Chapter 13 : in Pork, Beef, Poultry, and Egg

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

in Pork, Beef, Poultry, and Egg, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap13-2.gif


The contribution of the various foods and their categories to the occurrence of food-borne cases of human salmonellosis varies between countries depending on the prevalence of different serovars in food animals and in their various food production chains, as well as consumption habits and food preparation practices. Most contaminated eggs have on the shell surface only, and therefore, eggs are usually sanitized by a variety of methods and agents. Meat is another important source of food-borne salmonellosis, with poultry and pork implicated more often than beef and lamb. Methods to sequester target pathogenic bacteria from interfering food components and to concentrate them in small volumes are needed to enable the efficient application of rapid detection and identification methods. For rapid detection of in food including meat and eggs, three basic analytical principles are applied in practice: modified traditional culture methods, immunological methods, and nucleic acid-based methods.

Citation: Malorny B, Bhunia A, Aarts H, Löfström C, Hoorfar J. 2011. in Pork, Beef, Poultry, and Egg, p 179-194. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Comparison of quantitative real-time PCR and mini-MPN technique. Steps of procedures are displayed for real-time PCR (right) and mini-MPN (left).

Citation: Malorny B, Bhunia A, Aarts H, Löfström C, Hoorfar J. 2011. in Pork, Beef, Poultry, and Egg, p 179-194. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Banada, P. P.,, and A. K. Bhunia. 2008. Antibodies and immunoassays for detection of bacterial pathogens, p. 567–602. In M. Zourob,, S. Elwary, and, A. Turner (ed.), Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Cambridge University, Manchester, United Kingdom.
2. Berrang, M. E.,, N. A. Cox,, J. F. Frank,, R. J. Buhra, and, J. S. Bailey. 2000. Hatching egg sanitization for prevention or reduction of human enteropathogens: a review. J. Appl. Poult. Res. 9:279284.
3. Bhunia, A. K. 2008. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv. Food Nutr. Res. 54:144.
4. Blixt, O.,, J. Hoffmann,, S. Svenson, and, T. Norberg. 2008. Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj. J. 25:2736.
5. Boughton, C.,, J. Egan,, G. Kelly,, B. Markey, and, N. Leonard. 2007. Quantitative examination of Salmonella spp. in the lairage environment of a pig abattoir. Foodborne Pathog. Dis. 4:2632.
6. Boxrud, D.,, K. Pederson-Gulrud,, J. Wotton,, C. Medus,, E. Lyszkowicz,, J. Besser, and, J. M. Bartkus. 2007. Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J. Clin. Microbiol. 45:536543.
7. Byrne, B.,, E. Stack,, N. Gilmartin, and, R. O. Kennedy. 2009. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9:44074445.
8. Centers for Disease Control and Prevention. 2006. Salmonella Surveillance: Annual Summary Report, 2006. Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/ncidod/dbmd/phlisdata/Salmonella.htm#2006.
9. Cudjoe, K. S.,, and R. Krona. 1997. Detection of Salmonella from raw food samples using dynabeads anti-Salmonella and a conventional reference method. Int. J. Food Microbiol. 37:5562.
10. D’Aoust, J. Y. 2000. Salmonella, p. 1233–1299. In B. M. Lund,, A. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. II. Aspen Publishers Inc., Gaithersburg, MD.
11. Davis, M. A.,, K. N. Baker,, D. R. Call,, L. D. Warnick,, Y. Soyer,, M. Wiedmann,, Y. Grohn,, P. L. McDonough,, D. D. Hancock, and, T. E. Besser. 2009. Multilocus variable-number tandem-repeat method for typing Salmonella enterica serovar Newport. J. Clin. Microbiol. 47:19341938.
