1887

Chapter 4 : Automated and Large-Scale Characterization of Microbial Communities in Food Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Automated and Large-Scale Characterization of Microbial Communities in Food Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap04-2.gif

Abstract:

Microbial communities in food and food production establishments have highly versatile structures based on various extrinsic factors. The information gained by large-scale microbial community analysis not only can deepen the understanding of food microbiology in general but also can lead to improvement of food production systems for increased quality and safety and extension of shelf life. This chapter reviews the most recent methods applied to microbial communities, and presents examples of some cutting-edge technologies. Molecular methods have been developing rapidly in recent years both for specific detection of single species and for screening assays that allow the species composition of a given food sample to be unraveled. Examples of those methods are 16S rRNA clone analysis, fingerprinting methods such as terminal restriction fragment length polymorphism (t-RFLP) and denaturing gradient gel electrophoresis (DGGE), tag-encoded pyrosequencing, single-nucleotide primer extension (SNuPE), and microarrays. Furthermore, flow cytometry is also addressed in the chapter, but this technique is based on single-cell analysis whereby a cell suspension is concentrated by nanofluidics and analyzed by laser technology. High-throughput analysis of microbial populations in food products and food processing environments has revealed the existence of a higher complexity in the microbial world than previously expected. The new approaches provide opportunities for further understanding of the microbial developments that are initiated during food production and storage.

Citation: Reynisson E, Rudi K, Marteinsson V, Nakayama J, Sakamoto N, Rasooly A, Hootfar J. 2011. Automated and Large-Scale Characterization of Microbial Communities in Food Production, p 63-79. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Growth of the 16S rRNA database since 1996 ( ) (adapted from http://rdp.cme.msu.edu).

Citation: Reynisson E, Rudi K, Marteinsson V, Nakayama J, Sakamoto N, Rasooly A, Hootfar J. 2011. Automated and Large-Scale Characterization of Microbial Communities in Food Production, p 63-79. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(Left) The number of reads (closed bar) and unique sequences (open bar) per nukadoko sample. A total of 18,268 valid reads including 6,519 different sequences were obtained. (Right) Circle graph representation of bacterial species composition in a long-aged nukadoko (sample no. 6).

Citation: Reynisson E, Rudi K, Marteinsson V, Nakayama J, Sakamoto N, Rasooly A, Hootfar J. 2011. Automated and Large-Scale Characterization of Microbial Communities in Food Production, p 63-79. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Flow sheet of the fundamentals of t-RFLP when used on a mixture of three cultures (species 1, 2, and 3). To start with, they are coamplified with PCR, resulting in a labeled PCR product (indicated by asterisk). The three species contain restriction sites on several locations within their 16S gene (A). Upon restriction, only the terminal fragment is detectable in a DNA fragment analyzer due to the fluorogenic labeling (B and C).

