1887

Chapter 7 : Chemotherapy of Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Chemotherapy of Tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817138/9781555815134_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817138/9781555815134_Chap07-2.gif

Abstract:

This chapter reviews the underlying principles of tuberculosis (TB) chemotherapy, medical management, and current treatment recommendations. TB is caused by members of the complex, with being responsible for the vast majority of disease. Early in the history of anti-TB chemotherapy, the highly effective agent streptomycin (SM) was applied as monotherapy. Current first-line regimens consist of three or four agents that, in concert, can eradicate organisms within all compartments and prevent the development of drug resistance. Isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), ethambutol (EMB), and SM are the five standard first-line agents. Elevated transaminases, clinical hepatitis, and peripheral neuropathy are among the most common adverse events seen with INH. strains resistant to SM may be susceptible to other aminoglycosides, but the susceptibility to each agent must be confirmed by resistance testing. The drugs used in the standard treatment of pulmonary TB are recommended for all extrapulmonary TB. In patients with renal dysfunction, PZA and EMB dosing should be adjusted. Serum levels of drugs should be obtained to ensure adequate treatment if any question of adequacy exists. Patients may require intramuscular and intravenous treatment regimens until oral absorption can be ensured. Diagnosis of TB is often based on smear microscopy without culture. Fixed- dose combinations of anti-TB agents are recommended to prevent the use of inadequate regimens and monotherapy.

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7

Key Concept Ranking

Infectious Diseases
0.512751
Viral Hepatitis
0.4761841
Cell Wall Components
0.42495215
0.512751
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Management of drug-susceptible pulmonary TB. *, EMB may be discontinued if susceptibility to other first-line agents is ensured; **, rifapentene may be an appropriate substitution in HIV-negative patients with noncavitary disease and sputum smear conversion during the initial phase; ***, additional duration of treatment may be considered for delayed clinical or radiographic improvement; ****, delayed culture conversion should prompt consideration of acquired drug resistance, noncompliance, and malabsorption.

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Reinstitution of interrupted or incomplete anti-TB treatment. © 2008 by The City of New York, Department of Health and Mental Hygiene. All rights reserved. (Adapted from , 4th ed. Bureau of Tuberculosis Control, New York City Department of Health and Mental Hygiene, New York, NY, 2008) ( ).

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Management of hepatotoxicity. *, if there is a cholestatic pattern, RIF is the likely etiology and RFB may be an appropriate substitute after normalization of liver function tests (LFTs); **, if the patient has extensive disease, meningitis or HIV coinfection or requires a prolonged period off first-line agents, prompt initiation of a nonhepatotoxic regimen such as EMB, SM, and a fluoroquinolone should be pursued; ***, rechallenge with PZA can be considered if hepatitis was not severe.

