1887

Chapter 24 : The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap24-2.gif

Abstract:

This chapter integrates unpublished data with the published reports on the synergism between veillonellae and streptococci. It speculates on how the genome sequence of veillonellae will help one understand its biology and potential role in the pathogenicity of the dental biofilm community. It was discovered that hydrogen peroxide (HO) resistance in was increased 100 to 1,000-fold over monospecies culture in cocultures with sp. strain PK1910. This chapter focuses on some important findings from the sp. strain PK1910 genome. In the 1964 description of sp. by Rogosa, the species was distinguished from by the ability to decompose HO. In the 1982 revision of the species, the former subspecies in were classified as three species: , , and . species are among the most prevalent early colonizers of oral biofilm. In-depth investigations on the mechanism of interactions of veillonellae with other oral microbial species will contribute significantly to one's overall understanding of the ecology of oral biofilms in the human host. Different from a metagenomics approach, metatranscriptomics focuses on community member functions at a particular time under a particular condition.

Citation: Qi F, Ferretti J. 2011. The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, p 357-370. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch24

Key Concept Ranking

Type II Secretion System
0.41327506
0.41327506
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Growth of sp. strain PK1910 (Va) in one- and two-species cultures with (Sm) in BHI (no lactate) or BHI plus 1% lactate (+lactate). Monocultures were grown in BHI (for Sm) or BHI plus lactate (for Va) overnight anaerobically. The overnight culture was centrifuged to remove the supernatant, washed once with phosphate-buffered saline, and resuspended to an optical density at 600 nm of 1.0 in phosphate-buffered saline. The culture was inoculated into fresh medium in 1:100 dilutions either as a monoculture or in a 1:1 ratio as a mixed-species culture. The cultures were grown either in an anaerobic chamber (anaerobic) or as a static culture aerobically with 5% CO (aerobic) for 16 h, and the CFU determination was done by plating serially diluted cultures on BHI plus 1% lactate plus 12 μg of tetracycline/ml (Va is tetracycline resistant).

Citation: Qi F, Ferretti J. 2011. The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, p 357-370. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

HO resistance of (Sm) and sp. strain PK1910 (Va) in monospecies versus mixed-species cultures. sp. strain PK1910, and (Sg) were grown in BHI to mid-exponential phase (optical density at 600 nm = 0.3), and mixed in a 1:1 ratio. HO (0.02%) was added to the monospecies or mixed-species cultures for 2 h before being neutralized with catalase. Cultures were serially diluted and plated for CFU counting. Survival was calculated as the number of CFU/milliliter in the treated samples divided by CFU/milliliter of the control samples.

Citation: Qi F, Ferretti J. 2011. The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, p 357-370. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

LC/MS profile of supernatants of monospecies and mixed-species cultures of and sp. strain PK1910. For the mixed-species culture, early-exponential-phase cells were mixed in a 1:1 ratio. Both monospecies and mixed-species cultures were incubated under the same conditions and harvested at late exponential phase. Supernatant from uninoculated medium (A) or medium inoculated with (B), sp. strain PK1910 (C), or both species (D) was concentrated by lyophilization and subjected to LC/MS analysis using a C reverse-phase column. No unique peak is identified in the sp. strain PK1910 monoculture (C), as the same pattern is shown for the medium control (A). In the monoculture (B), a peak with an apparent molecular mass of 679.53 Da was identified. This peak disappeared in the two-species culture (D), which showed a unique peak with an apparent molecular mass of 821.47 Da.

Citation: Qi F, Ferretti J. 2011. The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, p 357-370. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogenetic tree of 16S-rRNA gene of type strains generated using two alignment programs.

