1887

Chapter 26 : in Food Service

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

in Food Service, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817121/9781555815424_Chap26-2.gif

Abstract:

toxins are responsible for a variety of human and veterinary diseases. isolates are commonly classified into one of five types, A to E, based on their ability to produce four so-called lethal toxins, alpha, beta, epsilon, and iota. In addition to the enterotoxigenic nature of certain isolates, the two defining characteristics of ’s role in foodborne illness are its potential growth rate and its ability to produce heat-resistant spores. Spore formation by is an important characteristic because (i) spores are able to survive cooking procedures while eliminating competitors, (ii) it is an essential classification tool, and (iii) enterotoxin formation is associated with sporulation. This chapter talks about in situ methods for -positive , detection of enterotoxin, molecular methods, and location of the enterotoxin gene in isolates. The application of molecular techniques has had a tremendous impact on the diagnosis and investigation of food poisoning and nonfood-borne outbreaks. Reference laboratories are now able to determine rapidly and easily if isolates have the potential to cause diarrheal disease and through the use of discriminatory molecular typing methods provide evidence that -positive strains from humans and foods have a common origin.

Citation: Labbé R, Grant K. 2011. in Food Service, p 381-391. In Hoorfar J (ed), Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555817121.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817121.ch26
1. Abeyta, C.,, Jr., A. Michalovski, and, M. Wekell. 1985. Differentiation of Clostridium perfringens from related clostridia in iron milk medium. J. Food Prot. 48:130134.
2. Abeyta, C.,, Jr., and J. Wetherington. 1994. Iron milk medium method for recovering Clostridium perfringens from shellfish: collaborative study. J. AOAC Int. 77:351356.
3. Albini, S.,, I. Brodard,, A. Jaussi,, N. Wollschlaeger,, J. Frey,, R. Miserez, and, C. Abril. 2008. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet. Microbiol. 127:179185.
4. Anderson, K.,, T. Hansen, and, S. Knøchel. 2004. Growth of heat-treated enterotoxin-positive Clostridium perfringens and the implication for safe cooling rates. J. Food Prot. 67:8389.
5. Baez, L.,, and V. Juneja. 1995. Nonradioactive colony hybridization assay for detection and enumeration of enterotoxigenic Clostridium perfringens in raw beef. Appl. Environ. Microbiol. 61:807810.
6. Baums, C.,, U. Schotte,, G. Amtsberg, and, R. Goethe. 2004. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 100:1116.
7. Brynestad, S.,, and P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74:195202.
8. Carman, R. 1997. Clostridium perfringens in spontaneous and antibiotic-associated diarrhea of man and other animals. Rev. Med. Microbiol. 8(Suppl. 1):S43S45.
9. Carman, R. J.,, S. Sayeed,, J. Li,, C. Genheimer,, M. Hiltonsmith,, T. Wilkins, and, B. McClane. 2008. Clostridium perfringens toxin types in the feces of healthy North Americans. Anaerobe 14:102108.
10. Centers for Disease Control and Prevention. 2005. Surveillance for foodborne-disease outbreaks—United States, 1998–2002. MMWR Surveill. Summ. 55(SS-10):134.
11. Chalmers, G.,, H. Bruce,, D. Hunter,, V. Parreira,, R. Kulkari,, Y.-F. Jiang,, J. Prescott, and, P. Boerlin. 2008. Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. J. Clin. Microbiol. 46:39573964.
12. Collie, R.,, J. Kokai-Kun, and, B. McClane. 1998. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe 4:6979.
13. Cooper, K. K.,, and J. G. Songer. 2009. Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 15:5560.
14. Craven, S.,, N. Cox,, J. Bailey, and, D. Cosby. 2003. Incidence and tracking of Clostridium perfringens through an integrated broiler chicken operation. Avian Dis. 47:707711.
15. Czeczulin, J.,, P. Hanna, and, B. McClane. 1993. Cloning, nucleotide sequencing and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect. Immun. 61:34293439.
16. De Cesare, A.,, G. Borilova,, I. Svobodova,, V. Bodioli, and, G. Manfreda. 2009. Clostridium perfringens occurrence and ribotypes in healthy broilers reared in different European countries. Poultry Sci. 88:18501857.