Citation: Reynisson E, Rudi K, Marteinsson V, Nakayama J, Sakamoto N, Rasooly A, Hootfar J. 2011. Automated and Large-Scale Characterization of Microbial Communities in Food Production, p 63-79. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817121.ch04
1. Abriouel, H.,, A. Martin-Platero,, M. Maqueda,, E. Valdivia, and, M. Martinez-Bueno. 2008. Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. Int. J. Food Microbiol. 127:200208.
2. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
3. Bagge-Ravn, D.,, Y. Ng,, M. Hjelm,, J. N. Christiansen,, C. Johansen, and, L. Gram. 2003. The microbial ecology of processing equipment in different fish industries—analysis of the microflora during processing and following cleaning and disinfection. Int. J. Food Microbiol. 87:239250.
4. Bell, P. A.,, S. Chaturvedi,, C. A. Gelfand,, C. Y. Huang,, M. Kochersperger,, R. Kopla,, F. Modica,, M. Pohl,, S. Varde,, R. Zhao,, X. Zhao,, M. T. Boyce-Jacino, and, A. Yassen. 2002. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. BioTechniques 2002(Suppl.):7072, 74, 76–77.
5. Berget, I.,, E. Heir,, J. Petcovic, and, K. Rudi. 2007. Discriminatory power, typability, and accuracy of single nucleotide extension microarrays. J. AOAC Int. 90:802809.
6. Bergquist, P. L.,, E. M. Hardiman,, B. C. Ferrari, and, T. Winsley. 2009. Applications of flow cy-tometry in environmental microbiology and biotechnology. Extremophiles 13:389401.
7. Binder, V. 2004. Epidemiology of IBD during the twentieth century: an integrated view. Best Pract. Res. Clin. Gastroenterol. 18:463479.
8. Blaser, M. J.,, and S. Falkow. 2009. “What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 7:887894.
9. Brightwell, G.,, J. Boerema,, J. Mills,, E. Mowat, and, D. Pulford. 2006. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis. Int. J. Food Microbiol. 109:4753.
10. Brugere, J. F.,, A. Mihajlovski,, M. Missaoui, and, P. Peyret. 2009. Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Rev. Mol. Diagn. 9:353365.
11. Cakli, S.,, B. Kilinc,, T. Dincer, and, S. Tolasa. 2006. Effects of using slurry ice during transportation on the microbiological, chemical, and sensory assessments of aquacultured sea bass (Dicentrarchus labrax) stored at 4 degrees C. Crit. Rev. Food Sci. Nutr. 46:453458.
12. Chandler, D. P.,, A. E. Jarrell,, E. R. Roden,, J. Golova,, B. Chernov,, M. J. Schipma,, A. D. Peacock, and, P. E. Long. 2006. Suspension array analysis of 16S rRNA from Fe- and SO(4)2-reducing bacteria in uranium-contaminated sediments undergoing bioremediation. Appl. Environ. Microbiol. 72:46724687.
13. Chizhikov, V.,, A. Rasooly,, K. Chumakov, and, D. D. Levy. 2001. Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67:32583263.
14. Cole, J. R.,, Q. Wang,, E. Cardenas,, J. Fish,, B. Chai,, R. J. Farris,, A. S. Kulam-Syed-Mohideen,, D. M. McGarrell,, T. Marsh,, G. M. Garrity, and, J. M. Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141D145.
15. Comas-Riu, J.,, and N. Rius. 2009. Flow cytometry applications in the food industry. J. Ind. Microbiol. Biotechnol. 36:9991011.
16. Czechowska, K.,, D. R. Johnson, and, J. R. van der Meer. 2008. Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr. Opin. Microbiol. 11:205212.
17. DeLong, E. F. 1997. Marine microbial diversity: the tip of the iceberg. Trends Biotechnol. 15:203207.
18. Edman, C. F.,, P. Mehta,, R. Press,, C. A. Spargo,, G. T. Walker, and, M. Nerenberg. 2000. Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification. J. Investig. Med. 48:93101.
19. Even, S.,, C. Charlier,, S. Nouaille,, N. L. Ben Zakour,, M. Cretenet,, F. J. Cousin,, M. Gautier,, M. Cocaign-Bousquet,, P. Loubiere, and, Y. Le Loir. 2009. Staphylococcus aureus virulence expression is impaired by Lactococcus lactis in mixed cultures. Appl. Environ. Microbiol. 75:44594472.
20. Fuchs, P.,, W. Weichel,, S. Dubel,, F. Breitling, and, M. Little. 1996. Separation of E. coli expressing functional cell-wall bound antibody fragments by FACS. Immunotechnology 2:97102.
