2. Bassler, B. L.,, M. Wright, and, M. R. Silverman. 1994. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13:273286.
3. Bejerano-Sagie, M.,, and K. B. Xavier. 2007. The role of small RNAs in quorum sensing. Curr. Opin. Microbiol. 10:189198.
4. Blehert, D. S.,, R. J. Palmer, Jr.,, J. B. Xavier,, J. S. Almeida, and, P. E. Kolenbrander. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185:48514860.
5. Burgess, N. A.,, D. F. Kirke,, P. Williams,, K. Winzer,, K. R. Hardie,, N. L. Meyers,, J. Aduse-Opoku,, M. A. Curtis, and, M. Camara. 2002. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology 148:763772.
6. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler, and, F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
7. Chung, W. O.,, Y. Park,, R. J. Lamont,, R. McNab,, B. Barbieri, and, D. R. Demuth. 2001. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J. Bacteriol. 183:39033909.
8. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
9. Dunny, G. M.,, and B. A. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527564.
10. Fong, K. P.,, W. O. Chung,, R. J. Lamont, and, D. R. Demuth. 2001. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect. Immun. 69:76257634.
11. Fong, K. P.,, L. Gao, and, D. R. Demuth. 2003. luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect. Immun. 71:298308.
12. Frias, J.,, E. Olle, and, M. Alsina. 2001. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69:34313434.
13. Fuqua, C.,, S. C. Winans, and, E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727751.
14. Gomez, J. A.,, M. T. Criado, and, C. M. Ferreiros. 1998. Cooperation between the components of the meningococcal transferrin receptor, TbpA and TbpB, in the uptake of transferrin iron by the 37-kDa ferric-binding protein (FbpA). Res. Microbiol. 149:381387.
15. Gonzalez Barrios, A. F.,, R. Zuo,, Y. Hashimoto,, L. Yang,, W. E. Bentley, and, T. K. Wood. 2006. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188:305316.
16. He, Y.,, J. G. Frye,, T. P. Strobaugh, and, C. Y. Chen. 2008. Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81-176. Foodborne Pathog. Dis. 5:399415.
17. Henke, J. M.,, and B. L. Bassler. 2004. Bacterial social engagements. Trends Cell Biol. 14:648656.
18. Heurlier, K.,, A. Vendeville,, N. Halliday,, A. Green,, K. Winzer,, C. M. Tang, and, K. R. Hardie. 2009. Growth deficiencies of Neisseria meningitidis pfs and luxS mutants are not due to inactivation of quorum sensing. J. Bacteriol. 191:12931302.
19. Hughes, D. T.,, M. B. Clarke,, K. Yamamoto,, D. A. Rasko, and, V. Sperandio. 2009. The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS Pathog. 5:e1000553.
20. James, D.,, H. Shao,, R. J. Lamont, and, D. R. Demuth. 2006. The Actinobacillus actinomycetemcomitans ribose binding protein RbsB interacts with cognate and heterologous autoinducer 2 signals. Infect. Immun. 74:40214029.
21. Kasari, V.,, K. Kurg,, T. Margus,, T. Tenson, and, N. Kaldalu. 2010. The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair. J. Bacteriol. 192:29082919.
22. Kim, Y.,, X. Wang,, X. S. Zhang,, S. Grigoriu,, R. Page,, W. Peti, and, T. K. Wood. 2010. Escherichia coli toxin/anti-toxin pair MqsR/MqsA regulate toxin CspD. Environ. Microbiol. 12:11051121.
23. Kumari, A.,, P. Pasini, and, S. Daunert. 2008. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal. Bioanal. Chem. 391:16191627.
24. Kumari, A.,, P. Pasini,, S. K. Deo,, D. Flomenhoft,, H. Shashidhar, and, S. Daunert. 2006. Biosensing systems for the detection of bacterial quorum signaling molecules. Anal. Chem. 78:76037609.
25. Laub, M. T.,, and M. Goulian. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41:121145.
26. Lerat, E.,, and N. A. Moran. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21:903913.
27. Li, J.,, C. Attila,, L. Wang,, T. K. Wood,, J. J. Valdes, and, W. E. Bentley. 2007. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J. Bacteriol. 189:60116020.
28. Liljemark, W. F.,, C. G. Bloomquist,, B. E. Reilly,, C. J. Bernards,, D. W. Townsend,, A. T. Pennock, and, J. L. Le-Moine. 1997. Growth dynamics in a natural biofilm and its impact on oral disease management. Adv. Dent. Res. 11:1423.
29. Mascher, T.,, J. D. Helmann, and, G. Unden. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70:910938.
30. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook, and, R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185:274284.
31. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson, and, W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71:19721979.
32. Miller, M. B.,, and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165199.
33. Miller, S. T.,, K. B. Xavier,, S. R. Campagna,, M. E. Taga,, M. F. Semmelhack,, B. L. Bassler, and, F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15:677687.
34. Novak, E. A.,, H. Shao,, C. A. Daep, and, D. R. Demuth. 2010. Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infect. Immun. 78:29192926.
35. Parsek, M. R.,, and E. P. Greenberg. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97:87898793.
36. Passador, L.,, J. M. Cook,, M. J. Gambello,, L. Rust, and, B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:11271130.
37. Pesci, E. C.,, J. B. Milbank,, J. P. Pearson,, S. McKnight,, A. S. Kende,, E. P. Greenberg, and, B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:1122911234.
38. Rezzonico, F.,, and B. Duffy. 2008. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol. 8:154.
39. Rhodes, E. R.,, C. J. Shoemaker,, S. M. Menke,, R. E. Edelmann, and, L. A. Actis. 2007. Evaluation of different iron sources and their influence in biofilm formation by the dental pathogen Actinobacillus actinomycetemcomitans. J. Med. Microbiol. 56:119128.
40. Rickard, A. H.,, R. J. Palmer, Jr.,, D. S. Blehert,, S. R. Campagna,, M. F. Semmelhack,, P. G. Egland,, B. L. Bassler, and, P. E. Kolenbrander. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60:14461456.
41. Ryu, K. S.,, C. Kim,, I. Kim,, S. Yoo,, B. S. Choi, and, C. Park. 2004. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J. Biol. Chem. 279:2554425548.
42. Schauder, S.,, and B. L. Bassler. 2001. The languages of bacteria. Genes Dev. 15:14681480.
43. Shao, H.,, D. James,, R. J. Lamont, and, D. R. Demuth. 2007. Differential interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2. J. Bacteriol. 189:55595565.
44. Shao, H.,, R. J. Lamont, and, D. R. Demuth. 2007. Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect. Immun. 75:42114218.
45. Sperandio, V.,, A. G. Torres, and, J. B. Kaper. 2002. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43:809821.
46. Steindler, L.,, and V. Venturi. 2007. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol. Lett. 266:19.
47. Sun, J.,, R. Daniel,, I. Wagner-Dobler, and, A. P. Zeng. 2004. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol. 4:36.
48. Surette, M. G.,, M. B. Miller, and, B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:16391644.
49. Taga, M. E.,, S. T. Miller, and, B. L. Bassler. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol. Microbiol. 50:14111427.
50. Tavender, T. J.,, N. M. Halliday,, K. R. Hardie, and, K. Winzer. 2008. LuxS-independent formation of AI-2 from ribulose-5-phosphate. BMC Microbiol. 8:98.
51. Tu, K. C.,, and B. L. Bassler. 2007. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev. 21:221233.
52. Vendeville, A.,, K. Winzer,, K. Heurlier,, C. M. Tang, and, K. R. Hardie. 2005. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3:383396.
53. Wen, Z. T.,, and R. A. Burne. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186:26822691.
54. Whittaker, C. J.,, C. M. Klier, and, P. E. Kolenbrander. 1996. Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50:513552.
55. Winans, S. C.,, and B. L. Bassler. 2002. Mob psychology. J. Bacteriol. 184:873883.
56. Winzer, K.,, K. R. Hardie,, N. Burgess,, N. Doherty,, D. Kirke,, M. T. Holden,, R. Lin-forth,, K. A. Cornell,, A. J. Taylor,, P. J. Hill, and, P. Williams. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148:909922.
57. Xavier, K. B.,, and B. L. Bassler. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6:191197.
58. Xavier, K. B.,, and B. L. Bassler. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187:238248.
59. Xavier, K. B.,, S. T. Miller,, W. Lu,, J. H. Kim,, J. Rabinowitz,, I. Pelczer,, M. F. Semmelhack, and, B. L. Bassler. 2007. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol. 2:128136.
60. Yamaguchi, Y.,, J. H. Park, and, M. Inouye. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284:2874628753.

Tables

Generic image for table
TABLE 1

Biofilm growth of quorum-sensing mutants

Citation: Demuth D, Novak E, Shao H. 2011. Alternative Autoinducer-2 Quorum-Sensing Response Circuits: Impact on Microbial Community Development, p 263-280. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error