1887

Chapter 19 : in Milk and Dairy Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

in Milk and Dairy Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap19-2.gif

Abstract:

is a gram-positive, spore-forming, motile, aerobic rod that grows well anaerobically. It is a common soil saprophyte and is easily spread to many types of foods, especially of plant origin, but is frequently isolated from dairy products, meat, and eggs. Members of the group are a special problem for the dairy industry and are frequently found in pasteurized milk and milk-derived products, such as milk powder and infant formulas. Beside a general overview on novel methods for detection and enumeration of , this chapter focuses on recently developed methods for the detection and quantification of the toxins. It briefly discusses novel methods to determine the toxigenic potential of a strain and present the current methods for subtyping of group organisms. It also provides an overview of the different possibilities for detection and enumeration of in food samples. Several DNA extraction methods, including commercially available DNA isolation kits, have been tested for their suitability for DNA extraction from milk and milk products as well as from other foodstuffs during the development of molecular detection systems for emetic . An overview of the detection limits for DNA prepared by different extraction methods and subjected to standard PCR and real-time PCR is given.

Citation: Ehling-Schulz M, Messelhäusser U, Granum P. 2011. in Milk and Dairy Production, p 275-289. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Production chain of infant formula (indicating possible sampling points).

Citation: Ehling-Schulz M, Messelhäusser U, Granum P. 2011. in Milk and Dairy Production, p 275-289. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Work flow for detection and enumeration of pathogenic in food samples.

Citation: Ehling-Schulz M, Messelhäusser U, Granum P. 2011. in Milk and Dairy Production, p 275-289. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Contamination route analysis of -contaminated milk concentrate, using FTIR spectroscopy. Exported milk powder from Europe containing low levels of was used to produce a milk concentrate outside Europe. The final product contained high levels of organisms. Hierarchical cluster analysis of FTIR spectra recorded from isolates obtained from both raw material and end product clearly showed that the organisms found in the raw material were not the source for the high contamination observed in the final product.