17. Deguchi, A.,, K. Miyamoto,, T. Kuwahara,, Y. Miki,, I. Kaneko,, J. Li,, B. McClane, and, S. Akimoto. 2009. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS ONE 4(5):e5598. doi:10.1371/journal.pone.0005598.
18. De Jong, A. E. I.,, R. Beumer, and, F. Rombouts. 2002. Optimizing sporulation of Clostridium perfringens. J. Food Prot. 65:14571462.
19. De Jong, A. E. I.,, G. Eijhusen,, E. J. F. Brouwer-Post,, M. Grand,, T. Johansson,, T. Kärkkäinen,, J. Marugg,, P. H. in’t Veld,, F. H. M. Warmerdam,, G. Würner,, A. Zicavo,, F. M. Rom-bouts, and, R. R. Beumer. 2003. Comparison of media for enumeration of Clostridium perfringens from foods. J. Microbiol. Methods 54:359366.
20. Eisgruber, H.,, P. Geppert,, B. Sperner, and, A. Stolle. 2003. Evaluation of different methods for the detection of Clostridium perfringens phosphatases. Int. J. Food Microbiol. 82:8186.
21. Fach, P.,, and M. Popoff. 1997. Detection of enterotoxigenic Clostridium perfringens in food and fecal samples with a duplex PCR and the slide agglutination test. Appl. Environ. Microbiol. 63:42324236.
22. Food and Drug Administration. 1998. Bacteriological Analytical Manual, 8th ed. Food and Drug Administration, Gaithersburg, MD. www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/default.htm.
23. Garcia-Alvarado, J.,, R. Labbe, and, M. Rodriguez. 1992. Sporulation and enterotoxin production by Clostridium perfringens type A at 37 and 43°C. Appl. Environ. Microbiol. 58:14111414.
24. Garmory, H.,, N. Chanter,, N. French,, D. Beuschel,, J. Songer, and, R. Titball. 2000. Occurrence of Clostridium perfringens beta 2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol. Infect. 124:6167.
25. Gilbert, M.,, C. Jolivet-Reynaud, and, M. Popoff. 1997. Beta 2 toxin, a novel toxin produced by Clostridium perfringens. 203:5673.
26. Grant, K.,, S. Kenyon,, I. Nwafor,, J. Plowman,, C. Ohai,, R. Halford,, M. Peck, and, J. McLauchin. 2008. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene and heat resistance. Foodborne Pathog. Dis. 5:629639.
27. Gurjar, A.,, N. Yennawar,, H. Yennawar,, K. Rajashankar,, N. Hegde, and, B. Jayarao. 2007. Expression, crystallization and preliminary X-ray diffraction studies of recombinant Clostridium perfringens ss 2-toxin. Acta Crystallogr. F 63:484487.
28. Heikinheimo, A.,, M. Lindstrom, and, H. Korkeala. 2004. Enumeration and isolation of cpe-positive Clostridium perfringens spores from feces. Clin. Microbiol. 42:39923997.
29. Heikinheimo, A.,, M. Lindstrom,, P. E. Granum, and, H. Korkeala. 2006. Humans as reservoir for enterotoxin gene-carrying Clostridium perfringens type A. Emerg. Infect. Dis. 12:17241729.
30. Hsieh, P.,, and R. Labbé. 2007. Influence of peptone source on sporulation of Clostridium perfringens. J. Food Prot. 70:17301734.
31. International Organization for Standardization. 2004. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Clostridium perfringens—Colony Count Technique. ISO 7937:2004. International Organization for Standardization, Geneva, Switzerland.
32. Jost, B. H.,, H. T. Trinh, and, J. G. Songer. 2006. Clonal relationships among Clostridium perfringens of porcine origin as determined by multilocus sequence typing. Vet. Microbiol. 116:158165.
33. Juneja, V.,, R. Whiting,, H. Marks, and, O. Snyder. 1999. Predictive model for growth of Clostridium perfringens at temperature applicable to cooling of cooked meat. Food Microbiol. 16:335349.
34. Keto-Timonen, R.,, A. Heikinheimo,, E. Eerola, and, H. Korkeala. 2006. Identification of Clostridium species and DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis. J. Clin. Microbiol. 44:40574065.
35. Labbe, R. 1981. Enterotoxin formation by Clostridium perfringens type A in a defined medium. Appl. Environ. Microbiol. 41:315317.
36. Labbe, R. 1989. Clostridium perfringens, p. 191–234. In M. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, New York, NY.
