1887

Chapter 21 : Species in Powdered Infant Formula

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Species in Powdered Infant Formula, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap21-2.gif

Abstract:

species are occasional contaminants of powdered infant formula (PIF), and consequently, this particular food type presents a significant health risk to vulnerable neonates. Microbiological criteria are designed to control the concentration and prevalence of bacteria in foods. These criteria specify the microorganism of concern, the analytical method for their detection/quantification, a sampling plan defining the number of samples to be taken and the size of the analytical unit, the microbiological limits deemed appropriate at a specified point in the food chain, and the number of analytical units that should conform to those limits. Generally, rapid methods are understood to mean the application of a molecular or instrument-based technique to enable pathogen detection in hours rather than days. In common with , rapid detection of species can be interpreted to mean improving conventional plating methods, with or without molecular methods for confirmation. Molecular subtyping methods have been used to fingerprint clinical isolates associated with nosocomial infections and foodborne outbreaks. These protocols contribute towards extending our understanding of microbial ecology and epidemiology, and they are regarded as useful tools to monitor foodborne disease.

Citation: Jordan K, Fanning S. 2011. Species in Powdered Infant Formula, p 307-317. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Flow diagram for detection of species by the original FDA method (a) and the revised FDA method (b). EE broth, enrichment broth; PBS, phosphate-buffered saline; TSA, tryptic soy agar; VRBG, violet red bile agar with glucose.

Citation: Jordan K, Fanning S. 2011. Species in Powdered Infant Formula, p 307-317. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The ISO method for detection and enumeration of species. Abbreviations: BPW, buffered peptone water; CEB, enrichment broth; mLST, modified lauryl sulfate-tryptose; TSA, tryptic soy agar.

Citation: Jordan K, Fanning S. 2011. Species in Powdered Infant Formula, p 307-317. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Genotypic and phenotypic methods for characterization of species.