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817138.ch07
1. American Thoracic Society, Centers for Disease Control and Prevention, and Infectious Diseases Society of America. 2003. Treatment of tuberculosis. MMWR Morb. Mortal. Wkly. Rep. 52(RR11):177.
2. Benator, D.,, M. Bhattacharya,, L. Bozeman,, W. Burman,, A. Cantazaro,, R. Chaisson,, F. Gordin,, C. R. Horsburgh,, J. Horton,, A. Khan,, C. Lahart,, B. Metchock,, C. Pachucki,, L. Stanton,, A. Vernon,, M. E. Villarino,, Y. C. Wang,, M. Weiner,, and S. Weis. 2002. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet 360:528534.
3. Bureau of Tuberculosis Control. 2008. Clinical Policies and Protocols, 4th ed., p. 66. Bureau of Tuberculosis Control, New York City Department of Health, New York, NY.
4. Canetti, G. 1965. Present aspects of bacterial resistance in tuberculosis. Am. Rev. Respir. Dis. 92:687703.
5. Catanzaro, A.,, and R. Horsburgh. 2000. TBTC Study 22: risk factors for relapse with once-weekly isoniazid/rifapentine (HP) in HIV-negative TB patients. Am. J. Respir. Crit. Care Med. 161:A252.
6. Chitturi, S.,, and G. Farrell. 2007. Drug induced liver disease, p. 935–936. In E. Schiff,, M. Sorrell, and, W. Maddrey (ed.), Schiff’s Diseases of the Liver, 10th ed., vol. I. Lippincott Williams and Wilkins, Philadelphia, PA.
7. Crofton, J.,, and D. A. Mitchison. 1948. Streptomycin resistance in pulmonary tuberculosis. Br. Med. J. 2:10091015.
8. Cullen, J. H.,, L. J. Early,, and J. M. Fiore. 1956. The occurrence of hyperuricemia during pyrazinamide-isoniazid therapy. Am. Rev. Tuberc. 74:289292.
9. Døssing, M.,, J. T. R. Wilcke,, D. S. Askgaard,, and B. Nybo. 1996. Liver injury during antituberculosis treatment: an 11-year study. Tuberc. Lung Dis. 77:335340.
10. Dutt, A. K.,, D. Moers,, and W. W. Stead. 1989. Smear- and culture-negative pulmonary tuberculosis: four-month short-course chemotherapy. Am. Rev. Respir. Dis. 139:867870.
11. Feldman, W. H. 1954. Streptomycin: some historical aspects of its development as a chemotherapeutic agent in tuberculosis. Am. Rev. Tuberc. 89:859868.
12. Griffith, D. E.,, B. A. Brown,, and R. J. Wallace. 1996. Varying dosages of rifabutin affect white blood cell and platelet counts in human immunodeficiency virus-negative patients who are receiving multidrug regimens for pulmonary Mycobacterium avium complex disease. Clin. Infect. Dis. 23:13211322.
13. Grosset, J. 1980. Bacteriologic basis of short-course chemotherapy for tuberculosis. Clin. Chest Med. 1:231241.
14. Hong Kong Chest Service/British Medical Research Council. 1987. Five-year follow-up of a controlled trial of five 6-month regimens of chemotherapy for tuberculosis. Am. Rev. Respir. Dis. 136:13391342.
15. Hong Kong Chest Service/British Medical Research Council. 1991. Controlled trial of 2, 4, and 6 months of pyrazinamide in 6-month, three-times weekly regimens for smear-positive pulmonary tuberculosis, including an assessment of a combined preparation of isoniazid, rifampin, and pyrazinamide: results at 30 months. Am. Rev. Respir. Dis. 143:700706.
16. Jindani, A.,, V. R. Aber,, E. A. Edwards,, and D. A. Mitchison. 1980. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis. 121:939949.
17. Joint Committee on the Study of Streptomycin. 1947. The effects of streptomycin on tuberculosis in man. JAMA 135:634641.
18. Kanellakopoulou, K.,, A. Pagoulatou,, K. Stroumpoulis,, M. Vafiadou,, H. Kranidioti,, H. Giamarellou,, and E. J. Giamarellos-Bourboulis. 2008. Pharmacokinetics of moxifloxacin in non-inflamed cerebrospinal fluid of humans: implication for a bactericidal effect. J. Antimicrob. Chemother. 61:13281331.
