1887

Chapter 5 : Heterotrophic Nitrification and Nitrifier Denitrification

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Heterotrophic Nitrification and Nitrifier Denitrification, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap05-2.gif

Abstract:

This chapter on describes the physiology and biochemical pathways of heterotrophic nitrification and nitrifier denitrification, a description of the genetic and organism diversity involved, and a brief description of techniques to discern one process from another. A final perspective is offered on how anthropogenic input of nitrogen affects microbial transformations of inorganic N with particular emphasis on emissions of gaseous N-oxides to the atmosphere. Ammonia-oxidizing bacteria (AOB) can produce nitrous oxide by two different pathways, hydroxylamine oxidation or nitrifier denitrification. The technical breakthrough to discriminate nitrous oxide production from nitrification, nitrifier denitrification, and denitrification was the detection of individual nitrous oxide isotopomers using isotope ratio mass spectroscopy. The δN of nitrous oxide produced from hydroxylamine oxidation was significantly more positive than that from nitrifier denitrification or denitrification. This study found that the site preference of N in nitrous oxide was significantly different during nitrifier denitrification by AOB versus denitrification by two species of . The chapter touches on largely understudied, but highly significant, processes of inorganic nitrogen metabolism that impact the global nitrogen cycle. Many of the studies cited in this chapter suggest that these processes are strongly influenced by the availability of carbon, nitrogen, and oxygen in the environment. It describes microbial populations and processes that make nitrous oxide in response to increased fertilizer use, nitrogen deposition, and hypoxia.

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5

Key Concept Ranking

Microbial Ecology
1.202809
Nitric Oxide
0.7701933
Biogeochemical Cycle
0.7578112
1.202809
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Pathways of ammonia oxidation and nitrifier denitrification in Dashed lines indicate the direction of electron flow, with thinner lines indicating less electron flow than thicker lines. The question mark above cytochrome c indicates the uncertainty of whether electrons are delivered to this enzyme directly from HAO or via cytochrome c ( ). Similarly, the question mark in the middle of NcgA, NcgBC, and NirK indicates that order of electron transfer among these proteins remains uncharacterized. NorCB, nitric oxide reductase; Ncg, products of cluster genes; Q, quinone.

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Putative pathway for heterotrophic nitrification and aerobic denitrification in GB17 (based on model by ). Electron carriers between the putative hydroxylamine oxidase enzyme and members of the denitrification pathway remain uncharacterized. AMO, putative ammonia monooxygenase; HO, putative hydroxylamine oxidase; NorCB, nitric oxide reductase; NAP, periplasmic nitrate reductase; Q, quinone.

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Pathway for hybrid respiration of oxygen and nitrate in Denitrification is linked to formate oxidation in the mitochrondria as per the model presented by . FDH, formate dehydrogenase; Nar, nitrate reductase; P450nor, nitric oxide reductase.

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Two pathways for nitrous oxide production in : hydroxylamine oxidation pathway and nitrifier denitrification pathway. Lightly shaded enzymes indicate reductases, and darkly shaded enzymes indicate oxidative processes. CytL, cytochrome P460; NorB, nitric oxide reductase implicated in denitrification pathway; NOR, generic nitric oxide reductase (descriptive of multiple enzymes in ).