12. European Commission. 2003. Scientific Opinion on Salmonellae in Foodstuffs, Adopted 14–15 April 2003. European Commission, Scientific Committee on Veterinary Measures Related to Public Health. http://ec.europa.eu/food/fs/sc/scv/outcome_en.html.
13. European Food Safety Authority. 2009a. Scientific opinion of the panel on biological hazards on a request from the European Commission on special measures to reduce the risk for consumers through Salmonella in table eggs—e.g. cooling of table eggs. EFSA J. 957:129.
14. European Food Safety Authority. 2009b. Salmonella in food. The Community summary report on trends and sources of zoonoses and zoonotic agents in the European Union in 2007. The EFSA J. 223:3064.
15. European Parliament. 2004a. Regulation (EC) No 852/2004 of the European Parliament and of the council of 29 April 2004 on the hygiene of foodstuffs. Off. J. Eur. Union L 139:321.
16. European Parliament. 2004b. Regulation (EC) No 853/2004 of the European Parliament and of the council of 25 June 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union L 139:2282.
17. European Parliament. 2004c. Regulation (EC) No 854/2004 of the European Parliament and of the council of 25 June 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Off. J. Eur. Union L 139:83127.
18. Fegan, N.,, P. Vanderlinde,, G. Higgs, and, P. Desmarchelier. 2004. Quantification and prevalence of Salmonella in beef cattle presenting at slaughter. J. Appl. Microbiol. 97:892898.
19. Fravalo, P.,, Y. Hascoet,, M. Le Fellic,, S. Queguiner,, J. Petton, and, G. Salvat. 2003. Convenient method for rapid and quantitative assessment of Salmonella enterica contamination: the mini-MSRV MPN technique. J. Rapid Methods Automat. Microbiol. 11:8188.
20. Gehring, A. G.,, D. M. Albin,, S. A. Reed,, S. I. Tu, and, J. D. Brewster. 2008. An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal. Bioanal. Chem. 391:497506.
21. Gerner-Smidt, P.,, K. Hise,, J. Kincaid,, S. Hunter,, S. Rolando,, E. Hyytiä-Trees,, E. M. Ribot, and, B. Swaminathan. 2006. PulseNet USA: a five-year update. Foodborne Pathog. Dis. 3:919.
22. Guy, R. A.,, A. Kapoor,, J. Holicka,, D. Shepherd, and, P. A. Horgen. 2006. A rapid molecular-based assay for direct quantification of viable bacteria in slaughterhouses. J. Food Prot. 69:12651272.
23. Hahm, B. K.,, and A. K. Bhunia. 2006. Effect of environmental stresses on antibody-based detection of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J. Appl. Microbiol. 100:10171027.
24. Hald, T.,, D. Vose,, H. C. Wegener, and, T. Koupeev. 2004. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24:255269.
25. Hensel, M.,, A. P. Hinsley,, T. Nikolaus,, G. Sawers, and, B. C. Berks. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32:275287.
26. Huehn, S.,, C. Bunge,, E. Junker,, R. Helmuth, and, B. Malorny. 2009. Poultry-associated Salmonella enterica subsp. enterica serovar 4,12:d:- reveals high clonality and a distinct pathogenicity gene repertoire. Appl. Environ. Microbiol. 75:10111020.
27. International Organization for Standardization. 2002. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp., ISO 6579:2002. International Organization for Standardization, Geneva, Switzerland.
28. International Organization for Standardization. 2005. Microbiology of Food and Animal Feeding Stuffs—Polymerase Chain Reaction (PCR) for the Detection of Food-Borne Pathogens—Performance Testing for Thermal Cyclers, ISO/TS 20836:2005. International Organization for Standardization, Geneva, Switzerland.
29. International Organization for Standardization. 2007. Microbiology of Food, Animal Feeding Stuffs, Animal Faeces and Environmental Samples from the Primary Production Stage—Horizontal Method for the Enumeration of Salmonella by a Miniaturized MPN Technique. ISO/WD TS 13305, DRAFT 011007. International Organization for Standardization, Geneva, Switzerland.
30. Josefsen, M. H.,, M. Krause,, F. Hansen, and, J. Hoorfar. 2007. Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl. Environ. Microbiol. 73:30403048.
