1887

Chapter 14 : Evolutionary Emergence and Impact of Atypical O157:H7 Strains

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolutionary Emergence and Impact of Atypical O157:H7 Strains, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap14-2.gif

Abstract:

This chapter reviews the findings on some of atypical strains, examines the genetic mutations underlying their atypical phenotypes, addresses the impact they have on public health, and discusses how they fit into the evolutionary model of O157:H7. Almost all generic strains produce β-glucuronidase (GUD), so a popular assay to identify utilizes the fluorogenic GUD substrate 4-methylumbelliferyl-β-D-glucuronide. The definitive identification of O157:H7 strains is based on the serological presence of both the O and the H antigens. The authors found that the majority of Shiga toxin (Stxs)-producing O157:NM strains are actually phenotypic variants of O157:H7 and they can sometimes be induced to express the H7 antigen. More recent analysis by multilocus sequence typing (MLST) concurred with the multilocus enzyme electrophoresis (MLEE) results in that both TT12A and TT12B had ST66, the most common genotype for O157:H7 strains. The somatic (O) 157 and the flagellar (H) 7 antigens are key markers that are extensively used in diagnostics to identify the O157:H7 serotype. Many of the atypical O157:H7 variants have a public health impact, as they are often pathogenic and will cause illness but, due to the lack of trait marker(s), are not easily detected by assays routinely used to test for O157:H7. Although phenotypically distinct, many of the atypical O157:H7 variants were found to have identical multilocus genotypes (ST66) and belong to the A6 clonal group. Therefore, such strains represent newly identified O157:H7 variants that merely lost typical phenotypic features.

Citation: Feng P, Monday S. 2011. Evolutionary Emergence and Impact of Atypical O157:H7 Strains, p 241-255. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch14

Key Concept Ranking

Mobile Genetic Elements
0.59655243
Pulsed-Field Gel Electrophoresis
0.45695257
Multilocus Sequence Typing
0.44043624
Single Nucleotide Polymorphism
0.42942533
0.59655243
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Model for the evolutionary emergence of O157:H7.

Citation: Feng P, Monday S. 2011. Evolutionary Emergence and Impact of Atypical O157:H7 Strains, p 241-255. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Model for the evolutionary emergence of O157:H7 modified to include atypical O157:H7 variants. LEE, locus of enterocyte effacement. Modified from Feng et al. ( ).