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817145.ch05
1. Anshuman, A.,, A. Khardenavis,, A. Kapley, and, H. J. Purohit. 2007. Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl. Microbiol. Biotechnol. 77:403409.
2. Arp, D. J.,, and L. Y. Stein. 2003. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit. Rev. Biochem. Mol. Biol. 38:471495.
3. Barraclough, D.,, and G. Puri. 1995. The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biol. Biochem. 27:1722.
4. Beaumont, H. J. E.,, N. G. Hommes,, L. A. Sayavedra-Soto,, D. J. Arp,, D. M. Arciero,, A. B. Hooper,, H. V. Westerhoff, and, R. J. M. van Spanning. 2002. Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite. J. Bacteriol. 184:25572560.
5. Beaumont, H. J. E.,, S. I. Lens,, W. N. M. Reijnders,, H. V. Westerhoff, and, R. J. M. van Spanning. 2004a. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite sensitive transcription repressor. Mol. Microbiol. 54:148158.
6. Beaumont, H. J. E.,, B. van Schooten,, S. I. Lens,, H. V. Westerhoff, and, R. J. M. van Spanning. 2004b. Nitrosomonas europaea expresses a nitric oxide reductase during nitrification. J. Bacteriol. 186:44174421.
7. Beaumont, H. J. E.,, S. I. Lens,, H. V. Westerhoff, and, R. J. M. van Spanning. 2005. Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite. J. Bacteriol. 187:68496851.
8. Belser, L. W.,, and E. L. Mays. 1980. The specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl. Environ. Microbiol. 39:505510.
9. Bergmann, D. J.,, J. A. Zahn,, A. B. Hooper, and, A. A. DiSpirito. 1998. Cytochrome P460 genes from the methanotroph Methylococcus capsulatus Bath. J. Bacteriol. 180:64406445.
10. Beyer, S.,, S. Gilch,, O. Meyer, and, I. Schmidt. 2009. Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth. J. Mol. Microbiol. Biotechnol. 16:187197.
11. Bock, E. 1995. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163:1620.
12. Bodelier, P. L. E.,, and H. J. Laanbroek. 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47:265277.
13. Cantera, J. J. L.,, and L. Y. Stein. 2007a. Interrelationship between nitrite reductase and ammonia-oxidizing metabolism in Nitrosomonas europaea. Arch. Microbiol. 188:349354.
14. Cantera, J. J. L.,, and L. Y. Stein. 2007b. Molecular diversity of nitrite reductase (nirK) genes in nitrifying bacteria. Environ. Microbiol. 9:765776.
15. Casciotti, K.,, and B. B. Ward. 2005. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol. Ecol. 52:197205.
16. Casciotti, K.,, D. Sigman, and, B. Ward. 2003. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol. J. 20:335353.
17. Casciotti, K. L.,, and B. B. Ward. 2001. Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 67:22132221.
18. Castignetti, D.,, R. Yanong, and, R. Gramzinski. 1984. Heterotrophic nitrification among denitrifiers. Appl. Environ. Microbiol. 47:620623.
19. Charpentier, J.,, L. Farias,, N. Yoshida,, N. Boontanon, and, P. Raimbault. 2007. Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre. Biogeosciences 4:729741.
20. Colliver, B. B.,, and T. Stephenson. 2000. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotech. Adv. 18:219232.
21. Conrad, R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60:609640.
22. Crossman, L. C.,, J. W. B. Moir,, J. J. Enticknap,, D. J. Richardson, and, S. Spiro. 1997. Heterologous expression of heterotrophic nitrification genes. Microbiology 143:37753783.
23. Daum, M.,, W. Zimmer,, H. Papen,, K. Kloos,, K. Nawrath, and, H. Bothe. 1998. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida. Curr. Microbiol. 37:281288.
24. De Boer, W.,, and G. A. Kowalchuk. 2001. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol. Biochem. 33:853866.