Citation: Qi F, Ferretti J. 2011. The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, p 357-370. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch24
1. Aas, J. A.,, A. L. Griffen,, S. R. Dardis,, A. M. Lee,, I. Olsen,, F. E. Dewhirst,, E. J. Leys, and, B. J. Paster. 2008. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 46:14071417.
2. Arif, N.,, T. Do,, R. Byun,, E. Sheehy,, D. Clark,, S. C. Gilbert, and, D. Beighton. 2008. Veillonella rogosae sp. nov., an anaerobic, gramnegative coccus isolated from dental plaque. Int. J. Syst. Evol. Microbiol. 58:581584.
3. Averhoff, B. 2004. DNA transport and natural transformation in mesophilic and thermophilic bacteria. J. Bioenerg. Biomembr. 36:2533.
4. Averhoff, B.,, and A. Friedrich. 2003. Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch. Microbiol. 180:385393.
5. Becker, M. R.,, B. J. Paster,, E. J. Leys,, M. L. Moeschberger,, S. G. Kenyon,, J. L. Galvin,, S. K. Boches,, F. E. Dewhirst, and, A. L. Griffen. 2002. Molecular analysis of bacterial species associated with childhood caries. J. Clin. Microbiol. 40:10011009.
6. Byun, R.,, J. P. Carlier,, N. A. Jacques,, H. Marchandin, and, N. Hunter. 2007. Veillonella denticariosi sp. nov., isolated from human carious dentine. Int. J. Syst. Evol. Microbiol. 57:28442848.
7. DiGuiseppi, J.,, and I. Fridovich. 1982. Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. J. Biol. Chem. 257:40464051.
8. Egland, P. G.,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
9. Foster, J. S.,, and P. E. Kolenbrander. 2004. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl. Environ. Microbiol. 70:43404348.
10. Gilbert, J. A.,, D. Field,, Y. Huang,, R. Edwards,, W. Li,, P. Gilna, and, I. Joint. 2008. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042.
11. Haake, S. K.,, S. C. Yoder,, G. Attarian, and, K. Podkaminer. 2000. Native plasmids of Fusobacterium nucleatum: characterization and use in development of genetic systems. J. Bacteriol. 182:11761180.
12. Han, Y. W.,, A. Ikegami,, P. Chung,, L. Zhang, and, C. X. Deng. 2007. Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in Fusobacterium nucleatum. Appl. Environ. Microbiol. 73:36773683.
13. Higuchi, M.,, M. Shimada,, J. Matsumoto,, Y. Yamamoto,, A. Rhaman, and, Y. Kamio. 1994. Molecular cloning and sequence analysis of the gene encoding the H2O2-forming NADH oxidase from Streptococcus mutans. Biosci. Biotechnol. Biochem. 58:16031607.
14. Higuchi, M.,, M. Shimada,, Y. Yamamoto,, T. Hayashi,, T. Koga, and, Y. Kamio. 1993. Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans. J. Gen. Microbiol. 139:23432351.
15. Hughes, C. V.,, R. N. Andersen, and, P. E. Kolenbrander. 1992. Characterization of Veillonella atypica PK1910 adhesin-mediated coaggregation with oral Streptococcus spp. Infect. Immun. 60:11781186.
16. Hughes, C. V.,, P. E. Kolenbrander,, R. N. Andersen, and, L. V. Moore. 1988. Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology. Appl. Environ. Microbiol. 54:19571963.
17. Hughes, C. V.,, C. A. Roseberry, and, P. E. Kolenbrander. 1990. Isolation and characterization of coaggregation-defective mutants of Veillonella atypica. Arch. Oral Biol. 35(Suppl.):123S125S.
18. Johnson, B. P.,, B. J. Jensen,, E. M. Ransom,, K. A. Heinemann,, K. M. Vannatta,, K. A. Egland, and, P. G. Egland. 2009. Interspecies signaling between Veillonella atypica and Streptococcus gordonii requires the transcription factor CcpA. J. Bacteriol 191:55635565.
19. Jumas-Bilak, E.,, J. P. Carlier,, H. Jean-Pierre,, C. Teyssier,, B. Gay,, J. Campos, and, H. Marchandin. 2004. Veillonella montpellierensis sp. nov., a novel, anaerobic, gramnegative coccus isolated from human clinical samples. Int. J. Syst. Evol. Microbiol. 54:13111316.
20. Kara, D.,, S. B. Luppens, and, J. M. Cate. 2006. Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine. Eur. J. Oral Sci. 114:5863.
21. Kinder Haake, S.,, S. Yoder, and, S. H. Gerardo. 2006. Efficient gene transfer and targeted mutagenesis in Fusobacterium nucleatum. Plasmid 55:2738.
22. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42:627656.
23. Kolenbrander, P. E. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54:413437.
24. Kolenbrander, P. E. 1989. Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. Crit. Rev. Microbiol. 17:137159.
25. Kolenbrander, P. E.,, R. J. Palmer, Jr.,, S. Periasamy, and, N. S. Jakubovics. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8:471480.