37. Labbe, R. 2000. Clostridium perfringens, p. 1110–1135. In B. Lund,, T. Baird-Parker, and, G. Gould (ed.), The Microbiological Safety of Food. Aspen, Gaithersburg, MD.
38. Labbe, R.,, and T. Huang. 1995. Generation times and modeling of enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens in laboratory media and ground beef. J. Food Prot. 58:13031306.
39. Labbe, R.,, and V. Juneja. 2006. Clostridium perfringens gastroenteritis, p. 137–184. In H. Rieman and, D. Cliver (ed.), Foodborne Infections and Intoxications, 3rd ed. Academic Press, New York, NY.
40. Lahti, P.,, A. Heikinheimo,, T. Johansson, and, H. Korkeala. 2008. Clostridium perfringens type A strains carrying plasmid-borne enterotoxin gene (genotype IS 1151-cpe or IS 1470-like-cpe) as a common cause of food poisoning. J. Clin. Microbiol. 46:371373.
41. LeFlon-Guibout, V.,, J.-L. Pons,, B. Heym, and, M.-H. Nicolas-Chanoine. 1999. Typing of Clostridium perfringens strains by use of random amplified polymorphic DNA (RAPD) system in comparison with zymotyping. Anaerobe 3:245250.
42. Le Marc, Y.,, J. Plowman,, C. Aldus,, M. Munoz-Cuevas,, J. Baranyi, and, M. Peck. 2008. Modelling the growth of Clostridium perfringens during the cooling of bulk meat. Int. J. Food Microbiol. 128:4150.
43. Li, J.,, and B. McClane. 2006. Further comparisons of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl. Environ. Microbiol. 72:45614568.
44. Lin, Y. T.,, and R. Labbe. 2003. Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail foods in the United States. Appl. Environ. Microbiol. 69:16421646.
45. Lindstedt, B.-A. 2005. Multiple-locus variable number tandem repeats analysis for fingerprinting of pathogenic bacteria. Electrophoresis 26:25672582.
46. Maslanka, S.,, J. Kerr,, G. Williams,, J. Barbavee,, L. Carson,, J. M. Miller, and, B. Swaminathan. 1999. Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate foodborne disease outbreak investigations. J. Clin. Microbiol. 37:22092214.
47. McClane, B. 2007. Clostridium perfringens, p. 423–444. In M. Doyle and, L. Beuchat (ed.), Food Microbiology: Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
48. McLauchlin, J.,, G. Ripabelli,, M. Brett, and, E. Threlfall. 2000. Amplified fragment length polymorphism (AFLP) analysis of Clostridium perfringens for epidemiological typing. Int. J. Food Microbiol. 56:2128.
49. Meyer, M.,, and J. Tholozan. 1999. A new growth and sporulation medium for Clostridium perfringens. Lett. Appl. Microbiol. 28:98102.
50. Miki, Y.,, K. Miyamoto,, I. Eko-Hirano,, K. Fujiuchi, and, S. Akimoto. 2008. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl. Environ. Microbiol. 74:53665372.
51. Mueller-Spitz, S.,, L. Stewart, and, S. McLellan. 2009. Reliability of mCP method for identification of Clostridium perfringens from fecal polluted aquatic environments. J. Appl. Microbiol. 108:19942002.
52. Myers, G.,, D. Rasko,, J. Cheung,, J. Ravel,, R. Seshadri,, R. DeBoy,, Q. Ren,, J. Varga,, M. Awad,, L. Brinkac,, S. Daugherty,, D. Haft,, R. Dodson,, R. Madupu,, W. Nelson,, M. Rosovitz,, S. Sullivan,, H. Khouri,, G. Dimitrov,, K. Watkins,, S. Mulligan,, J. Benton,, D. Radune,, D. Fisher,, H. Atkins,, T. Hiscox,, B. H. Jost,, S. Billington,, J. G. Songer,, B. McClane,, R. Titball,, J. Rood,, S. Melville, and, T. Paulsen. 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen Clostridium perfringens. Genome Res. 16:10311040.
53. Nakamura, M.,, A. Kato,, D. Tanaka,, Y. Gyobu,, S. Higaki,, T. Karasawa, and, T. Yamgishi. 2004. PCR identification of the plasmid-borne enterotoxin gene (cpe) in Clostridium perfringens strains isolated from food poisoning outbreaks. Int. J. Med. Microbiol. 294:261265.