25. DiSpirito, A. A.,, L. R. Taaffe,, J. D. Lipscomb, and, A. B. Hooper. 1985. A ‘blue’ copper oxidase from Nitrosomonas europaea. Biochim. Biophys. Acta 827:320326.
26. Dundee, L.,, and D. W. Hopkins. 2001. Different sensitivities to oxygen of nitrous oxide production by Nitrosomonas europaea and Nitrosolobus multiformis. Soil Biol. Biochem. 33:15631565.
27. Erickson, R. H.,, and A. B. Hooper. 1972. Preliminary characterization of a variant CO-binding heme protein from Nitrosomonas. Biochim. Biophys. Acta 275:231244.
28. Focht, D. D.,, and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification, p. 135–214. In M. Alexander (ed.), Advances in Microbial Ecology. Plenum Press, New York, NY.
29. Friedrich, C. G.,, D. Rother,, F. Bardischewsky,, A. Quentmeier, and, J. Fischer. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol. 67:28732882.
30. Galloway, J. N.,, A. R. Townsend,, J. W. Erisman,, M. Bekunda,, Z. Cai,, J. R. Freney,, L. A. Martinelli,, S. P. Seitzinger, and, M. A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889892.
31. Garbeva, P.,, E. M. Baggs, and, J. L. Prosser. 2007. Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. FEMS Microbiol. Lett. 266:8389.
32. Goreau, T. J.,, W. A. Kaplan,, S. C. Wofsy,, M. B. McElroy,, F. W. Valois, and, S. W. Watson. 1980. Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40:526532.
33. Goring, C. A. I. 1962. Control of nitrification by 2-chloro-6-(trichloromethyl)-pyridine. Soil Sci. 93:211218.
34. Hakemian, A. S.,, and A. C. Rosenzweig. 2007. The biochemistry of methane oxidation. Ann. Rev. Biochem. 76:223241.
35. Hooper, A. B. 1968. A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor. Biochim. Biophys. Acta 162:4965.
36. Hooper, A. B.,, P. C. Maxwell, and, K. R. Terry. 1978. Hydroxylamine oxidoreductase from Nitrosomonas: absorption spectra and content of heme and metal. Biochemistry 17:29842989.
37. Hynes, R. K.,, and R. Knowles. 1982. Effect of acetylene on autotrophic and heterotrophic nitrification. Can. J. Microbiol. 28:334340.
38. IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme, Chapter 11. In H. S. Eggleston,, L. Buendia,, K. Miwa,, T. Ngara, and, K. Tanabe (ed.), N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. IGES, Hayama, Japan.
39. Ishaque, M.,, and A. H. Cornfield. 1976. Evidence for heterotrophic nitrification in an acid Bangladesh soil lacking autotrophic nitrifying organisms. Trop. Agric. 53:157160.
40. Jetten, M. S. M.,, P. de Bruijn, and, J. G. Kuenen. 1997a. Hydroxylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie van Leeuwenhoek 71:6974.
41. Jetten, M. S. M.,, S. Logemann,, G. Muyzer,, L. A. Robertson,, S. d. Vries,, M. C. M. v. Loosdrecht, and, J. G. Kuenen. 1997b. Novel principles in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek 71:7593.
42. Joo, H.-S.,, M. Hirai, and, M. Shoda. 2005. Nitrification and denitrification in high-strength ammonium by Alcaligenes faecalis. Biotech. Lett. 27:773778.
43. Jordan, F. L.,, J. J. L. Cantera,, M. E. Fenn, and, L. Y. Stein. 2005. Autotrophic ammonia-oxidizers contribute minimally to nitrification in a nitrogensaturated forest soil. Appl. Environ. Microbiol. 71:197206.
44. Killham, K. 1986. Heterotrophic nitrification, p. 117–126. In J. I. Prosser (ed.), Nitrification. IRL Press, Oxford, United Kingdom.
45. Kim, S. W.,, S. Fushinobu,, S. M. Zhou,, T. Wakagi, and, H. Shoun. 2009. Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion? Appl. Environ. Microbiol. 75:26522658.
46. Klotz, M. G.,, and J. M. Norton. 1998. Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol. Lett. 168:303311.