21. Gunasekera, T. S.,, P. V. Attfield, and, D. A. Veal. 2000. A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl. Environ. Microbiol. 66:12281232.
22. Gupta, R. S. 2004. The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit. Rev. Microbiol. 30:123143.
23. Gupta, R. S.,, and V. Johari. 1998. Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria. J. Mol. Evol. 46:716720.
24. Gupta, R. S.,, and E. Griffiths. 2002. Critical issues in bacterial phylogeny. Theor. Popul. Biol. 61:423434.
25. Hoshino, T.,, K. Furukawa,, S. Tsuneda, and, Y. Inamori. 2007. RNA microarray for estimating relative abundance of 16S rRNA in microbial communities. J. Microbiol. Methods 69:406410.
26. Hovda, M. B.,, B. T. Lunestad,, M. Sivertsvik, and, J. T. Rosnes. 2007a. Characterisation of the bacterial flora of modified atmosphere packaged farmed Atlantic cod (Gadus morhua) by PCR-DGGE of conserved 16S rRNA gene regions. Int. J. Microbiol. 117:6875.
27. Hovda, M. B.,, M. Sivertsvik,, B. T. Lunestad,, G. Lorentzen, and, J. T. Rosnes. 2007b. Characterisation of the dominant bacterial population in modified atmosphere packaged farmed halibut (Hippoglossus hippoglossus) based on 16S rDNA-DGGE. Food Microbiol. 24:362371.
28. Huber, J. A.,, D. B. M. Welch,, H. G. Morrison,, S. M. Huse,, P. R. Neal,, D. A Butterfield, and, M. L. Sogin. 2007. Microbial population structures in the deep marine biosphere. Science 318:97100.
29. Huse, S. M.,, L. Dethlefsen,, J. A. Huber,, D. M. Welch,, D. A. Relman, and, M. L. Sogin. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4:e1000255.
30. Jesudhasan, P. R.,, M. L. Cepeda,, K. Widmer,, S. E. Dowd,, K. A. Soni,, M. E. Hume,, J. Zhu, and, S. D. Pillai. 2009. Transcriptome analysis of genes controlled by luxS/aAutoinducer-2 in Salmonella enterica serovar Typhimurium. Foodborne Pathog. Dis. 7:399410.
31. Karlin, S.,, and L. Brocchieri. 1998. Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J. Mol. Evol. 47:565577.
32. Kent, A. D.,, D. J. Smith,, B. J. Benson, and, E. W. Triplett. 2003. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol. 69:67686776.
33. Kitts, C. L. 2001. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr. Issues In-test. Microbiol. 2:1725.
34. Koch, R. 1876. Untersuchungen über Bakterien. V. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis [Investigations into bacteria. V. The etiology of anthrax, based on the ontogenesis of Bacillus anthracis]. Cohns Beitrage zur Biologie der Pflanzen 2:277310.
35. Kostic, T.,, A. Weilharter,, S. Rubino,, G. Delogu,, S. Uzzau,, K. Rudi,, A. Sessitsch, and, L. Bodrossy. 2007. A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens. Anal. Biochem. 360:244254.
36. Lane, D. J.,, D. A. Stahl,, G. J. Olsen,, D. J. Heller, and, N. R. Pace. 1985. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J. Bacteriol. 163:7581.
37. Lauzon, H. L.,, H. Magnusson,, K. Sveinsdottir,, M. Gudjonsdottir, and, E. Martinsdottir. 2009. Effect of brining, modified atmosphere packaging, and superchilling on the shelf life of cod (Gadus morhua) loins. J. Food Sci. 74:M258M267.
38. Ley, R. E.,, M. Hamady,, C. Lozupone,, P. J. Turnbaugh,, R. R. Ramey,, J. S. Bircher,, M. L. Schlegel,, T. A. Tucker,, M. D. Schrenzel,, R. Knight, and, J. I. Gordon. 2008. Evolution of mammals and their gut microbes. Science 320:16471651.
39. Liu, W. T.,, T. L. Marsh,, H. Cheng, and, L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:45164522.
40. Loy, A.,, A. Lehner,, N. Lee,, J. Adamczyk,, H. Meier,, J. Ernst,, K.-H. Schleifer, and, M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68:50645081.
41. Loy, A.,, C. Schulz,, S. Lucker,, A. Schopfer-Wendels,, K. Stoecker,, C. Baranyi,, A. Lehner, and, M. Wagner. 2005. 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rho-docyclales.” Appl. Environ. Microbiol. 71:13731386.
42. Marshall, B. J.,, and J. R Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet i:13111315.