19. Kopanoff, D. E.,, D. E. Snider,, and G. J. Caras. 1979. Isoniazid-related hepatitis: a US Public Health Service cooperative surveillance study. Am. Rev. Respir. Dis. 117:9911001.
20. Lacoma, A.,, N. Garcia-Sierra,, C. Prat,, J. Ruiz-Manzano,, L. Haba,, S. Rosés,, J. Maldonado,, and J. Domínguez. 2008. Geno-Type MTBDRplus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J. Clin. Microbiol. 46:36603667.
21. Leibold, J. E. 1966. The ocular toxicity of ethambutol and its relation to dose. Ann. N. Y. Acad. Sci. 135:904909.
22. McDermott, W.,, and R. Tompsett. 1954. Activation of pyrazinamide and nicotinamide in acid environment in vitro. Am. Rev. Tuberc. 70:748.
23. Mehta, Y. S.,, F. F. Jijina,, S. S. Badakere,, A. V. Pathare,, and D. Mohanty. 1996. Rifampicin-induced immune thrombocytopenia. Tuberc. Lung Dis. 77:558562.
24. Mitchell, J. R.,, H. J. Zimmerman,, K. G. Ishak,, U. P. Thorgeirsson,, J. A. Timbrell,, W. R. Snodgrass,, and S. D. Nelson. 1976. Isoniazid liver injury: clinical spectrum, pathology and probable pathogenesis. Ann. Intern. Med. 84:181192.
25. Mitchison, D. 1979. Basic mechanisms of chemotherapy. Chest 76:S771S781.
26. Mitchison, D. A. 1984. Drug resistance in mycobacteria. Br. Med. Bull. 40:8490.
27. Mitchison, D. A. 2000. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis. 4:796806.
28. Moadebi, S.,, C. K. Harder,, M. J. Fitzgerald,, K. R. Elwood,, and F. Marra. 2007. Fluoroquinolones for the treatment of pulmonary tuberculosis. Drugs 67:20772099.
29. Moulding, T. S.,, A. G. Redeker,, and G. C. Kanel. 1989. Twenty isoniazid-associated deaths in one state. Am. Rev. Respir. Dis. 140:700705.
30. Narita, M.,, M. Hisada,, B. Thimmappa,, J. Stambaugh,, E. Ibrahim,, E. Hollender,, and D. Ashkin. 2001. Tuberculosis recurrence: multivariate analysis of serum levels of tuberculosis drugs, human immunodeficiency virus status, and other risk factors. Clin. Infect. Dis. 32:515517.
31. Nuermberger, E. L.,, T. Yoshimatsu,, S. Tyagi,, R. J. O’Brien,, A. N. Vernon,, R. E. Chaisson,, W. R. Bishai,, and J. H. Grosset. 2004. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am. J. Respir. Crit. Care Med. 169:421426.
32. Parimon, T.,, C. E. Spitters,, N. Muangman,, J. Euathrongchit,, E. Oren,, and M. Narita. 2008. Unexpected pulmonary involvement in extrapulmonary tuberculosis patients. Chest 134:589594.
33. Peloquin, C. A. 2002. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 62:21692183.
34. Pletz, M. W.,, A. De Roux,, A. Roth,, K. H. Neumann,, H. Mauch,, and H. Lode. 2004. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob. Agents Chemother. 48:780782.
35. Sanders, W. E. J. 1976. Rifampin. Ann. Intern. Med. 85:8286.
36. Saukkonen, J. J.,, D. L. Cohn,, R. M. Jasmer,, S. Schenker,, J. A. Jereb,, C. M. Nolan,, C. A. Peloquin,, F. M. Gordin,, D. Nunes,, D. B. Strader,, J. Bernardo,, R. Venkataramanan,, and T. R. Sterling. 2006. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med. 174:935952.
37. Sharma, S. K.,, R. Singla,, P. Sarda,, A. Mohan,, G. Makharia,, A. Jayaswal,, V. Sreenivas,, and S. Singh. 2010. Safety of 3 different reintroduction regimens of antituberculosis drugs after development of antituberculosis treatment-induced hepatotoxicity. Clin. Infect. Dis. 50:833839.
38. Snider, D. E.,, and G. J. Caras. 1992. Isoniazid-associated hepatitis deaths: a review of available information. Am. Rev. Respir. Dis. 145:494497.
39. Snider, D. E.,, J. Graczyk,, E. Bek,, and J. Rogowski. 1984. Supervised six-months treatment of newly diagnosed pulmonary tuberculosis using isoniazid, rifampin, and pyrazinamide with and without streptomycin. Am. Rev. Respir. Dis. 130:10911094.
40. Snider, D. E., Jr. 1980. Pyridoxine supplementation during isoniazid therapy. Tubercle 61:191196.