47. Klotz, M. G.,, and L. Y. Stein. 2008. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol. Lett. 278:146456.
48. Klotz, M. G.,, D. J. Arp,, P. S. G. Chain,, A. F. El-Sheikh,, L. Hauser,, N. G. Hommes,, F. W. Larimer,, S. Malfatti,, J. M. Norton,, A. T. Poret-Peterson,, L. Vergez, and, B. B. Ward. 2006. The complete genome sequence of the marine, nitrifying purple sulfur bacterium, Nitrosococcus oceani ATCC 19707. Appl. Environ. Microbiol. 72:62996315.
49. Klotz, M. G.,, M. C. Schmid,, M. Strous,, H. J. M. op den Camp,, M. S. M. Jetten, and, A. B. Hooper. 2008. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ. Microbiol. 10:31503163.
50. Kool, D. M.,, C. Müller,, N. Wrage,, O. Oenema, and, J. W. Van Groenigen. 2009. Oxygen exchange between nitrogen oxides and H2O can occur during nitrifier pathways. Soil Biol. Biochem. 41:16321641.
51. Kurokawa, M.,, Y. Fukumori, and, T. Yamanaka. 1985. A hydroxylamine-cytochrome c reductase occurs in the heterotrophic nitrifier Arthrobacter globiformis. Plant Cell Physiol. 26:14391442.
52. Lawton, T. J.,, L. A. Sayavedra-Soto,, D. J. Arp, and, A. C. Rosenzweig. 2009. Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins. J. Biol. Chem. 284:1017410180.
53. Lieberman, R. L.,, and A. C. Rosenzweig. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39:147164.
54. Lin, Y.,, H. Kong,, Y. He,, L. Kuai, and, Y. Inamori. 2004. Simultaneous nitrification and denitrification in a membrane bioreactor and isolation of heterotrophic nitrifying bacteria. Jpn. J. Water Treat. Biol. 40:105114.
55. Lipschultz, F.,, O. C. Zafiriou,, S. C. Wofsy,, M. B. McElroy,, F. W. Valois, and, S. W. Watson. 1981. Production of NO and N2O by soil nitrifying bacteria. Nature 294:641643.
56. Ma, W. K.,, R. E. Farrell, and, S. D. Siciliano. 2008. Soil formate regulates the fungal nitrous oxide emission pathway. Appl. Environ. Microbiol. 74:66906696.
57. Mandernack, K. W.,, C. A. Kinney,, D. Coleman,, Y.- S. Huang,, K. H. Freeman, and, J. Bogner. 2000. The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle. Environ. Microbiol. 2:298309.
58. Matsuzaka, E.,, N. Nomura,, H. Maseda,, H. Otagaki,, T. Nakajima-Kambe,, T. Nakahara, and, H. Uchiyama. 2003. Participation of nitrite reductase in conversion of NO2 to NO3 in a heterotrophic nitrifier, Burkholderia cepacia NH-17, with denitrification activity. Microb. Environ. 18:203209.
59. Mével, G.,, and D. Prieur. 2000. Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions. Can. J. Microbiol. 46:465473.
60. Miller, D. J.,, and D. J. D. Nicholas. 1985. Characterization of a soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea. J. Gen. Microbiol. 131:28512854.
61. Mobarry, B. K.,, M. Wagner,, V. Urbain,, B. E. Rittman, and, D. A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62:21562162.
62. Moir, J. W. B.,, J.-M. Wehrfritz,, S. Spiro, and, D. J. Richardson. 1996a. The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17. Biochem. J. 319:823827.
63. Moir, J. W. B.,, L. C. Crossman,, S. Sprio, and, D. J. Richardson. 1996b. The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett. 387:7174.
64. Molina, J. A. E.,, and M. Alexander. 1972. Oxidation of nitrite and hydroxylamine by Aspergillus flavus, peroxidase and catalase. Antonie van Leeuwenhoek 38:505512.
65. Murphy, L. M.,, F. E. Dodd,, F. K. Yousafzai,, R. R. Eady, and, S. S. Hasnain. 2002. Electron donation between copper containing nitrite reductases and cupredoxins: the nature of protein-protein interaction in complex formation. J. Mol. Biol. 315:859871.