31. Kim, J. S.,, G. P. Anderson,, J. S. Erickson,, J. P. Golden,, M. Nasir, and, F. S. Ligler. 2009. Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal. Chem. 81:54265432.
32. Ko, S.,, and S. A. Grant. 2006. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens. Bioelectron. 21:12831290.
33. Koubova, V.,, E. Brynda,, L. Karasova,, J. Skvor,, J. Homola,, J. Dostalek,, P. Tobiska, and, J. Rosicky. 2001. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B 74:100105.
34. Kramer, M. F.,, and D. V. Lim. 2004. A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. J. Food Prot. 67:4652.
35. Krämer, N.,, C. Löfström,, H. Vigre,, J. Hoorfar,, C. Bunge, and, B. Malorny. A novel strategy to obtain quantitative data for modelling: combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses. Int. J. Food Microbiol., in press.
36. Lantz, P.-G.,, M. Matsson,, T. Wadström, and, P. Rådström. 1997. Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J. Microbiol. Methods 28:159167.
37. Lauer, W.,, and F. Martinez. 2009. RAPID’Salmonella chromogenic medium. Performance tested method 050701. J. AOAC Int. 92:18711875.
38. Leon-Velarde, C. G.,, L. Zosherafatein, and, J. A. Odumeru. 2009. Application of an automated immunomagnetic separation-enzyme immunoassay for the detection of Salmonella enterica subspecies enterica from poultry environmental swabs. J. Microbiol. Methods 79:1317.
39. Leung, A.,, P. M. Shankar, and, R. Mutharasan. 2007. A review of fiber-optic biosensors. Sens. Actuators B 125:688703.
40. Levin, R. E. 2009. The use of molecular methods for detecting and discriminating Salmonella associated with foods—a review. Food Biotechnol. 23:313367.
41. Lindstedt, B. A.,, T. Vardund,, L. Aas, and, G. Kapperud. 2004. Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. J. Microbiol. Methods 59:163172.
42. Löfström, C.,, M. Krause,, M. H. Josefsen,, F. Hansen, and, J. Hoorfar. 2009. Validation of a same-day real-time PCR method for screening of meat and carcass swabs for Salmonella. BMC Microbiol. 9:85.
43. Löfström, C.,, J. Schelin,, B. Norling,, H. Vigre,, J. Hoorfar, and, P. Rådström. 2010. Culture-independent quantification of Salmonella enterica in carcass gauze swabs by flotation prior to real-time PCR. Int. J. Food Microbiol. Epub ahead of print. doi:10.1016/j.ijfoodmicro.2010.03.042.
44. Mackay, I. M. 2004. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 10:190212.
45. Malorny, B.,, C. Löfström,, M. Wagner,, N. Krämer, and, J. Hoorfar. 2008a. Enumeration of Salmonella in food and feed samples by real-time PCR for quantitative microbial risk assessments. Appl. Environ. Microbiol. 74:12991304.
46. Malorny, B.,, S. Huehn,, H. Dieckmann,, N. Krämer, and, R. Helmuth. 2009. Polymerase chain reaction for the rapid detection and serovar-identification of Salmonella in food and feeding stuff. Food Anal. Methods 2:8195.
47. Malorny, B.,, E. Junker, and, R. Helmuth. 2008b. Multilocus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis. BMC Microbiol. 8:84.
48. Malorny, B.,, D. Mäde,, P. Teufel,, C. Berghof-Jäger,, I. Huber,, A. Anderson, and, R. Helmuth. 2007. Multicenter validation study of two blockcycler- and one capillary-based real-time PCR methods for the detection of Salmonella in milk powder. Int. J. Food Microbiol. 117:211218.
49. Malorny, B.,, E. Paccassoni,, P. Fach,, C. Bunge,, A. Martin, and, R. Helmuth. 2004. Diagnostic real-time PCR for the detection of Salmonella in food. Appl. Environ. Microbiol. 70:70467052.
50. Mazumdar, S. D.,, B. Barlen,, P. Kämpfer, and, M. Keusgen. 2010. Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosens. Bioelectron. 25:967971.
51. NordVal/NMKL. 2007. NordVal Certificate no 031. NordVal/NMKL, Søborg, Denmark.