43. McHugh, I. O.,, and A. L. Tucker. 2007. Flow cytometry for the rapid detection of bacteria in cell culture production medium. Cytometry A 71:10191026.
44. McMeekin, T. A.,, and T. Ross. 1996. Shelf life prediction: status and future possibilities. Int. J. Food Microbiol. 33:6583.
45. Muyzer, G.,, E. C. de Waal, and, A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695700.
46. Muyzer, G.,, A. Teske,, C. O. Wirsen, and, H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164:165172.
47. Nakayama, J. 2010. Pyrosequence-based 16S rRNA profiling of gastro-intestinal microbiota. Biosci. Microflora 29:8396.
48. Nakayama, J.,, H. Hoshiko,, M. Fukuda,, H. Tanaka,, N. Sakamoto,, S. Tanaka,, K. Ohue,, K. Sakai, and, K. Sonomoto. 2007. Molecular monitoring of bacterial community structure in long-aged nukadoko: pickling bed of fermented rice bran dominated by slow-growing lactobacilli. J. Biosci. Bioeng. 104:481489.
49. Nikolausz, M.,, A. Chatzinotas,, A. Tancsics,, G. Imfeld, and, M. Kastner. 2009a. Evaluation of single-nucleotide primer extension for detection and typing of phylogenetic markers used for investigation of microbial communities. Appl. Environ. Microbiol. 75:28502860.
50. Nikolausz, M.,, A. Chatzinotas,, A. Tancsics,, G. Imfeld, and, M. Kastner. 2009b. The single-nucleotide primer extension (SNuPE) method for the multiplex detection of various DNA sequences: from detection of point mutations to microbial ecology. Biochem. Soc. Trans. 37:454459.
51. Olofsson, T. C.,, S. Ahrne, and, G. Molin. 2007a. The bacterial flora of vacuum-packed cold-smoked salmon stored at 7 degrees C, identified by direct 16S rRNA gene analysis and pure culture technique. J. Appl. Microbiol. 103:109119.
52. Olofsson, T. C.,, S. Ahrne, and, G. Molin. 2007b. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int. J. Food Microbiol. 118:233240.
53. Olsen, G. J.,, D. J. Lane,, S. J. Giovannoni,, N. R. Pace, and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337365.
54. Pastinen, T.,, M. Raitio,, K. Lindroos,, P. Tainola,, L. Peltonen, and, A. C. Syvanen. 2000. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 10:10311042.
55. Peplies, J.,, C. Lachmund,, F. O. Glockner, and, W. Manz. 2006. A DNA microarray platform based on direct detection of rRNA for characterization of freshwater sediment-related prokaryotic communities. Appl. Environ. Microbiol. 72:48294838.
56. Petrosino, J. F.,, S. Highlander,, R. A. Luna,, R. A. Gibbs, and, J. Versalovic. 2009. Meta-genomic pyrosequencing and microbial identification. Clin. Chem. 55:856866.
57. Podar, M.,, C. B. Abulencia,, M. Walcher,, D. Hutchison,, K. Zengler,, J. A. Garcia,, T. Holland,, D. Cotton,, L. Hauser, and, M. Keller. 2007. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73:32053214.
58. Rasooly, A.,, and K. E. Herold. 2008. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog. Dis. 5:531550.
59. Reyes-Lopez, M. A.,, A. Mendez-Tenorio,, R. Maldonado-Rodriguez,, M. J. Doktycz,, J. T. Fleming, and, K. L. Beattie. 2003. Fingerprinting of prokaryotic 16S rRNA genes using oligodeox-yribonucleotide microarrays and virtual hybridization. Nucleic Acids Res. 31:779789.
60. Reynisson, E.,, H. L. Lauzon,, H. Magnusson,, R. Jonsdottir,, G. Olafsdottir,, V. T. Marteinsson, and, G. O. Hreggvidsson. 2009. Bacterial composition and succession during storage of North-Atlantic cod (Gadus morhua) at superchilled temperatures. BMC Microbiol. 9:250.
61. Reynisson, E.,, H. L. Lauzon,, L. Thorvaldsson,, B. Margeirsson,, A. R. Runarsson,, V. Marteinsson, and, E. Martinsdottir. 2010. Effects of different cooling techniques on bacterial succession and other spoilage indicators during storage of whole, gutted haddock (Melnogrammus aeglifinus). Eur. Food Res. Technol. 231:237246.
62. Roh, S. W.,, K. H. Kim,, Y. D. Nam,, H. W. Chang,, E. J. Park, and, J. W. Bae. 2009. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISMEJ. 4:116.