66. Nemergut, D. R.,, and S. K. Schmidt. 2002. Disruption of narH, narJ, and moaE inhibits heterotrophic nitrification in Pseudomonas strain M19. Appl. Environ. Microbiol. 68:64626465.
67. Nicol, G. W.,, S. Leininger,, C. Schleper, and, J. L. Prosser. 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10:29662978.
68. Nojiri, M.,, H. Koteishi,, T. Nakagami,, K. Kobayashi,, T. Inoue,, K. Yamaguchi, and, S. Suzuki. 2009. Structural basis of inter-protein electron transfer for nitrite reduction in denitrification. Nature 462: U117U132.
69. Norton, J. M.,, J. J. Alzerreca,, Y. Suwa, and, M. G. Klotz. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch. Microbiol. 177:139149.
70. Norton, J. M.,, M. G. Klotz,, L. Y. Stein,, D. J. Arp,, P. J. Bottomley,, P. S. G. Chain,, L. J. Hauser,, M. L. Land,, F. W. Larimer,, M. W. Shin, and, S. R. Starkenburg. 2008. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74:35593572.
71. Numata, M.,, T. Saito,, T. Yamazaki,, Y. Fukumori, and, T. Yamanaka. 1990. Cytochrome P-460 of Nitrosomonas europaea: further purification and further characterization. J. Biochem. 108:10161021.
72. Nyerges, G. 2008. New insights into ammonia and nitrite metabolism by methanotrophic bacteria. Ph.D. thesis. University of California, Riverside, CA.
73. Nyerges, G.,, and L. Y. Stein. 2009. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol. Lett. 297:131136.
74. Ono, Y.,, A. Enokiya,, D. Masuko,, K. Shoji, and, T. Yamanaka. 1999. Pyruvic oxime dioxygenase from the heterotrophic nitrifier Alcaligenes faecalis: purification, and molecular and enzymatic properties. Plant Cell Physiol. 401:4752.
75. Otani, Y.,, K. Hasegawa, and, K. Hanaki. 2004. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources. Water Sci. Tech. 50:1522.
76. Otte, S.,, J. Schalk,, J. G. Kuenen, and, M. S. M. Jetten. 1999. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis. Appl. Microbiol. Biotechnol. 51:255261.
77. Papen, H.,, and R. von Berg. 1998. A most probably number method (MPN) for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil. Plant Soil 199:123130.
78. Perez, T.,, D. Garcia-Montiel,, S. Trumbore,, S. Tyler,, P. De Camargo,, M. Moreira,, M. Piccolo, and, C. Cerri. 2006. Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils. Ecol. Applic. 16:21532167.
79. Poret-Peterson, A. T.,, J. E. Graham,, J. Gulledge, and, M. G. Klotz. 2008. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J. 2:12131220.
80. Poth, M. 1986. Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl. Environ. Microbiol. 52:957959.
81. Ralt, D.,, R. F. Gomez, and, S. R. Tannerbaum. 1981. Conversion of acetohydroxamate and hydroxylamine to nitrite by intestinal microorganisms. Eur. J. Appl. Microbiol. Biotechnol. 12:226230.
82. Ritchie, G. A. F.,, and D. J. D. Nicholas. 1974. The partial characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas europaea. Biochem. J. 138:471480.
83. Robertson, L. A.,, and J. G. Kuenen. 1990. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek 57:139152.
84. Robertson, L. A.,, E. W. J. Van Niel,, R. A. M. Torremans, and, J. G. Kuenen. 1988. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 54:28122818.
85. Robertson, L. A.,, R. Cornelisse,, P. De Vos,, R. Hadioetomo, and, J. G. Kuenen. 1989. Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek 56:289300.
86. Röckstrom, J.,, W. Steffen,, K. Noone,, A. Persson,, F. S. Chapin,, E. F. Lambin,, T. M. Lenton,, M. Scheffer,, C. Folke,, H. J. Schellnhuber,, B. Nykvist,, C. A. de Wit,, T. Hughes,, S. van der Leeuw,, H. Rodhe,, S. Sorlin,, P. K. Snyder,, R. Costanza,, U. Svedin,, M. Falkenmark,, L. Karlberg,, R. W. Corell,, V. J. Fabry,, J. Hansen,, B. Walker,, D. Liverman,, K. Richardson,, P. Crutzen, and, J. A. Foley. 2009. A safe operating space for humanity. Nature 461:472475.