52. Pelludat, C.,, R. Prager,, H. Tschäpe,, W. Rabsch,, J. Schuchhardt, and, W. D. Hardt. 2005. Pilot study to evaluate microarray hybridization as a tool for Salmonella enterica serovar Typhimurium strain differentiation. J. Clin. Microbiol. 43:40924106.
53. Quinn, C.,, J. Ward,, M. Griffin,, D. Yearsley, and, J. Egan. 1995. A comparison of conventional culture and three rapid methods for the detection of Salmonella in poultry feeds and environmental samples. Lett. Appl. Microbiol. 20:8991.
54. Rahn, K.,, S. A. De Grandis,, R. C. Clarke,, S. A. McEwen,, J. E. Galán,, J. E. C. Ginocchio,, R. Curtiss III, and, C. L. Gyles. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6:271279.
55. Ramisse, V.,, P. Houssu,, E. Hernandez,, F. Denoeud,, V. Hilaire,, O. Lisanti,, F. Ramisse,, J. D. Cavallo, and, G. Vergnaud. 2004. Variable number of tandem repeats in Salmonella enterica subsp. enterica for typing purposes. J. Clin. Microbiol. 42:57225730.
56. Reynisson, E.,, M. H. Josefsen,, M. Krause, and, J. Hoorfar. 2006. Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR. J. Microbiol. Methods 66:206216.
57. Rijpens, N.,, L. Herman,, F. Vereecken,, G. Jannes,, J. De Smedt, and, L. De Zutter. 1999. Rapid detection of stressed Salmonella spp. in dairy and egg products using immunomagnetic separation and PCR. Int. J. Food Microbiol. 46:3744.
58. Ritter, V.,, and N. Dick. 2009. USDA FSIS and FDA BAM culture methods BBL CHROMagar Salmonella prepared plated and Difco dehydrated culture media. J. AOAC Int. 92:459470.
59. Ross, I. L.,, and M. W. Heuzenroeder. 2008. A comparison of three molecular typing methods for the discrimination of Salmonella enterica serovar Infantis. FEMS Immunol. Med. Microbiol. 53:375384.
60. Salam, F.,, and I. E. Tothill. 2009. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosens. Bioelectron. 24:26302636.
61. Schönenbrücher, V.,, E. T. Mallinson, and, M. Bülte. 2008. A comparison of standard cultural methods for the detection of foodborne Salmonella species including three new chromogenic plating media. Int. J. Food Microbiol. 123:6166.
62. Seo, K. H.,, I. E. Valentin-Bon, and, R. E. Brackett. 2006. Detection and enumeration of Salmonella Enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods. J. Food Prot. 69:639643.
63. Smith, P. J.,, A. Boardman, and, P. C. Shutt. 1989. Detection of salmonellas in animal feeds by electrical conductance. J. Appl. Bacteriol. 67:575588.
64. Sofos, J. N. 1993. Current microbiological considerations in food preservation. Int. J. Food Microbiol. 19:87108.
65. Suo, B.,, Y. He,, G. Paoli,, A. Gehring,, S.-I. Tu, and, X. Shi. 2010. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol. Cell. Probes 24:7786.
66. Tu, S.,, A. Gehring, and, G. Paoli. 2007. Detection of Salmonella Enteritidis in shell egg contents by immunomagnetic capture and time-resolved fluorescence. J. Rapid Methods Automat. Microbiol. 15:107119.
67. Ueda, S.,, and Y. Kuwabara. 2009. The rapid detection of Salmonella from food samples by loop-mediated isothermal amplification (LAMP). Biocontrol Sci. 14:7376.
68. U.S. Department of Agriculture—Food Safety and Inspection Service. 1998a. Supervisory Guideline for the Pathogen Reduction/HACCP Regulatory Requirements. http://smas.chemeng.ntua.gr/miram/files/publ_275_11_2_2005.pdf.
69. U.S. Department of Agriculture—Food Safety and Inspection Service. 1998b. Salmonella Enteritidis Risk Assessment—Shell Eggs and Egg Products. Final Report Prepared for the Food Safety and Inspection Service by the Salmonella Enteritidis Risk Assessment Team. http://www.fsis.usda.gov/ophs/risk/contents.htm. Accessed 26 January 2009.
70. U.S. Department of Agriculture—Food Safety and Inspection Service. 2008. USDA-FSIS Method for Isolation and Identification of Salmonella from Meat, Poultry, and Egg Products, QD-F-Micro-0004.03. http://www.fsis.usda.gov/PDF/MLG_4_04.pdf. Accessed 8 April 2010.
