1887

Chapter 20 : Metabolite Sensing in a Model Polymicrobial Community

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Metabolite Sensing in a Model Polymicrobial Community, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap20-2.gif

Abstract:

The microbial composition of the human oral cavity has been well characterized using genomic and metagenomic techniques that have enabled rapid identification of microbial species. These studies indicate the presence of organisms in an environment, yet they do not provide information regarding the metabolic events that contribute to the oral pathology. By performing pure culture studies with secondary metabolites that encounters, novel responses to lactate and HO were discovered. The future work will reveal additional polymicrobial interactions that enhance bacterial resistance to innate immunity. Riboswitches often control genes involved in biosynthesis and transport of metabolites, and they allow cells to rapidly change gene expression in response to intracellular metabolite levels. Additionally, several noncoding regulatory RNAs (ncRNAs) were upregulated during biofilm growth, indicating potential roles in biofilm development and bacterial group behavior. Overall, this study highlights the importance of ncRNAs in , particularly their potential roles in metabolism and group behavior.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20

Key Concept Ranking

Streptococcus mutans
0.50702703
Outer Membrane Proteins
0.50374997
Streptococcus gordonii
0.4764832
0.50702703
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Glucose, fructose, and L-lactate consumption by was grown in equimolar amounts of each carbon source, and substrate disappearance was evaluated over time. Error bars represent 1 standard deviation and are omitted for clarity in some cases. Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Addition of lactate inhibits glucose consumption by After growth for 1 h on glucose, L-lactate was added (designated by the arrow) and consumption of each carbon source was monitored for 3 h. Error bars represent 1 standard deviation and are omitted for clarity in some cases. Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Lactate inhibits uptake of glucose in Cells were incubated in lactate, fructose, or no substrate (control) prior to addition of [U-C]glucose and measured for radioactivity over 20 min. Error bars are indicated for each sample and represent 1 standard deviation. Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Lactate dehydrogenase is required for inhibition of glucose uptake. An strain was incubated in the presence of lactate or no substrate (control) and assayed for uptake of [U-C]glucose. Error bars are indicated for each sample and represent 1 standard deviation. Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Model of lactate-mediated inhibition of PTS sugar transport in during coculture. L-Lactate is transported into the cell by the LctP lactate permease. As intracellular pyruvate levels increase, they inhibit E1 phosphorylation. As E1 is the first step in the PTS transport system, phosphorylation reactions downstream of this reaction should be blocked by E1 inhibition, which would inhibit transport by PTS. Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

-produced HO induces and in coculture. Light production of carrying (A) or - (B) was measured during coculture with increasing concentrations of in the presence of heat-inactivated or active catalase. The standard error was <6% for all measurements and was omitted for clarity. *, < 0.0007; **, < 0.01 (both via Student’s test; = 4). Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Coculture with enhances resistance to killing by human serum. Fold increase in survival was determined by percent survival data compared between monocultures (none), coculture with (), and coculture with in the presence of exogenous catalase (+cat). Error bars represent 1 standard error of the mean. *, < 0.01; **, < 0.05 (both via Student’s test; = 4). Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Factor H increases binding to during coculture with (A) Immunofluoresence micrographs demonstrate factor H binding to grown in monoculture (none), in coculture with ( Additions), and in coculture with exogenous catalase (+cat). Images were taken at ×1,000 magnification. (B) Average fluorescence intensity per cell taken from 40 independent measurements. Error bars represent 1 standard error of the mean. *, < 0.0001 via Student’s test ( = 4). Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Model of HO induction of () resistance to innate immunity. HO from induces and expression. Increased plaque growth leads to inflammation, which recruits phagocytic cells and promotes an influx of complement proteins to the environment. Reprinted from the ( ) with permission of the publisher.