87. Sakai, K.,, K. Takano,, T. Tachiki, and, T. Tochikura. 1988. Purification and properties of an enzyme oxidizing nitrite to nitrate from Candida rugosa. Agric. Biol. Chem. 52:27832789.
88. Sakai, K.,, Y. Ikehata,, Y. Ikenaga,, M. Wakayama, and, M. Moriguchi. 1996. Nitrite oxidation by heterotrophic bacteria under various nutritional and aerobic conditions. J. Ferment. Bioeng. 82:613617.
89. Sakai, K.,, H. Nisijima,, Y. Ikenaga,, M. Wakayama, and, M. Moriguchi. 2000. Purification and characterization of nitrite-oxidizing enzyme from heterotrophic Bacillus badius I-73, with special concern to catalase. Biosci. Biotechnol. Biochem. 64:27272730.
90. Schalk, J.,, S. de Vries,, J. G. Kuenen, and, M. S. M. Jetten. 2000. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39:54055412.
91. Schimel, J. P.,, M. K. Firestone, and, K. S. Killham. 1984. Identification of heterotrophic nitrification in a Sierran forest soil. Appl. Environ. Microbiol. 48:802806.
92. Schmidt, E. L. 1973. Nitrate formation by Aspergillus flavus in ure and mixed culture in natural environments. Trans. 7th Int. Congr. Soil Sci. 2:600605.
93. Schmidt, H. L.,, R. A. Werner,, N. Yoshida, and, R. Well. 2004. Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rap. Comm. Mass Spectrom. 18:20362040.
94. Schmidt, I. 2009. Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr. Microbiol. 59:130138.
95. Schmidt, I.,, and E. Bock. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 167:106111.
96. Schmidt, I.,, O. Sliekers,, M. Schmid,, E. Bock,, J. Fuerst,, J. G. Kuenen,, M. S. M. Jetten, and, M. Strous. 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 27:481492.
97. Schmidt, I.,, R. J. M. van Spanning, and, M. S. M. Jetten. 2004. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology UK 150:41074114.
98. Shaw, L. J.,, G. W. Nicol,, Z. Smith,, J. Fear,, J. I. Prosser, and, E. M. Baggs. 2005. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 8:214222.
99. Shrestha, N. K.,, S. Hadano,, T. Kamachi, and, I. Okura. 2002. Dinitrogen production from ammonia by Nitrosomonas europaea. Appl. Catal. 237:3339.
100. Spiller, H.,, E. Dietsch, and, E. Kessler. 1976. Intracellular appearance of nitrite and nitrate in nitrogen-starved cells of Ankistrodesmus braunii. Planta 129:175181.
101. Starkenburg, S. R.,, D. J. Arp, and, P. J. Bottomley. 2008. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi NB-255. Environ. Microbiol. 10:30363042.
102. Stein, L. Y.,, and Y. L. Yung. 2003. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Ann. Rev. Earth Planet. Sci. 31:329356.
103. Stein, L. Y.,, D. J. Arp,, P. M. Berube,, P. S. G. Chain,, L. Hauser,, M. S. M. Jetten,, M. G. Klotz,, F. W. Larimer,, J. M. Norton,, H. J. M. op den Camp,, M. Shin, and, X. Wei. 2007. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Microbiol. 9:29933007.
104. Stouthammer, A. H.,, A. P. N. de Boer,, J. van der Oost, and, R. J. M. van Spanning. 1997. Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria. Antonie van Leeuwenhoek 71:3341.
105. Stroo, H. F.,, T. M. Klein, and, M. Alexander. 1986. Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus. Appl. Environ. Microbiol. 52:11071111.
106. Sutka, R. L.,, N. E. Ostrom,, P. H. Ostrom,, H. Gandhi, and, J. A. Breznak. 2003. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rap. Comm. Mass Spectrom. 17:738745.
107. Sutka, R. L.,, N. E. Ostrom,, P. H. Ostrom,, J. A. Breznak,, H. Gandhi,, A. J. Pitt, and, F. Li. 2006. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl. Environ. Microbiol. 72:638644.