Citation: Jordan K, Fanning S. 2011. Species in Powdered Infant Formula, p 307-317. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817121.ch21
1. Baumgartner, A.,, M. Grand,, M. Liniger, and, C. Iversen. 2009. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int. J. Food Microbiol. 136:189192.
2. Block, C.,, O. Peleg,, N. Minster,, B. Bar-Oz,, A. Simhon,, I. Arad, and, M. Shapiro. 2002. Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of Enterobacter sakazakii. Eur. J. Clin. Microbiol. Infect. Dis. 21:613616.
3. Chap, J.,, P. Jackson,, R. Siqueira,, N. Gaspar,, C. Quintas,, J. Park,, T. Osaili,, R. Shaker,, Z. Jaradat,, S. H. P. Hartantyo,, N. Abdullah Sani,, S. Estuningsih, and, S. J. Forsythe. 2009. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 136:185188.
4. Codex Alimentarius Commission. 2003. Principles for the establishment and application of microbiological criteria for foods (CAC/GL 21-1997), p. 45–52. In Food Hygiene Basic Texts, 3rd ed. Food and Agriculture Organization/World Health Organization, Rome, Italy.
5. Dijkshoorn, L.,, and K. Towner. 2003. An introduction to the generation and analysis of microbial typing data, p. 1–30. In L. Dijkshoorn,, K. Towner, and, M. Strulens (ed.), New Approaches for the Generation and Analysis of Microbial Typing Data. Elsevier BV, Amsterdam, The Netherlands.
6. Druggan, P.,, and C. Iversen. 2009. Culture media for the isolation of Cronobacter spp. Int. J. Food Microbiol. 136:169178.
7. Edelson-Mammel, S. G.,, M. K. Porteous, and, R. L. Buchanan. 2005. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J. Food Prot. 68:19001902.
8. Food and Agriculture Organization/World Health Organization. 2004. Enterobacter sakazakii and Other Micro-Organisms in Powdered Infant Formula: Meeting Report. Microbiological Risk Assessment Series, No. 6. Food and Agriculture Organization/World Health Organization, Rome, Italy. ftp://ftp.fao.org/docrep/fao/007/y5502e/y5502e00.pdf. Accessed July 2010.
9. Food and Agriculture Organization/World Health Organization. 2006. Enterobacter sakazakii and Salmonella in Powdered Infant Formula: Meeting Report. Microbiological Risk Assessment Series, No. 10. Food and Agriculture Organization/World Health Organization, Rome, Italy. ftp://ftp.fao.org/docrep/fao/007/y5502e/y5502e00.pdf. Accessed July 2010.
10. Food and Agriculture Organization/World Health Organization. 2008. Risk Assessment for Cronobacter sakazakii in Powdered Infant Formula. Food and Agriculture Organization/World Health Organization, Rome, Italy. http://www.mramodels.org/ESAK/default.aspx. Accessed July 2010.
11. Food and Drug Administration. 2002. Isolation and enumeration of Enterobacter sakazakii from dehydrated powdered infant formula. In Bacteriological Analytical Manual, 8th ed. Food and Drug Administration, Gaithersburg, MD.
12. Food and Drug Administration. 2009. Questions and Answers on Method for E. sakazakii in Powdered Infant Formula. Food and Drug Administration, Gaithersburg, MD. http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/ucm114668.htm. Accessed July 2010.
13. Healy, B.,, S. Cooney,, S. O’Brien,, C. Iversen,, P. Whyte,, J. Nally,, J. J. Callanan, and, S. Fanning. 2010. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog. Dis. 7:339350.
14. Healy, B.,, N. Mullane,, V. Collin,, S. Mailler,, C. Iversen,, S. Chatellier,, M. Storrs, and, S. Fanning. 2008. Evaluation of an automated repetitive sequence-based PCR system for subtyping Enter-obacter sakazakii. J. Food Prot. 71:12731278.
15. Himelright, I.,, E. Harris,, V. Lorch,, M. Anderson,, T. Jones,, A. Craig,, M. Kuehnert,, T. Forster,, M. Arduino,, B. Jensen, and, D. Jernigan. 2002. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee 2001. JAMA 17:22042205.
16. International Organization for Standardization. 2006. Milk and Milk Products—Detection of Enterobacter sakazakii. Technical Specification ISO/TS 22964. ISO/TS22964:2006 (E) and IDF/RM 210: 2006 (E), 1st ed. International Organization for Standardization, Geneva, Switzerland.
17. Iversen, C.,, M. Lane, and, S. J. Forsythe. 2004. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant milk formula. Lett. Appl. Microbiol. 38:378382.
18. Iversen, C.,, A. Lehner,, N. Mullane,, J. Marugg,, S. Fanning,, R. Stephan, and, H. Joosten. 2007. Identification of Cronobacter spp. (Enterobacter sakazakii). J. Clin. Microbiol. 45:38143816.
19. Iversen, C.,, N. Mullane,, B. McCardell,, B. D. Tall,, A. Lehner,, S. Fanning,, R. Stephan, and, H. Joosten. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58:14421447.
20. Kandhai, M. C.,, M. Reij,, L. G. M. Gorris,, O. Guillaume-Gentil, and, M. van Schothorst. 2004. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:3940.
21. Kucerova, E.,, S. W. Clifton,, X. Q. Xia,, F. Long,, S. Porwollik,, L. Fulton,, C. Fronick,, P. Minx,, K. Kyung,, W. Warren,, R. Fulton,, D. Feng,, A. Wollam,, N. Shah,, V. Bhonagiri,, W. E. Nash,, K. Hallsworth-Pepin,, R. K. Wilson,, M. McClelland, and, S. J. Forsythe. 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS ONE 5:e9556.
22. Kuhnert, P.,, B. M. Korczak,, R. Stephan,, H. Joosten, and, C. Iversen. 2009. Phylogeny and prediction of genetic similarity of Cronobacter and related taxa by multilocus sequence analysis (MLSA). Int. J. Food Microbiol. 136:152158.