Citation: Ramsey M, Boulette M, Jorth P, Whiteley M. 2011. Metabolite Sensing in a Model Polymicrobial Community, p 297-311. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch20
1. Altuvia, S.,, D. Weinstein-Fischer,, A. Zhang,, L. Postow, and, G. Storz. 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:4353.
2. Asakawa, R.,, H. Komatsuzawa,, T. Kawai,, S. Yamada,, R. B. Goncalves,, S. Izumi,, T. Fujiwara,, Y. Nakano,, N. Suzuki,, Y. Uchida,, K. Ouhara,, H. Shiba,, M. A. Taubman,, H. Kurihara, and, M. Sugai. 2003. Outer membrane protein 100, a versatile virulence factor of Actinobacillus actinomycetemcomitans. Mol. Microbiol. 50:11251139.
3. Barnard, J. P.,, and M. W. Stinson. 1999. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii. Infect. Immun. 67:65586564.
4. Bergey, D. H.,, N. R. Krieg, and, J. G. Holt. 1984. Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, MD.
5. Biswas, S.,, D. F. Duperon, and, F. S. Chebib. 1977. Study of crevice fluid in relation to periodontal disease in children. II. Effect of age, sex and gingival inflammation on crevice fluid protein, carbohydrate, total calcium, phosphate and nitrogen. J. Periodontal Res. 12:265278.
6. Bouvier, M.,, C. M. Sharma,, F. Mika,, K. H. Nierhaus, and, J. Vogel. 2008. Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol. Cell 32:827837.
7. Brown, S. A.,, and M. Whiteley. 2007. A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J. Bacteriol. 189:64076414.
8. Carlsson, J.,, Y. Iwami, and, T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect. Immun. 40:7080.
9. Chang, W.,, D. A. Small,, F. Toghrol, and, W. E. Bentley. 2006. Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J. Bacteriol. 188:16481659.
10. Courts, F. J.,, R. J. Boackle,, H. H. Fudenberg, and, M. S. Silverman. 1977. Detection of functional complement components in gingival crevicular fluid from humans with periodontal diseases. J. Dent. Res. 56:327331.
11. Diaz, P. I.,, N. Slakeski,, E. C. Reynolds,, R. Morona,, A. H. Rogers, and, P. E. Kolenbrander. 2006. Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J. Bacteriol. 188:24542462.
12. Egland, P. G.,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
13. El Tahir, Y.,, and M. Skurnik. 2001. YadA, the multifaceted Yersinia adhesin. Int. J. Med. Microbiol. 291:209218.
14. Fine, D. H.,, J. B. Kaplan,, S. C. Kachlany, and, H. C. Schreiner. 2006. How we got attached to Actinobacillus actinomycetemcomitans: a model for infectious diseases. Periodontol. 2000 42:114157.
15. Genco, R. J.,, and J. Slots. 1984. Host responses in periodontal diseases. J. Dent. Res. 63:441451.
16. Gottesman, S. 2005. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21:399404.
17. Haubek, D.,, O. K. Ennibi,, K. Poulsen,, S. Poulsen,, N. Benzarti, and, M. Kilian. 2001. Early-onset periodontitis in Morocco is associated with the highly leukotoxic clone of Actinobacillus actinomycetemcomitans. J. Dent. Res. 80:15801583.
18. Helling, R. B.,, C. N. Vargas, and, J. Adams. 1987. Evolution of Escherichia coli during growth in a constant environment. Genetics 116:349358.
19. Hogema, B. M.,, J. C. Arents,, R. Bader,, K. Eijkemans,, H. Yoshida,, H. Takahashi,, H. Aiba, and, P. W. Postma. 1998. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol. Microbiol. 30:487498.
20. Hoiczyk, E.,, A. Roggenkamp,, M. Reichenbecher,, A. Lupas, and, J. Heesemann. 2000. Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J. 19:59895999.
21. Jenkinson, H. F.,, and R. J. Lamont. 2005. Oral microbial communities in sickness and in health. Trends Microbiol. 13:589595.
22. Jorth, P.,, and M. Whiteley. 2010. Characterization of a novel riboswitch-regulated lysine transporter in Aggregatibacter actinomycetemcomitans. J. Bacteriol. 192:62406250.
23. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster, and, R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66:486505.
24. Kozarov, E. V.,, B. R. Dorn,, C. E. Shel-burne,, W. A. Dunn, Jr., and, A. Progulske-Fox. 2005. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25:e17e18.
25. Kraig, E.,, T. Dailey, and, D. Kolodrubetz. 1990. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family. Infect. Immun. 58:920929.
26. Kreth, J.,, J. Merritt,, W. Shi, and, F. Qi. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J. Bacteriol. 187:71937203.
27. Kroes, I.,, P. W. Lepp, and, D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA 96:1454714552.
28. Landt, S. G.,, E. Abeliuk,, P. T. McGrath,, J. A. Lesley,, H. H. McAdams, and, L. Shapiro. 2008. Small non-coding RNAs in Caulobacter crescentus. Mol. Microbiol. 68:600614.
29. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen, and, B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:6982.
30. Liu, J. M.,, J. Livny,, M. S. Lawrence,, M. D. Kimball,, M. K. Waldor, and, A. Camilli. 2009. Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res. 37:e46.
31. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook, and, R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185:274284.
