1887

Chapter 13 : The Evolutionary Model of O157:H7

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Evolutionary Model of O157:H7, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap13-2.gif

Abstract:

The first model for the evolution of O157:H7 was proposed over a decade ago. This model was based on data from multilocus enzyme electrophoresis, sorbitol fermentation, β-glucuronidase activity, and the presence/absence of the genes encoding the two main antigenic forms of Shiga toxin (Stx): stx and stx. With the higher-resolution, single nucleotide polymorphisms (SNPs)-based phylogenetic framework in place, the stepwise model can be expanded further through the examination of the Stx profiles present within the clades. With clade 7a, the model once again bifurcates with one line losing stx (clade 7b) and the other evolving into clade 5a. The observed changes in the tolA locus emphasize the utility of the revised model to elucidate the complex relationships among otherwise closely related isolates. The updated stepwise evolution model highlights the dynamic nature of the phage-encoded Stx variants, as each was independently acquired and lost multiple times during the diversification of O157:H7. Finally, this model reflects a collective effort on the part of multiple investigators to describe the nature, population genetic diversity, and emergence of pathogenic bacteria.

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13

Key Concept Ranking

Hemolytic Uremic Syndrome
0.48278585
Type 1 Fimbriae
0.47612292
Single Nucleotide Polymorphism
0.4735015
Genetic Elements
0.4511223
Multilocus Sequence Typing
0.45060015
0.48278585
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The original stepwise model for the evolution of O157:H7. This model is based on multilocus enzyme electrophoretic profiles, GUD and SOR phenotypes, and Stx production. Phenotypes of ancestors A1 to A6 are shown. A strain with the traits of ancestor A3 (black circle) has not been reported.

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phylogenetic relationships among SNP genotypes. Nodes are labeled with their corresponding SNP genotype (SG). (A) Phylogenetic network generated using the neighbor-net algorithm with 96 SNPs and 39 SGs from Manning et al. ( ). (B) Phylogenetic network generated using the neighbor-net algorithm with 96 SNPs and 36 SGs from Manning et al. ( ). Genotypes 21, 22, and 27 were excluded from this analysis since the isolates were found to be mixed cultures. (C) Bifurcating tree generated using the neighbor-net algorithm with 89 SNPs and 36 SGs from Manning et al. ( ). The nine previously described clades are marked by the shaded ellipses. SG23 has been reclassified as the new clade 5 based on the number of SNP differences between it and neighboring SGs. Clade 9 has been subdivided into its major phenotypic variants; see text for details.

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Expanded model for the stepwise evolution of O157:H7. Phenotypic and genotypic changes predicted to have occurred are indicated. A strain with the traits of clade 5a (shaded circle) has not been reported, but is predicted by the model. Abbreviations: 1, ; 2, ; 2c, ; cl, clade. (Inset) Simplified view of clade evolution.

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Alignment of alleles with differing numbers of repeats. The 15-bp repeats are located between positions 637 and 792 of the Sakai allele and are labeled A through O. Repeats involved in duplication events are shaded. The proposed directionality of the observed expansion and contraction is indicated.