26. Kolenbrander, P. E.,, R. J. Palmer, Jr.,, A. H. Rickard,, N. S. Jakubovics,, N. I. Chalmers, and, P. I. Diaz. 2006. Bacterial interactions and successions during plaque development. Periodontol. 2000 42:4779.
27. Kraatz, M.,, and D. Taras. 2008. Veillonella magna sp. nov., isolated from the jejunal mucosa of a healthy pig, and emended description of Veillonella ratti. Int. J. Syst. Evol. Microbiol. 58:27552761.
28. Kreth, J.,, J. Merritt,, W. Shi, and, F. Qi. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J. Bacteriol. 187:71937203.
29. Luppens, S. B.,, D. Kara,, L. Bandounas,, M. J. Jonker,, F. R. Wittink,, O. Bruning,, T. M. Breit,, J. M. Ten Cate, and, W. Crielaard. 2008. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm. Oral Microbiol. Immunol. 23:183189.
30. Marsh, P. D. 2004. Dental plaque as a microbial biofilm. Caries Res. 38:204211.
31. Mays, T. D.,, L. V. Holdeman,, W. E. C. Moore,, M. Rogosa, and, J. L. Johnson. 1982. Taxonomy of the genus Veillonella Prévot. Int. J. Syst. Bacteriol. 32:2836.
32. McBride, B. C.,, and J. S. Van der Hoeven. 1981. Role of interbacterial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens. Infect. Immun. 33:467472.
33. Mikx, F. H.,, and J. S. Van der Hoeven. 1975. Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch. Oral Biol. 20:407410.
34. Mikx, F. H.,, J. S. van der Hoeven,, K. G. Konig,, A. J. Plasschaert, and, B. Guggenheim. 1972. Establishment of defined microbial ecosystems in germ-free rats. I. The effect of the interactions of Streptococcus mutans or Streptococcus sanguis with Veillonella alcalescens on plaque formation and caries activity. Caries Res. 6:211223.
35. Murray, N. E. 2000. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64:412434.
36. Palmer, R. J., Jr.,, P. I. Diaz, and, P. E. Kolenbrander. 2006. Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J. Bacteriol. 188:41174124.
37. Periasamy, S.,, and P. E. Kolenbrander. 2009. Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect. Immun. 77:35423551.
38. Periasamy, S.,, and P. E. Kolenbrander. 2010. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J. Bacteriol. 192:29652972.
39. Poretsky, R. S.,, S. Gifford,, J. Rinta-Kanto,, M. Vila-Costa, and, M. A. Moran. 18 February 2009. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J. Vis. Exp. doi:10.3791/1086.
40. Poretsky, R. S.,, I. Hewson,, S. Sun,, A. E. Allen,, J. P. Zehr, and, M. A. Moran. 2009. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ. Microbiol. 11:13581375.
41. Rogosa, M. 1965. The genus Veillonella. IV. Serological groupings, and genus and species emendations. J. Bacteriol. 90:704709.
42. Rogosa, M. 1964. The genus Veillonella. I. General cultural, ecological, and biochemical considerations. J. Bacteriol. 87:162170.
43. Rogosa, M.,, and F. S. Bishop. 1964. The genus Veillonella. II. Nutritional studies. J. Bacteriol. 87:574580.
44. Rozkiewicz, D.,, T. Daniluk,, M. L. Zaremba,, D. Cylwik-Rokicka,, E. Luczaj-Cepowicz,, R. Milewska,, G. Marczuk-Kolada, and, W. Stokowska. 2006. Bacterial composition in the supragingival plaques of children with and without dental caries. Adv. Med. Sci. 51(Suppl. 1):182186.
45. Russell, J. I.,, T. W. MacFarlane,, T. C. Aitchison,, K. W. Stephen, and, C. K. Burchell. 1990. Salivary levels of mutans streptococci, Lactobacillus, Candida, and Veillonella species in a group of Scottish adolescents. Community Dent. Oral Epidemiol. 18:1721.
46. Thomas, E. L.,, and K. A. Pera. 1983. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J. Bacteriol. 154:12361244.
47. Tong, H.,, W. Chen,, J. Merritt,, F. Qi,, W. Shi, and, X. Dong. 2007. Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol. Microbiol. 63:872880.
48. van der Hoeven, J. S.,, and H. Hoogendoorn. 1990. Uptake of oxygen, release and degradation of hydrogen peroxide by Streptococcus mutans NCTC 10449. Antonie van Leeuwenhoek 57:9195.
49. van der Hoeven, J. S.,, A. I. Toorop, and, R. H. Mikx. 1978. Symbiotic relationship of Veillonella alcalescens and Streptococcus mutans in dental plaque in gnotobiotic rats. Caries Res. 12:142147.
50. Whittaker, C. J.,, C. M. Klier, and, P. E. Kolenbrander. 1996. Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50:513552.

Tables

Generic image for table
TABLE 1

Genes related to DNA uptake, integration, and R-M in sp. strain PK1910

Citation: Qi F, Ferretti J. 2011. The Community: How Genome Sequencing Aids Our Understanding of Interspecies Interaction, p 357-370. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error