108. Tachiki, T.,, K. Sakai,, K. Yamamoto,, M. Hatanaka, and, T. Tochikura. 1988. Conversion of nitrite to nitrate by nitrite-resistant yeasts. Agric. Biol. Chem. 52:19992005.
109. Takaya, N.,, S. Kuwazaki,, Y. Adachi,, S. Suzuki,, T. Kikuchi,, H. Nakamura,, Y. Shiro, and, H. Shoun. 2003. Hybrid respiration in the denitrifying mitochondria of Fusarium oxysporum. J. Biochem. 133:461465.
110. Van Gool, A. P.,, and E. L. Schmidt. 1973. Nitrification in relation to growth in Aspergillus flavus. Soil Biol. Biochem. 5:259265.
111. van Niel, E. W. J.,, P. A. M. Arts,, B. J. Wesselink,, L. A. Robertson, and, J. G. Kuenen. 1993. Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiol. Ecol. 102:109118.
112. Verstraete, W. 1975. Heterotrophic nitrification in soils and aqueous media—a review. Bull. Acad. Sci. USSR Biol. Ser. 4:515530.
113. Verstraete, W.,, and M. Alexander. 1972. Heterotrophic nitrification by Arthrobacter sp. J. Bacteriol. 110:955961.
114. Wehrfritz, J.-M.,, A. Reilly,, S. Spiro, and, D. J. Richardson. 1993. Purification of hydroxylamine oxidase from Thiosphaera pantotropha: identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett. 335:246250.
115. Wehrfritz, J.-M.,, J. P. Carter,, S. Spiro, and, D. J. Richardson. 1997. Hydroxylamine oxidation in heterotrophic nitrate-reducing soil bacteria and purification of a hydroxylamine-cytochrome c oxidoreductase from a Pseudomonas species. Arch. Microbiol. 166:421424.
116. Well, R.,, I. Kurganova,, V. L. de Gerenyu, and, H. Flessa. 2006. Isotopomer signatures of soil-emitted N2O under different moisture conditions—a microcosm study with arable loess soil. Soil Biol. Biochem. 38:29232933.
117. Well, R.,, H. Flessa,, L. Xing,, X. T. Ju, and, V. Romheld. 2008. Isotopologue ratios of N2O emitted from microcosms with NH4+-fertilized arable soils under conditions favoring nitrification. Soil Biol. Biochem. 40:24162426.
118. White, J. P.,, and G. T. Johnson. 1982. Aflatoxin production correlated with nitrification in Aspergillus flavus group species. Mycologia 74:718723.
119. Whittaker, M.,, D. Bergmann,, D. Arciero, and, A. B. Hooper. 2000. Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim. Biophys. Acta 1459:346355.
120. Wrage, N.,, G. L. Velthof,, M. L. van Beusichem, and, O. Oenema. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33:17231732.
121. Wrage, N.,, G. L. Velthof,, O. Oenema, and, H. J. Laanbroek. 2004. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale. FEMS Microbiol. Ecol. 47:1318.
122. Yamagishi, H.,, M. B. Westley,, B. N. Popp,, S. Toyoda,, N. Yoshida,, S. Watanabe,, K. Koba, and, Y. Yamanaka. 2007. Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J. Geophys. Res.-Biogeosci. 112:G02015.
123. Yoshinari, T. 1984. Nitrite and nitrous oxide production by Methylosinus trichosporium. Can. J. Microbiol. 31:139144.
124. Zahn, J. A.,, C. Duncan, and, A. A. DiSpirito. 1994. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J. Bacteriol. 176:58795887.

Tables

Generic image for table
TABLE 1

Characteristics of putative bacterial hydroxylamine-oxidizing enzymes

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5
Generic image for table
TABLE 2

Characteristics of select heterotrophic nitrifying microorganisms

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5
Generic image for table
TABLE 3

Methods to discriminate between heterotrophic and chemolithotrophic nitrifiers

Citation: Stein L. 2011. Heterotrophic Nitrification and Nitrifier Denitrification, p 95-114. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error