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817114.ch13
1. Bettelheim, K. A.,, M. Whipp,, S. P. Djordjevic, and, V. Ramachandran. 2002. First isolation outside Europe of sorbitol-fermenting verocytotoxigenic Escherichia coli (VTEC) belonging to O group O157. J. Med. Microbiol. 51:713714.
2. Bilge, S. S.,, J. C. Vary, Jr.,, S. F. Dowell, and, P. I. Tarr. 1996. Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus. Infect. Immun. 64:47954801.
3. Feng, P.,, K. A. Lampel,, H. Karch, and, T. S. Whittam. 1998. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J. Infect. Dis. 177:17501753.
4. Feng, P. C.,, S. R. Monday,, D. W. Lacher,, L. Allison,, A. Siitonen,, C. Keys,, M. Eklund,, H. Nagano,, H. Karch,, J. Keen, and, T. S. Whittam. 2007. Genetic diversity among clonal lineages within Escherichia coli O157:H7 stepwise evolutionary model. Emerg. Infect. Dis. 13:17011706.
5. Gunzer, F.,, H. Bohm,, H. Russmann,, M. Bitzan,, S. Aleksic, and, H. Karch. 1992. Molecular detection of sorbitol-fermenting Escherichia coli O157 in patients with hemolytic-uremic syndrome. J. Clin. Microbiol. 30:18071810.
6. Karch, H.,, H. Böhm,, H. Schmidt,, F. Gunzer,, S. Aleksic, and, J. Heesemann. 1993. Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157:H. J. Clin. Microbiol. 31:12001205.
7. Karch, H.,, R. Wiss,, H. Gloning,, P. Emmrich,, S. Aleksic, and, J. Bockemühl. 1990. Hemolytic-uremic syndrome in infants due to verotoxin-producing Escherichia coli. Dtsch. Med. Wochenschr. 115:489495. (In German.)
8. Kulasekara, B. R.,, M. Jacobs,, Y. Zhou,, Z. Wu,, E. Sims,, C. Saenphimmachak,, L. Rohmer,, J. M. Ritchie,, M. Radey,, M. McKevitt,, T. L. Freeman,, H. Hayden,, E. Haugen,, W. Gillett,, C. Fong,, J. Chang,, V. Beskhlebnaya,, M. K. Waldor,, M. Samadpour,, T. S. Whittam,, R. Kaul,, M. Brittnacher, and, S. I. Miller. 2009. Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect. Immun. 77:37133721.
9. Levine, M. M.,, J. G. Xu,, J. B. Kaper,, H. Lior,, V. Prado,, B. Tall,, J. Nataro,, H. Karch, and, K. Wachsmuth. 1987. A DNA probe to identify enterohemorrhagic Escherichia coli of O157:H7 and other serotypes that cause hemorrhagic colitis and hemolytic uremic syndrome. J. Infect. Dis. 156:175182.
10. Li, B.,, W. H. Koch, and, T. A. Cebula. 1997. Detection and characterization of the fimA gene of Escherichia coli O157:H7. Mol. Cell. Probes 11:397406.
11. Manning, S. D.,, A. S. Motiwala,, A. C. Springman,, W. Qi,, D. W. Lacher,, L. M. Ouellette,, J. M. Mladonicky,, P. Somsel,, J. T. Rudrik,, S. E. Dietrich,, W. Zhang,, B. Swaminathan,, D. Alland, and, T. S. Whittam. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 105:48684873.
12. Monday, S. R.,, S. A. Minnich, and, P. C. Feng. 2004. A 12-base-pair deletion in the flagellar master control gene flhC causes nonmotility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H strains. J. Bacteriol. 186:23192327.
13. Monday, S. R.,, T. S. Whittam, and, P. C. Feng. 2001. Genetic and evolutionary analysis of mutations in the gusA gene that cause the absence of beta-glucuronidase activity in Escherichia coli O157:H7. J. Infect. Dis. 184:918921.
14. Mukherjee, A.,, M. K. Mammel,, J. E. LeClerc, and, T. A. Cebula. 2008. Altered utilization of N-acetyl-d-galactosamine by Escherichia coli O157:H7 from the 2006 spinach outbreak. J. Bacteriol. 190:17101717.
15. Qi, W.,, D. W. Lacher,, A. C. Bumbaugh,, K. E. Hyma,, L. M. Ouellette,, T. M. Large,, C. L. Tarr, and, T. S. Whittam. 2004. Ec MLST: an online database for multi locus sequence typing of pathogenic Escherichia coli, p. 520–521. In Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference.
16. Roe, A. J.,, C. Currie,, D. G. Smith, and, D. L. Gally. 2001. Analysis of type 1 fimbriae expression in verotoxigenic Escherichia coli: a comparison between serotypes O157 and O26. Microbiology 147:145152.
17. Rosser, T.,, T. Dransfield,, L. Allison,, M. Hanson,, N. Holden,, J. Evans,, S. Naylor,, R. La Ragione,, J. C. Low, and, D. L. Gally. 2008. Pathogenic potential of emergent sorbitol-fermenting Escherichia coli O157:NM. Infect. Immun. 76:55985607.
18. Schmitt, C. K.,, M. L. McKee, and, A. D. O’Brien. 1991. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H strain E32511. Infect. Immun. 59:10651073.
19. Shaikh, N.,, N. J. Holt,, J. R. Johnson, and, P. I. Tarr. 2007. Fim operon variation in the emergence of enterohemorrhagic Escherichia coli: an evolutionary and functional analysis. FEMS Microbiol. Lett. 273:5863.
20. Wirth, T.,, D. Falush,, R. Lan,, F. Colles,, P. Mensa,, L. H. Wieler,, H. Karch,, P. R. Reeves,, M. C. Maiden,, H. Ochman, and, M. Achtman. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60:11361151.
21. Zhang, W.,, W. Qi,, T. J. Albert,, A. S. Motiwala,, D. Alland,, E. K. Hyytia-Trees,, E. M. Ribot,, P. I. Fields,, T. S. Whittam, and, B. Swaminathan. 2006. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res. 16:757767.

Tables

Generic image for table
Table 1.

Stx profiles observed among the clades of O157:H7 and its close relatives

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13
Generic image for table
Table 2.

Nucleotide and amino acid sequences of repeats

Citation: Lacher D. 2011. The Evolutionary Model of O157:H7, p 227-239. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error