54. Orenga, S.,, A. James,, M. Manafi,, J. Perry, and, D. Pincus. 2009. Enzymatic substrates in microbiology. J. Microbiol. Methods 79:139155.
55. Petit, L.,, M. Gilbert, and, M. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7:104110.
56. Sarker, M.,, R. Shivers,, S. Sparks,, V. Juneja, and, B. McClane. 2000. Comparative experiments to examine the effects of heating on vegetative and cells and spores of Clostridium perfringens isolates carrying plasmid versus chromosomal enterotoxin genes. Appl. Environ. Microbiol. 66:32343240.
57. Sartory, D.,, R. Waldock,, C. Davies, and, A. Field. 2006. Evaluation of acid phosphatase as a confirmatory test for Clostridium perfringens isolated from water. Lett. Appl. Microbiol. 42:418424.
58. Sawires, Y.,, and J. G. Songer. 2005. Multiple-locus variable-number tandem repeat analysis for strain typing of Clostridium perfringens. Anaerobe 11:262272.
59. Sawires, Y.,, and J. G. Songer. 2006. Clostridium perfringens: insight into virulence evolution and population structure. Anaerobe 12:2343.
60. Schalch, B.,, L. Bader,, H.-P. Schau,, R. Bergmann,, A. Rometsch,, G. Maydl, and, S. Keβler. 2003. Molecular typing of Clostridium perfringens from a foodborne disease outbreak in a nursing home: ribotyping versus pulsed-field gel electrophoresis. J. Clin. Microbiol. 41:892895.
61. Shimizu, S.,, M. Ootsubo,, Y. Kubosau,, I. Fuchizawa,, Y. Kawai, and, K. Yamazaki. 2009. Fluorescent in situ hybridization in combination with filter cultivation (FISHFC) method for specific detection and enumeration of viable Clostridium perfringens. Food Microbiol. 26:425431.
62. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara, and, H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99:9961001.
63. Sperner, B.,, H. Eisgruber, and, A. Stolle. 1999a. Use of the RAPID 32A system for rapid identification of Clostridium species in food hygiene. Int. J. Food Microbiol. 52:169180.
64. Sperner, B.,, B. Schalch,, H. Eisgruber, and, A. Stolle. 1999b. Short protocols for pulsed-field gel electrophoresis of a variety of Clostridium species. FEMS Immunol. Med. Microbiol. 24:287292.
65. Tanaka, D.,, K. Kimata,, M. Shimizu,, J. Isobe,, J. Watahiki,, T. Karaswa,, T. Yamagishi,, S. Kuramoto,, T. Serikawa,, M. Yamada,, K. Yamaoka,, M. Tokoro,, T. Fukao,, M. Matsumoot,, R. Hiramatsu,, C. Monma, and, Y. Nagai. 2007. Genotyping of Clostridium perfringens isolates collected from food poisoning outbreaks and healthy individuals in Japan based on the cpe locus. Jpn. J. Infect. Dis. 60:68610.
66. U.S. Department of Agriculture. 1998. Microbiology Laboratory Guidebook, 3rd ed. U.S. Department of Agriculture, Washington, DC. www.fsis.usda.gov./Science/Microbiological_Lab_Guidebook/Index.asp.
67. van Asten, A.,, J. Allaart,, A. Grone,, P. Gloude-mans,, D. Houwers, and, A. Gröne. 2008. A new PCR followed by MboI digestion for the detection of all variants of the Clostridium perfringens cpb2 gene. Vet. Microbiol. 127:412416.
68. van Damme-Johnsten, M.,, J. Haagsma, and, S. Notermans. 1990. Testing strains of Clostridium perfringens type A isolated from diarrheic piglets for the presence of the enterotoxin gene. Vet. Res. 126:191192.
69. Vos, P.,, R. Hogers,, M. Bleeker,, M. Reijians, et al. 1995. AFLP: a new technique for DNA finger-printing. Nucleic Acids Res. 23:44074414.
70. Wen, Q.,, and B. McClane. 2004. Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl. Environ. Microbiol. 70:26852691.
71. Willardsen, R.,, F. Busta, and, C. Allen. 1979. Growth of Clostridium perfringens in three different beef media and fluid thioglycollate medium at static and constantly rising temperature. J. Food Prot. 42:144148.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error