41. Steele, M. A.,, R. F. Burk,, and R. M. DesPrez. 1991. Toxic hepatitis with isoniazid and rifampin: a meta-analysis. Chest 99:465471.
42. Tahaoğlu, K.,, G. Ataç,, T. Sevim,, T. Tärün,, O. Yazicioğlu,, G. Horzum,, I. Gemci,, A. Ongel,, N. Kapakli,, and E. Aksoy. 2001. The management of anti-tuberculosis drug induced hepatotoxicity. Int. J. Tuberc. Lung Dis. 5:6569.
43. Tostmann, A.,, M. J. Boeree,, R. E. Aarnoutse,, W. C. M. de Lange,, A. J. van der Ven,, and R. Dekhuijzen. 2008. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J. Gastroenterol. Hepatol. 23:192202.
44. Türktaş, H.,, M. Unsal,, N. Tülek,, and O. Orüç. 1994. Hepatotoxicity of antituberculosis therapy (rifampicin, isoniazid and pyrazinamide) or viral hepatitis. Tuberc. Lung Dis. 75:5860.
45. van Rie, A.,, R. Warren,, M. Richardson,, T. C. Victor,, R. P. Gie,, D. A. Enarson,, N. Beyers,, and P. D. van Helden. 1999. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N. Engl. J. Med. 341:11741179.
46. Vernon, A.,, W. Burman,, D. Benator,, A. Khan,, L. Bozeman, and Tuberculosis Trials Consortium. 1999. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Lancet 353:18431847.
47. Villarino, M. E.,, R. Ridzon,, P. C. Weismuller,, M. Elcock,, R. M. Maxwell,, J. Meador,, P. J. Smith,, M. L. Carson,, and L. J. Geiter. 1997. Rifampin preventive therapy for tuberculosis infection: experience with 157 adolescents. Am. J. Respir. Crit. Care Med. 155:17351738.
48. Wang, L.,, and K. Takayama. 1972. Relationship between the uptake of isoniazid and its action on in vivo mycolic acid synthesis in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2:438441.
49. Watkins, P.,, J. Bloom,, and C. Hunt. 2009. Biomarkers of acute idiosyncratic hepatocellular injury (AIHI) within clinical trials, p. 42–48. In S. Olson,, S. Robinson, and, R. Giffin (ed.), Accelerating the Development of Biomarkers for Drug Safety: Workshop Summary. Forum on Drug Discovery, Development, and Translation; Institute of Medicine. National Academies Press, Washington, DC.
50. World Health Organization. 2010. Treatment of Tuberculosis: Guidelines, 4th ed. WHO Press, Geneva, Switzerland.
51. Yee, D.,, C. Valiquette,, M. Pelletier,, I. Parisien,, I. Rocher,, and D. Menzies. 2003. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med. 167:14721477.
52. Youman, G. P.,, E. H. Williston,, W. H. Feldman,, and C. H. Hinshaw. 1946. Increase in resistance of tubercle bacilli to streptomycin. A preliminary report. Proc. Mayo Clin. 21:216.
53. Zhang, Y.,, M. M. Wade,, A. Scorpio,, H. Zhang,, and Z. Sun. 2003. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 52:790795.
54. Zimmerman, H. J. 1968. The spectrum of hepatotoxicity. Perspect. Biol. Med. 12:135161.

Tables

Generic image for table
Table 1.

Drug characteristics

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Generic image for table
Table 2.

Dosing of first-line TB drugs

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Generic image for table
Table 3.

Weight-based dosing for PZA and EMB

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Generic image for table
Table 4.

Alternative treatment regimens in patients intolerant or resistant to INH, RIF, or PZA

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Generic image for table
Table 5.

Dosing with renal dysfunction

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7
Generic image for table
Table 6.

Preferred first-line treatment regimens

Citation: Dobbs T, Webb R. 2011. Chemotherapy of Tuberculosis, p 107-119. In Schlossberg D (ed), Tuberculosis and Nontuberculous Mycobacterial Infections, Sixth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817138.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error