Citation: Ehling-Schulz M, Messelhäusser U, Granum P. 2011. in Milk and Dairy Production, p 275-289. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817121.ch19
1. Anonymous. 2005. Commission regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union L 338:126.
2. Anonymous. 2009. The Community Summary Report on Food-Borne Outbreaks in the European Union in 2007. European Food Safety Authority, Parma, Italy.
3. Bauer, T.,, T. Stark,, T. Hofmann, and, M. Ehling-Schulz. 2010. Development of a stable isotope dilution analysis for the quantification of the Bacillus cereus toxin cereulide in foods. J. Agric. Food Chem. 58:14201428.
4. Becker, H.,, G. Schaller,, W. von Wiese, and, G. Terplan. 1994. Bacillus cereus in infant foods and dried milk products. Int. J. Food Microbiol. 23:115.
5. Blodgett, R. 2003. Most probable number from serial dilutions. In Bacteriological Analytical Manual, Appendix 2. Food and Drug Administration, Rockville, MD.
6. Christiansson, A.,, J. Bertilsson, and, B. Svensson. 1999. Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period. J. Dairy Sci. 82:305314.
7. Christiansson, A.,, K. Ekelund, and, H. Ogura. 1997. Membrane filtration method for enumeration and isolation of spores of Bacillus cereus from milk. Int. Dairy J. 7:743748.
8. Dietrich, R.,, C. Fella,, S. Strich, and, E. Märtlbauer. 1999. Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl. Environ. Microbiol. 65:44704474.
9. Duport, C.,, A. Zigha,, E. Rosenfeld, and, P. Schmitt. 2006. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J. Bacteriol. 188:66406651.
10. Ehling-Schulz, M.,, M. Fricker, and, S. Scherer. 2004a. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48:479487.
11. Ehling-Schulz, M.,, M. Fricker, and, S. Scherer. 2004b. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol. Lett. 232:189195.
12. Ehling-Schulz, M.,, M. H. Guinebretiere,, A. Monthan,, O. Berge,, M. Fricker, and, B. Svensson. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260:232240.
13. Ehling-Schulz, M.,, R. Knutsson, and, S. Scherer. 2011. Bacillus cereus, p. 147–164. In P. Fratamico,, S. Kathariou, and, Y. Liu (ed.), Genomes of Food-and Water-Borne Pathogens. ASM Press, Washington, DC.
14. Ehling-Schulz, M.,, B. Svensson,, M.-H. Guinebretiere,, T. Lindback,, M. Andersson,, A. Schulz,, M. Fricker,, A. Christiansson,, P. E. Granum,, E. Märtlbauer,, C. Nguyen-The,, M. Salkinoja-Salonen, and, S. Scherer. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183197.
15. Fricker, M.,, U. Messelhausser,, U. Busch,, S. Scherer, and, M. Ehling-Schulz. 2007. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbiol. 73:18921898.
16. Fricker, M.,, R. Reissbrodt, and, M. Ehling-Schulz. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol. 121:2734.
17. Fricker, M.,, B. Skånseng,, K. Rudi,, B. Stessl, and, M. Ehling-Schulz. 20 September 2010. Shift from farm to dairy tank microbiota revealed by a polyphasic approach is independent from geographical origin. Int. J. Food Microbiol. (Epub ahead of print.)
18. Guinebretiere, M. H.,, V. Broussolle, and, C. Nguyen-The. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40:30533056.
19. Guinebretiere, M. H.,, F. L. Thompson,, A. Sorokin,, P. Normand,, P. Dawyndt,, M. Ehling-Schulz,, B. Svensson,, V. Sanchis,, C. Nguyen-The,, M. Heyndrickx, and, P. De Vos. 2008. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10:851865.
20. Haggblom, M. M.,, C. Apetroaie,, M. A. Andersson, and, M. S. Salkinoja-Salonen. 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl. Environ. Microbiol. 68:24792483.
21. Lasch, P.,, W. Beyer,, H. Nattermann,, M. Stämmler,, E. Siegbrecht,, R. Grunold, and, D. Naumann. 2009. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization–time of flight mass spectrometry and artificial neural networks. Appl. Environ. Microbiol. 75:72297242.
22. Lechner, S.,, R. Mayr,, K. P. Francis,, B. M. Pruss,, T. Kaplan,, E. Wiessner-Gunkel,, G. S. Stewart, and, S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48(Pt. 4):13731382.
23. Lücking, G.,, M. K. Dommel,, S. Scherer,, A. Fouet, and, M. Ehling-Schulz. 2009. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155:922931.
24. Mayr, R.,, F. von Stetten,, K. P. Francis, and, S. Scherer. 1999. Significance of psychrotolerant aerobic sporeformers in food spoilage and methodologies for their detection and identification. Mitt. Lebensm. Hyg. 90:4161.
25. Messaoudi, K.,, T. Clavel,, P. Schmitt, and, C. Duport. 2010. Fnr mediates carbohydrate-dependent regulation of catabolic and enterotoxin genes in Bacillus cereus F4430/73. Res. Microbiol. 161:3039.
26. Messelhaüsser, U.,, P. Kampf,, M. Fricker,, M. Ehling-Schulz,, R. Zucker,, B. Wagner,, U. Busch, and, C. Holler. 2010. Prevalence of emetic Bacillus cereus in different ice creams in Bavaria. J. Food Prot. 73:395399.
27. Moravek, M.,, R. Dietrich,, C. Buerk,, V. Broussolle,, M. H. Guinebretiere,, P. E. Granum,, C. Nguyen-The, and, E. Märtlbauer. 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 257:293298.
28. Reekmans, R.,, P. Stevens,, T. Vervust, and, P. De Vos. 2009. An alternative real-time PCR method to detect the Bacillus cereus group in naturally contaminated food gelatine: a comparison study. Lett. Appl. Microbiol. 48:97104.
29. Schoeni, J. L.,, and A. C. L. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68:636648.
30. Segerman, B.,, D. De Medici,, M. Ehling Schulz,, P. Fach,, L. Fenicia,, M. Fricker,, P. Wielenga,, B. Van Rotterdam, and, R. Knutsson. 2010. Use of whole genome sequencing as a high resolution diagnostic typing tool when tracing bio-terror organisms in the food and feed chain. Int. J. Food Microbiol. doi:10.1016/j.ijfoodmicro.2010.06.027. Epub ahead of print.
31. Shaheen, R.,, M. A. Andersson,, C. Apetroaie,, A. Schulz,, M. Ehling-Schulz,, V. M. Ollilainen, and, M. S. Salkinoja-Salonen. 2006. Potential of selected infant food formulas for production of Bacillus cereus emetic toxin, cereulide. Int. J. Food Microbiol. 107:287294.
32. Stenfors Arnesen, L. P.,, A. Fagerlund, and, P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32:579606.
33. Stenfors Arnesen, L. P.,, K. O’Sullivan, and, P. E. Granum. 2007. Food poisoning potential of Bacillus cereus strains from Norwegian dairies. Int. J. Food Microbiol. 116:292296.
34. Te Giffel, M. C.,, R. R. Beumer,, S. Leijendekkers, and, F. M. Rombouts. 1996. Incidence of Bacillus cereus and Bacillus subtilis in foods in the Netherlands. Food Microbiol. 13:5358.
35. Wehrle, E.,, A. Didier,, M. Moravek,, R. Dietrich, and, E. Märtlbauer. 2010. Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR Green I. Mol. Cell. Probes 24:124130.
36. Wenning, M.,, S. Scherer, and, D. Naumann. 2008. Infrared spectroscopy in the identification of microorganisms, p. 71–96. In M. Diem,, P. R. Griffiths, and, J. M. Chalmers (ed.), Vibrational Spectroscopy for Medical Diagnosis. John Wiley & Son Ltd., Chichester, United Kingdom.
37. Yang, I. C.,, D. Y. Shih,, J. Y. Wang, and, T. M. Pani. 2007. Development of rapid real-time PCR and most-probable-number real-time PCR assays to quantify enterotoxigenic strains of the species in the Bacillus cereus group. J. Food Prot. 70:27742781.
38. Zwick, M. E.,, M. P. Kiley,, A. C. Stewart,, A. Mateczun, and, T. D. Read. 2008. Genotyping of Bacillus cereus strains by microarray-based resequencing. PLoS One 3:e2513.

Tables

Generic image for table
TABLE 1

Comparison of DNA extraction methods for from milk products

Citation: Ehling-Schulz M, Messelhäusser U, Granum P. 2011. in Milk and Dairy Production, p 275-289. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch19
Generic image for table
TABLE 2

Methods for detection of toxins

Citation: Ehling-Schulz M, Messelhäusser U, Granum P. 2011. in Milk and Dairy Production, p 275-289. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error