63. Rudi, K.,, and A. L. Holck. 2003. Real-time closed tube single nucleotide polymorphism (SNP) quantification in pooled samples by quencher extension (QEXT). Nucleic Acids Res. 31:e117.
64. Rudi, K.,, T. Katla, and, K. Naterstad. 2003. Multi locus fingerprinting of Listeria monocytogenes by sequence-specific labeling of DNA probes combined with array hybridization. FEMS Microbiol. Lett. 220:914.
65. Rudi, K.,, G. H. Kleiberg,, R. Heiberg, and, J. T. Rosnes. 2007a. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA). Food Microbiol. 24:474481.
66. Rudi, K.,, O. M. Skulberg,, F. Larsen, and, K. S. Jakobsen. 1998. Quantification of toxic cyanobac-teria in water by use of competitive PCR followed by sequence-specific labeling of oligonucleotide probes. Appl. Environ. Microbiol. 64:26392643.
67. Rudi, K.,, O. M. Skulberg,, R. Skulberg, and, K. S. Jakobsen. 2000. Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization. Appl. Environ. Microbiol. 66:40044011.
68. Rudi, K.,, T. Maugesten,, S. E. Hannevik, and, H. Nissen. 2004. Explorative multivariate analyses of 16S rRNA gene data from microbial communities in modified-atmosphere-packed salmon and coalfish. Appl. Environ. Microbiol. 70:50105018.
69. Rudi, K.,, M. Zimonja,, S. E. Hannevik, and, S. M. Dromtorp. 2006. Multiplex real-time single nucleotide polymorphism detection and quantification by quencher extension. BioTechniques 40:323329.
70. Rudi, K.,, M. Zimonja,, P. Trosvik, and, T. Naes. 2007b. Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int. J. Food Microbiol. 120:9599.
71. Rudi, K.,, S. L. Flateland,, J. F. Hanssen,, G. Bengtsson, and, H. Nissen. 2002. Development and evaluation of a 16S rDNA array approach for describing complex microbial communities in ready-to-eat vegetable salads packed in modified atmosphere. Appl. Environ. Microbiol. 68:11461156.
72. Sanguin, H.,, A. Herrera,, C. Oger-Desfeux,, A. Dechesne,, P. Simonet,, E. Navarro,, T. M. Vogel,, Y. Moenne-Loccoz,, X. Nesme, and, G. L. Grundmann. 2006. Development and validation of a prototype 16S rRNA-based taxonomic microarray for Alphaproteobacteria. Environ. Microbiol. 8:289307.
73. Schena, M.,, D. Shalon,, R. W. Davis, and, P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467470.
74. Schmidt, T. M.,, E. F. DeLong, and, N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173:43714378.
75. Sergeev, N.,, K. E. Herold, and, A. Rasooly. 2006a. Microarray analysis of microbial pathogens, p. 363–405. In M. J. Miller (ed.), Encyclopedia of Rapid Microbiological Methods, vol. 3. PDA, Bethesda, MD.
76. Sergeev, N.,, D. Volokhov,, V. Chizhikov, and, A. Rasooly. 2004a. Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay. J. Clin. Microbiol. 42:21342143.
77. Sergeev, N.,, M. Distler,, M. Vargas,, V. Chizhikov,, K. E. Herold, and, A. Rasooly. 2006b. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65:488502.
78. Sergeev, N.,, M. Distler,, S. Courtney,, S. F. Al-Khaldi,, D. Volokhov,, V. Chizhikov, and, A. Rasooly. 2004b. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens. Bioelectron. 20:684698.
79. Small, J.,, D. R. Call,, F. J. Brockman,, T. M. Straub, and, D. P. Chandler. 2001. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol. 67:47084716.
80. Sogin, M.,, H. G. Morrison,, J. A. Huber,, D. M. Welch,, S. M. Huse,, P. R. Neal,, J. M. Arrieta, and, G. J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci. USA 103:1211512120.
81. Stahl, D. A.,, D. J. Lane,, G. J. Olsen, and, N. R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409411.
82. Staley, J. T.,, and A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321346.
83. Suo, B.,, Y. He,, G. Paoli,, A. Gehring,, S. I. Tu, and, X. Shi. 2010. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol. Cell. Probes 24:7786.
84. Syvanen, A. C.,, K. Aalto-Setala,, L. Harju,, K. Kontula, and, H. Soderlund. 1990. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein-E. Genomics 8:684692.