71. U.S. Department of Agriculture—Food Safety and Inspection Service. 2010. Progress Report on Salmonella Testing of Raw Meat and Poultry Products, 1998–2009. http://www.fsis.usda.gov/science/progress_report_salmonella_testing/index.asp. Last modified 8 June 2009.
72. U.S. Food and Drug Administration. 2007. Salmonella. Bacteriological Analytical Manual, chapt. 5. http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm070149.htm#Isol. Accessed 8 April 2010.
73. Valadez, A.,, C. Lana,, S.-I. Tu,, M. Morgan, and, A. Bhunia. 2009. Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors 9:58105824.
74. van Hoek, A. H.,, and H. J. M. Aarts. 2008. Microarray-based detection of antibiotic resistance genes in Salmonella. Food Anal. Methods 1:95108.
75. Wang, X. W.,, L. Zhang,, L. Q. Jin,, M. Jin,, Z. Q. Shen,, S. An,, F. H. Chao, and, J. W. Li. 2007. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. Appl. Environ. Microbiol. 76:225233.
76. Warren, B. R.,, H. G Yuk, and, K. R. Schneider. 2007. Detection of Salmonella by flow-through immunocapture real-time PCR in selected foods within 8 hours. J. Food Prot. 70:10021006.
77. Wattiau, P.,, M. Van Hessche,, C. Schlicker,, V. H. Vander, and, H. Imberechts. 2008. Comparison of classical serotyping and PremiTest assay for routine identification of common Salmonella enterica serovars. J. Clin. Microbiol. 46:40374040.
78. Webb, K.,, and V. Ritter. 2009. CHROMagar Salmonella detection test kit. Performance tested method 020502. J. AOAC Int. 92:19061909.
79. Wolffs, P.,, R. Knutsson,, B. Norling, and, P. Rådström. 2004. Rapid quantification of Yersinia enterocolitica in pork samples by a novel sample preparation method, flotation, prior to real-time PCR. J. Clin. Microbiol. 42:10421047.
80. Wolffs, P.,, B. Norling,, J. Hoorfar,, M. Griffiths, and, P. Rådström. 2005. Quantification of Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR. Appl. Environ. Microbiol. 71:57595764.
81. Wolffs, P. F.,, K. Glencross,, R. Thibaudeau, and, M. W. Griffiths. 2006. Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl. Environ. Microbiol. 72:38963900.
82. Wolffs, P. F.,, K. Glencross,, B. Norling, and, M. W. Griffiths. 2007. Simultaneous quantification of pathogenic Campylobacter and Salmonella in chicken rinse fluid by a flotation and real-time multiplex PCR procedure. Int. J. Food Microbiol. 117:5054.
83. World Health Organization/Food and Agriculture Organization of the United Nations. 2002. Risk assessment for Salmonella in eggs and broiler chickens. Microbiological Risk Assessment Series No 2. World Health Organization, Food and Agriculture Organization of the United Nations. http://www.fao.org/DOCREP/005/Y4392E/Y4392E00.HTM.
84. Yang, L.,, and R. Bashir. 2008. Electrical/electrochemical impedance for rapid detection of food-borne pathogenic bacteria. Biotechnol. Adv. 26:135150.
85. Yoshida, C.,, K. Franklin,, P. Konczy,, J. R. McQuiston,, P. I. Fields,, J. H. Nash,, E. N. Taboada, and, K. Rahn. 2007. Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. J. Microbiol. Methods 70:261271.


Generic image for table

Prevalence of in table eggs, poultry meat, and pork

Citation: Malorny B, Bhunia A, Aarts H, Löfström C, Hoorfar J. 2011. in Pork, Beef, Poultry, and Egg, p 179-194. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch13
Generic image for table

PCR reagents and cycle conditions for blockcyclers of typical real-time PCR

Citation: Malorny B, Bhunia A, Aarts H, Löfström C, Hoorfar J. 2011. in Pork, Beef, Poultry, and Egg, p 179-194. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch13
Generic image for table

Reagents, cycling conditions, and fragment analyzer run parameters used in the MLVA-PCR for serovar Typhimurium or serovar Enteritidis

Citation: Malorny B, Bhunia A, Aarts H, Löfström C, Hoorfar J. 2011. in Pork, Beef, Poultry, and Egg, p 179-194. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error