32. Meyer, D. H.,, and P. M. Fives-Taylor. 1998. Oral pathogens: from dental plaque to cardiac disease. Curr. Opin. Microbiol. 1:8895.
33. Mostertz, J.,, C. Scharf,, M. Hecker, and, G. Homuth. 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497512.
34. Nathan, C. F.,, S. C. Silverstein,, L. H. Brukner, and, Z. A. Cohn. 1979. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med. 149:100113.
35. Nobbs, A. H.,, Y. Zhang,, A. Khammanivong, and, M. C. Herzberg. 2007. Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J. Bacteriol. 189:31063114.
36. Oglesby, A. G.,, J. M. Farrow III,, J. H. Lee,, A. P. Tomaras,, E. P. Greenberg,, E. C. Pesci, and, M. L. Vasil. 2008. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283:1555815567.
37. Palma, M.,, D. DeLuca,, S. Worgall, and, L. E. Quadri. 2004. Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J. Bacteriol. 186:248252.
38. Paster, B. J.,, S. K. Boches,, J. L. Galvin,, R. E. Ericson,, C. N. Lau,, V. A. Levanos,, A. Sahasrabudhe, and, F. E. Dewhirst. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183:37703783.
39. Ramsey, M. M.,, and M. Whiteley. 2009. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc. Natl. Acad. Sci. USA 106:15781583.
40. Root, R. K.,, J. Metcalf,, N. Oshino, and, B. Chance. 1975. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J. Clin. Investig. 55:945955.
41. Schachtele, C. F.,, A. Nobbs,, Y. Zhang,, M. Costalonga, and, M. C. Herzberg. 2007. Oral streptococci: commensals and opportunistic pathogens. p. 411–462. In R. Hakenbeck and, S. Chhatwal (ed.), Molecular Biology of Streptococci. Horizon Scientific Press, Wymondham, United Kingdom.
42. Sharma, C. M.,, S. Hoffmann,, F. Darfeuille,, J. Reignier,, S. Findeiss,, A. Sittka,, S. Chabas,, K. Reiche,, J. Hackermuller,, R. Reinhardt,, P. F. Stadler, and, J. Vogel. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250255.
43. Sittka, A.,, S. Lucchini,, K. Papenfort,, C. M. Sharma,, K. Rolle,, T. T. Binnewies,, J. C. Hinton, and, J. Vogel. 2008. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 4:e1000163.
44. Slots, J.,, H. S. Reynolds, and, R. J. Genco. 1980. Actinobacillus actinomycetemcomitans in human periodontal disease: a cross-sectional microbiological investigation. Infect. Immun. 29:10131020.
45. Staat, R. H.,, T. H. Gawronski,, D. E. Cressey,, R. S. Harris, and, L. E. Folke. 1975. Effects of dietary sucrose levels on the quantity and microbial composition of human dental plaque. J. Dent. Res. 54:872880.
46. Stohl, E. A.,, A. K. Criss, and, H. S. Seifert. 2005. The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol. Microbiol. 58:520532.
47. Sudarsan, N.,, E. R. Lee,, Z. Weinberg,, R. H. Moy,, J. N. Kim,, K. H. Link, and, R. R. Breaker. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411413.
48. Suzuki, T.,, N. Sugita,, H. Yoshie, and, K. Hara. 1995. Presence of activated eosinophils, high IgE and sCD23 titers in gingival crevicular fluid of patients with adult periodontitis. J. Periodontal Res. 30:159166.
49. Syed, S. A.,, and W. J. Loesche. 1978. Bacteriology of human experimental gingivitis: effect of plaque age. Infect. Immun. 21:821829.
50. Thomson, V. J.,, M. K. Bhattacharjee,, D. H. Fine,, K. M. Derbyshire, and, D. H. Figurski. 1999. Direct selection of IS903 transposon insertions by use of a broad-host-range vector: isolation of catalase-deficient mutants of Actinobacillus actinomycetemcomitans. J. Bacteriol. 181:72987307.
51. Toledano, M. B.,, I. Kullik,, F. Trinh,, P. T. Baird,, T. D. Schneider, and, G. Storz. 1994. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897909.
52. Tu, K. C.,, C. M. Waters,, S. L. Svenningsen, and, B. L. Bassler. 2008. A small-RNA-mediated negative feedback loop controls quorum-sensing dynamics in Vibrio harveyi. Mol. Microbiol. 70:896907.
53. Urban, J. H.,, and J. Vogel. 2008. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 6:e64.
54. Winkler, W. C.,, and R. R. Breaker. 2005. Regulation of bacterial gene expression by ribo-switches. Annu. Rev. Microbiol. 59:487517.
55. Yang, H. W.,, Y. F. Huang,, Y. Chan, and, M. Y. Chou. 2005. Relationship of Actinobacillus actinomycetemcomitans serotypes to periodontal condition: prevalence and proportions in subgingival plaque. Eur. J. Oral Sci. 113:2833.
56. Zambon, J. J.,, H. S. Reynolds, and, R. J. Genco. 1990. Studies of the subgingival micro-flora in patients with acquired immunodeficiency syndrome. J. Periodontol. 61:699704.
57. Zeller, T.,, O. V. Moskvin,, K. Li,, G. Klug, and, M. Gomelsky. 2005. Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. J. Bacteriol. 187:72327242.
58. Zhang, A.,, K. M. Wassarman,, J. Ortega,, A. C. Steven, and, G. Storz. 2002. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9:1122.
59. Zheng, M.,, X. Wang,, L. J. Templeton,, D. R. Smulski,, R. A. LaRossa, and, G. Storz. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183:45624570.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error