85. Szczepanski, T.,, V. H. van der Velden, and, J. J. van Dongen. 2006. Flow-cytometric immuno-phenotyping of normal and malignant lymphocytes. Clin. Chem. Lab. Med. 44:775796.
86. Tanaka, Y.,, H. Takahashi,, N. Kitazawa, and, B. Kimura. 2010. Rapid estimation of microbial populations in fish samples by using terminal restriction fragment length polymorphism analysis of 16S rDNA. J. Food Prot. 73:104113.
87. Tang, K.,, D.-J. Fu,, D. Julien,, A. Braun,, C. R. Cantor, and, H. Köster. 1999. Chip-based genotyping by mass spectrometry. Proc. Natl. Acad. Sci. USA 96:1001610020.
88. Treimo, J.,, G. Vegarud,, T. Langsrud, and, K. Rudi. 2006. Use of DNA quantification to measure growth and autolysis of Lactococcus and Propionibacterium spp. in mixed populations. Appl. Environ. Microbiol. 72:61746182.
89. Tringe, S. G.,, and P. Hugenholtz. 2008. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11:442446.
90. van Schaik, W.,, M. van der Voort,, D. Molenaar,, R. Moezelaar,, W. M. de Vos, and, T. Abee. 2007. Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. J. Bacteriol. 189:43844390.
91. Veal, D. A.,, D. Deere,, B. Ferrari,, J. Piper, and, P. V. Attfield. 2000. Fluorescence staining and flow cytometry for monitoring microbial cells. J. Immunol. Methods 243:191210.
92. Voelkerding, K. V.,, S. A. Dames, and, J. D. Durtschi. 2009. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55:641658.
93. Volokhov, D.,, A. Rasooly,, K. Chumakov, and, V. Chizhikov. 2002. Identification of Listeria species by microarray-based assay. J. Clin. Microbiol. 40:47204728.
94. Volokhov, D.,, V. Chizhikov,, K. Chumakov, and, A. Rasooly. 2003a. Microarray-based identification of thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. J. Clin. Microbiol. 41:40714080.
95. Volokhov, D.,, V. Chizhikov,, K. Chumakov, and, A. Rasooly. 2003b. Microarray analysis of erythromycin resistance determinants. J. Appl. Microbiol. 95:787798.
96. Volokhov, D.,, A. Pomerantsev,, V. Kivovich,, A. Rasooly, and, V. Chizhikov. 2004. Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn. Microbiol. Infect. Dis. 49:163171.
97. Wang, M.,, B. Cao,, Q. Gao,, Y. Sun,, P. Liu,, L. Feng, and, L. Wang. 2009. Detection of Enterobacter sakazakii and other pathogens associated with infant formula powder by use of a DNA microarray. J. Clin. Microbiol. 47:31783184.
98. Wilson, B.,, B. S. Danilowicz, and, W. G. Meijer. 2008. The diversity of bacterial communities associated with Atlantic cod Gadus morhua. Microb. Ecol. 55:425434.
99. Wilson, W. J.,, C. L. Strout,, T. Z. DeSantis,, J. L. Stilwell,, A. V. Carrano, and, G. L. Andersen. 2002. Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol. Cell. Probes 16:119127.
100. Woese, C. R.,, and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:50885090.
101. Wommack, K. E.,, S. R. Bench,, J. Bhavsar,, D. Mead, and, T. Hanson. 2009. Isolation independent methods of characterizing phage communities 2: characterizing a metagenome. Methods Mol. Biol. 502:279289.
102. Wu, L.,, D. K. Thompson,, G. Li,, R. A. Hurt,, J. M. Tiedje, and, J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67:57805790.
103. Zhang, H.,, J. K. DiBaise,, A. Zuccolo,, D. Kudrna,, M. Braidotti,, Y. Yu,, P. Parameswaran,, M. D. Crowell,, R. Wing,, B. E. Rittmann, and, R. Krajmalnik-Brown. 2009. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 106:23652370.
104. Zhu, L. X.,, Z. W. Zhang,, C. Wang,, H. W. Yang,, D. Jiang,, Q. Zhang,, K. Mitchelson, and, J. Cheng. 2007. Use of a DNA microarray for simultaneous detection of antibiotic resistance genes among staphylococcal clinical isolates. J. Clin. Microbiol. 45:35143521.

Tables

Generic image for table
TABLE 1

Summary of fast and/or large-scale methods used in microbial community analysis

Citation: Reynisson E, Rudi K, Marteinsson V, Nakayama J, Sakamoto N, Rasooly A, Hootfar J. 2011. Automated and Large-Scale Characterization of Microbial Communities in Food Production, p 63-79. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error