Citation: Feng P, Monday S. 2011. Evolutionary Emergence and Impact of Atypical O157:H7 Strains, p 241-255. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817114.ch14
1. Aldridge, P.,, and K. T. Hughes. 2002. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5:160165.
2. Beutin, L.,, G. Krause,, S. Zimmermann,, S. Kaulfuss, and, K. Gleier. 2004. Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. J. Clin. Microbiol. 42:10991108.
3. Bitzan, M.,, K. Ludwig,, M. Klemt,, H. König,, J. Büren, and, D. E. Müller-Wiefel. 1993. The role of Escherichia coli O157 infections in the classical (enteropathic) haemolytic uraemic syndrome: results of Central European, multicentre study. Epidemiol. Infect. 110:183196.
4. Centers for Disease Control and Prevention. 2003. Standardized Molecular Subtyping of Foodborne Bacterial Pathogens by Pulsed-Field Gel Electrophoresis: CDC Training Manual. CDC, Atlanta, GA.
5. Feng, P. 1993. Identification of Escherichia coli serotype O157:H7 by DNA probe specific for an allele of uidA gene. Mol. Cell. Probes 7:151154.
6. Feng, P. 1995. Escherichia coli serotype O157:H7: novel vehicles of infection and emergence of phenotypic variants. Emerg. Infect. Dis. 1:1621.
7. Feng, P.,, M. Dey,, A. Abe, and, T. Takeda. 2001. Isogenic strain of Escherichia coli O157:H7 that has lost both Shiga toxin 1 and 2 genes. Clin. Diagn. Lab. Immunol. 8:711717.
8. Feng, P.,, P. I. Fields,, B. Swaminathan, and, T. S. Whittam. 1996. Characterization of nonmotile Escherichia coli O157 and other serotypes by using an anti-flagellin monoclonal antibody. J. Clin. Microbiol. 34:28562859.
9. Feng, P.,, and P. A. Hartman. 1982. Fluorogenic assays for the immediate confirmation of Escherichia coli. Appl. Environ. Microbiol. 43:13201329.
10. Feng, P.,, and K. A. Lampel. 1994. Genetic analysis of uidA gene expression in enterohemorrhagic Escherichia coli serotype O157:H7. Microbiology 140:21012107.
11. Feng, P.,, K. A. Lampel,, H. Karch, and, T. S. Whittam. 1998. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J. Infect. Dis. 177:17501753.
12. Feng, P.,, R. Lum, and, G. W. Chang. 1991. Identification of uidA gene sequences in β-d-glucuronidase assay negative Escherichia coli. Appl. Environ. Microbiol. 57:320323.
13. Feng, P.,, and S. R. Monday. 2000. Multiplex PCR for detection of trait and virulence factors in enterohemorrhagic Escherichia coli serotypes. Mol. Cell. Probes 14:333337.
14. Feng, P. C.,, S. R. Monday,, D. W. Lacher,, L. Allison,, A. Siitonen,, C. Keys,, M. Eklund,, H. Nagano,, H. Karch,, J. Keen, and, T. S. Whittam. 2007. Genetic diversity among clonal lineages within the Escherichia coli O157:H7 stepwise evolutionary model. Emerg. Infect. Dis. 13:17011706.
15. Feng, P.,, R. C. Sandlin,, C. H. Park,, R. A. Wilson, and, M. Nishibuchi. 1998. Identification of a rough strain of Escherichia coli O157:H7 that produces no detectable O157 antigen. J. Clin. Microbiol. 36:23392341.
16. Fields, P. I.,, K. Blom,, H. J. Hughes,, L. O. Helsel,, P. Feng, and, B. Swaminathan. 1997. Molecular characterization of the gene encoding H antigen in Escherichia coli and development of a PCR-RFLP test for the identification of E. coli O157:H7 and O157:NM. J. Clin. Microbiol. 35:10661070.
17. Friedrich, A. W.,, W. Zhang,, M. Bielaszewska,, A. Mellmann,, R. Köck,, A. Fruth,, H. Tschäpe, and, H. Karch. 2007. Prevalence, virulence profiles, and clinical significance of Shiga toxin-negative variants of enterohemorrhagic Escherichia coli O157 infection in humans. Clin. Infect. Dis. 45:3945.
18. Hayes, P. S.,, K. Blom,, P. Feng,, J. Lewis,, N. A. Strockbine, and, B. Swaminathan. 1995. Isolation and characterization of a β-d-glucuronidase-producing strain of Escherichia coli O157:H7 in the United States. J. Clin. Microbiol. 33:33473348.
19. Karch, H.,, and M. Bielaszewska. 2001. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H strains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J. Clin. Microbiol. 39:20432049.
20. Karch, H.,, T. Meyer,, H. Rüssmann, and, J. Hessemann. 1992. Frequent loss of Shiga-like toxin genes in clinical isolates of Escherichia coli upon subcultivation. Infect. Immun. 60:34643467.
21. Karmali, M. A. 1989. Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2:1538.
22. Matsushiro, A.,, K. Sato,, H. Miyamoto,, T. Yamamura, and, T. Honda. 1999. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J. Bacteriol. 181:22572260.
23. Mellmann, A.,, S. Lu,, H. Karch,, J. G. Xu,, D. Harmsen,, M. A. Schmidt, and, M. Bielaszewska. 2008. Recycling of Shiga toxin 2 genes in sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl. Environ. Microbiol. 74:6772.
24. Monday, S. R.,, S. A. Minnich, and, P. C. Feng. 2004. A 12-base-pair deletion in the flagellar master control gene flhC causes nonmotility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H strains. J. Bacteriol. 186:23192327.
25. Monday, S. R.,, T. S. Whittam, and, P. C. Feng. 2001. Genetic and evolutionary analysis of mutations in the gusA gene that cause the absence of β-glucuronidase activity in Escherichia coli O157:H7. J. Infect. Dis. 184:918921.
26. Nagano, H.,, T. Okui,, O. Fujiwara,, Y. Uchiyama,, N. Tamate,, N. Kumada,, Y. Morimoto, and, S. Yano. 2002. Clonal structure of Shiga toxin (Stx)-producing and β-d-glucuronidase-positive Escherichia coli O157:H7 strains isolated from outbreaks and sporadic cases in Hokkaido, Japan. J. Med. Microbiol. 51:405416.
27. Nataro, J. P.,, and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142201.
28. Qi, W.,, D. W. Lacher,, A. C. Bumbaugh,, K. E. Hyma,, L. M. Ouellette,, T. M. Large,, C. L. Tarr, and, T. S. Whittam. 2004. EcMLST: an online database for multilocus sequence typing of pathogenic Escherichia coli, p. 520–521. In Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference.
29. Raetz, C. R.,, and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635700.
30. Rump, L. V.,, P. C. H. Feng,, M. Fischer, and, S. R. Monday. 2010. Genetic analysis for the lack of expression of the O157 antigen in an O rough:H7 Escherichia coli strain. Appl. Environ. Microbiol. 76:945947.
31. Rump, L. V.,, L. Beutin,, M. Fischer, and, P. C. H. Feng. 2010. Characterization of a gne::IS629 O rough:H7 Escherichia coli strain from a hemorrhagic colitis patient. Appl. Environ. Microbiol. 76:52905291.
32. Shaikh, N.,, and P. I. Tarr. 2003. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J. Bacteriol. 185:35963605.
33. Tarr, P. I.,, L. M. Schoening,, Y.-L. Yea,, T. R. Ward,, S. Jelacic, and, T. S. Whittam. 2000. Acquisition of the rfb-gnd cluster in evolution of Escherichia coli O55 and O157. J. Bacteriol. 182:61836191.
34. Whittam, T. S.,, M. L. Wolfe,, I. K. Wachsmuth,, F. Ørskov,, I. Ørskov, and, R. A. Wilson. 1993. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect. Immun. 61:16191629.
35. Whittam, T. S.,, I. K. Wachsmuth, and, R. A. Wilson. 1988. Genetic evidence of clonal descent of Escherichia coli O157:H7 associated with hemorrhagic colitis and hemolytic uremic syndrome. J. Infect. Dis. 157:11241133.
36. Wick, L. M.,, W. Qi,, D. W. Lacher, and, T. S. Whittam. 2005. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 187:17831791.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error