23. Lai, K. K. 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine (Baltimore) 80:113122.
24. Lampel, K. A.,, and Y. Chen. 2009. Method for the isolation and detection of Enterobacter sakazakii (Cronobacter) from powdered infant formula. Int. J. Food Microbiol. 136:179184.
25. Lehner, A.,, T. Tasara, and, R. Stephan. 2004. 16S rRNA gene based analysis of Enterobacter sakazakii strains from different sources and development of a PCR assay for identification. BMC Microbiol. 4:43.
26. Lehner, A.,, S. Nitzsche,, P. Breeuwer,, B. Diep,, K. Thelen, and, R. Stephan. 2006. Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection. BMC Microbiol. 6:15.
27. Liu, Y.,, X. Cai,, X. Zhang,, Q. Gao,, X. Yang,, Z. Zheng,, M. Luo, and, X. Huang. 2006. Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula. J. Microbiol. Methods 65:2131.
28. Malorny, B.,, and M. Wagner. 2005. Detection of Enterobacter sakazakii strains by real-time PCR. J. Food Prot. 68:16231627.
29. Mohan Nair, M. K.,, and K. S. Venkitanarayanan. 2006. Cloning and sequencing of the ompA gene of Enterobacter sakazakii and development of an ompA-targeted PCR for rapid detection of Enterobacter sakazakii in infant formula. Appl. Environ. Microbiol. 72:25392546.
30. Mossel, D. A. A.,, and M. Alina Ratto. 1970. Rapid detection of sublethally impaired cells of Enterobacteriaceae in dried foods. Appl. Environ. Microbiol. 20:273275.
31. Mullane, N.,, B. Healy,, J. Meade,, P. Whyte,, P. G. Wall, and, S. Fanning. 2008a. Dissemination of Cronobacter spp. (Enterobacter sakazakii) in a powdered milk protein manufacturing facility. Appl. Environ. Microbiol. 74:59135917.
32. Mullane, N.,, J. Murray,, D. Drudy,, N. Prentice,, P. Whyte,, P. G. Wall,, A. Parton, and, S. Fanning. 2006. Detection of Enterobacter sakazakii in dried infant milk formula by cationic-magnetic-bead capture. Appl. Environ. Microbiol. 72:63256330.
33. Mullane, N. R.,, M. Ryan,, C. Iversen,, M. Murphy,, P. O’Gaora,, T. Quinn,, P. Whyte,, P. G. Wall, and, S. Fanning. 2008b. Development of multiple-locus variable-number tandem-repeat analysis for the molecular subtyping of Enterobacter sakazakii. Appl. Environ. Microbiol. 74:12231231.
34. Mullane, N. R.,, P. Whyte,, P. G. Wall,, T. Quinn, and, S. Fanning. 2007. Application of pulsed-field gel electrophoresis to characterise and trace the prevalence of Enterobacter sakazakii in an infant formula processing facility. Int. J. Food Microbiol. 116:7381.
35. Muytjens, H. L.,, H. Roelofs-Willemse, and, G. H. Jaspar. 1988. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26:743746.
36. Muytjens, H. L.,, J. van der Ros-van de Repe, and, H. A. van Druten. 1984. Enzymatic profiles of Enterobacter sakazakii and related species with special reference to the alpha-glucosidase reaction and reproducibility of the test system. J. Clin. Microbiol. 20:684686.
37. Nazarowec-White, M.,, and J. M. Farber. 1999. Phenotypic and genotypic typing of food and clinical isolates of Enterobacter sakazakii. J. Med. Microbiol. 48:559567.
38. O’Brien, S.,, B. Healy,, C. Negredo,, S. Fanning, and, C. Iversen. 2009. Evaluation of enrichment methods for detection of Cronobacter spp. (Enterobacter sakazakii) from powdered infant formula. J. Food Prot. 72:14721475.
39. Seo, K. H.,, and R. E. Brackett. 2005. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR. J. Food Prot. 68:5963.
40. Smeets, L. C.,, A. Voss,, H. L. Muytjens,, J. F. G. M. Meis, and, W. J. G. Melchers. 1998. Genetische karakterisatie van Enterobacter sakazakii-isolaten van Nederlandse patiënten met neonatale meningitis. Nederlands Tijdschrift voor Medische Microbiologie 6:113115.
41. Swaminathan, B.,, T. J. Barrett,, S. B. Hunter,, R. V. Tauxe, and the CDC PulseNet Task Force. 2001. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg. Infect. Dis. 7:382389.
42. Wang, M.,, B. Cao,, Q. Gao,, Y. Sun,, P. Liu,, L. Feng, and, L. Wang. 2009. Detection of Enterobacter sakazakii and other pathogens associated with infant formula powder by use of a DNA microarray. J. Clin. Microbiol. 47:31783184.
43. Ye, Y.,, Q. Wu,, L. Yao,, X. Dong,, K. Wu, and, J. Zhang. 2009. A comparison of polymerase chain reaction and international organization for standardization methods for determination of Enterobacter sakazakii contamination of infant formulas from Chinese mainland markets. Foodborne Pathog. Dis. 6:12291234.
44. Ye, Y.-W.,, Q.-P. Wu,, W.-P. Guo,, J.-M. Zhang, and, X.-H. Dong. 2007. Rapid detection for Enterobacter sakazakii based on species-specific PCR in powdered milks. Microbiology 34:11921197.
45. Zhou, Y.,, Q. Wu,, X. Xu,, X. Yang,, Y. Ye, and, J. Zhang. 2008. Development of an immobilization and detection method of Enterobacter sakazakii from powdered infant formula. Food Microbiol. 25:648652.

Tables

Generic image for table
TABLE 1

PCR primers and target genes used for detection of species by conventional, duplex, and real-time PCR

Citation: Jordan K, Fanning S. 2011. Species in Powdered Infant Formula, p 307-317. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch21
Generic image for table
TABLE 2

Summary of molecular subtyping techniques applicable to species

Citation: Jordan K, Fanning S. 2011. Species in Powdered Infant Formula, p 307-317. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error