1887

Chapter 8 : Metabolism and Genomics of Anammox Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Metabolism and Genomics of Anammox Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap08-2.gif

Abstract:

This chapter presents an overview of the progress that has been made during the last decade with respect to our understanding of the anammox metabolism, focusing on the physiology, cell biology, and information derived from genome sequencing projects. Thereafter, the current concepts on the biochemistry and bioenergetics of the anammox bacteria are discussed, and the chapter concludes with the perspectives and urgent issues in this field of research that need to be addressed. A challenge in culturing of anammox bacteria was their long doubling time. Apparently, anammox bacteria have geared their metabolism toward high affinities for their substrates at the expense of the activity. During growth under autotrophic conditions, anammox bacteria rely on nitrite. In nature, however, the compound is not abundantly present, which raised the question how anammox bacteria obtain nitrite. Over time, when anammox bacteria proliferated, influent concentrations of nitrite and ammonia could be increased from 2.5 mM to 45 mM. Studies during the last decade have revealed many unique structural and metabolic properties of the anammox bacteria. Furthermore, the comparisons between the different genomes may give a clue with respect to niche differentiation. Above all, genome sequencing projects can provide the basic information for future expression studies, both at the gene (genomics) and protein (proteomics) levels. Eventually, such studies will allow an understanding in the way anammox bacteria are able to adapt to changes in the supply of the substrates and other environmental conditions in their highly dynamic habitats.

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8

Key Concept Ranking

Lipid Biosynthesis
0.4467647
Fatty Acid Biosynthesis
0.4334986
Cell Wall Proteins
0.4173099
Transmission Electron Microscopy
0.41352975
0.4467647
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic tree showing the relationships of known anammox bacteria to each other, to other Planctomycetes, and to other reference organisms.

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Pathway of dinitrogen gas formation from nitrate by anammox bacteria.

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transmission electron microscopy of “ A. propionicus.” An anammoxosome (A) containing tubule-like structures, riboplasm (R) containing the nucloid (N) opposed to the anammoxosome membrane (M), paryphoplasm (P) separated from the riboplasm by an intracytoplasmic membrane (ICM), and the cytoplasmic membrane (CM) are shown. Scale bar, 200 nm.

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

General structure of ladderane lipids from anammox bacteria.

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Proposed metabolic pathways of (A) Anammox central catabolism. (B) Combination of central catabolism with nitrate reductase to generate low-redox-potential electrons for the acetyl-CoA pathway. Nir, nitrite reductase; HZO, hydrazine dehydrogenase; Nar, nitrate reductase; Q, ubiquinone; atp, FF ATP synthase; fdh, formate dehydrogenase; nuo, NADH:ubiquinone oxidoreductase; RET, reversed electron transport. Light diamonds, cytochromes; dark diamond, ferredoxin; solid arrows, reductions; dashed arrows, oxidations. Note that the localization of the enzymic reactions and the direction of proton translocation is arbitrarily chosen, at which ΔΨ and ΔΨ are thought to represent the anammoxosome and riboplasmic compartments, respectively.

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817145.ch08
1. Arrigo, K. R. 2005. Marine microorganisms and global nutrient cycles. Nature 437:349355.
2. Baumann, B.,, M. Snozzi,, A. J. B. Zehnder, and, J. R. vanderMeer. 1996. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J. Bacteriol. 178:43674374.
3. Berg, I. A.,, D. Kockelkorn,, W. Buckel, and, G. Fuchs. 2007. A 3-hydroxypropionate/4-hydroxy-butyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:17821786.
4. Boumann, H. A.,, E. C. Hopmans,, I. van de Leemput,, H. J. M. Op den Camp,, J. van de Vossenberg,, M. Strous,, M. S. M. Jetten,, J. S. Sinninghe Damsté, and, S. Schouten. 2006. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. FEMS Microbiol. Lett. 258:297304.
5. Brandes, J. A.,, A. H. Devol, and, C. Deutsch. 2007. New developments in the marine nitrogen cycle. Chem. Rev. 107:577589.
6. Broda, E. 1977. Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17:491493.
7. Cole, J. 1996. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136:111.
8. Egli, K.,, U. Fanger,, P. J. J. Alvarez,, H. Siegrist,, J. R. van der Meer, and, A. J. B. Zehnder. 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175:198207.
9. Ferry, J. G. 1999. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol. Rev. 23:1338.
10. Francis, C. A.,, J. M. Beman, and, M. M. M. Kuypers. 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1:1927.
11. Güven, D.,, A. Dapena,, B. Kartal,, M. C. Schmid,, B. Maas,, K. van de Pas-Schoonen,, S. Sozen,, R. Mendez,, H. J. M. Op den Camp,, M. S. M. Jetten,, M. Strous, and, I. Schmidt. 2005. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 71:10661071.
12. Haines, T. H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 40:299324.
13. Hamersley, M. R.,, G. Lavik,, D. Woebken,, J. E. Rattray,, P. Lam,, E. C. Hopmans,, J. S. S. Damste,, S. Kruger,, M. Graco,, D. Gutierrez, and, M. M. M. Kuypers. 2007. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52:923933.
14. Heidelberg, J. F.,, I. T. Paulsen,, K. E. Nelson,, E. J. Gaidos,, W. C. Nelson,, T. D. Read,, J. A. Eisen,, R. Seshadri,, N. Ward,, B. Methe,, R. A. Clayton,, T. Meyer,, A. Tsapin,, J. Scott,, M. Beanan,, L. Brinkac,, S. Daugherty,, R. T. DeBoy,, R. J. Dodson,, A. S. Durkin,, D. H. Haft,, J. F. Kolonay,, R. Madupu,, J. D. Peterson,, L. A. Umayam,, O. White,, A. M. Wolf,, J. Vamathevan,, J. Weidman,, M. Impraim,, K. Lee,, K. Berry,, C. Lee,, J. Mueller,, H. Khouri,, J. Gill,, T. R. Utterback,, L. A. McDonald,, T. V. Feldblyum,, H. O. Smith,, J. C. Venter,, K. H. Nealson, and, C. M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20:11181123.
15. Jetten, M. S. M.,, S. J. Horn, and, M. C. M. van Loosdrecht. 1997. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol. 35:171180.
16. Kartal, B. 2008. Ecophysiology of the anammox bacteria. Ph.D. thesis. University of Nijmegen, Nijmegen, The Netherlands.
17. Kartal, B.,, M. Koleva,, R. Arsov,, W. van der Star,, M. S. M. Jetten, and, M. Strous. 2006. Adaptation of a freshwater anammox population to high salinity wastewater. J. Biotechnol. 126:546553.
18. Kartal, B.,, M. M. M. Kuypers,, G. Lavik,, J. Schalk,, H. J. M. Op den Camp,, M. S. M. Jetten, and, M. Strous. 2007a. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9:635642.
19. Kartal, B.,, J. Rattray,, L. van Niftrik,, J. van de Vossenberg,, M. Schmid,, R. I. Webb,, S. Schouten,, J. A. Fuerst,, J. S. Sinninghe Damsté,, M. S. M. Jetten, and, M. Strous. 2007b. Candidatus Anammoxoglobus propionicus” gen. nov., sp. nov., a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 30:3949.
20. Kartal, B.,, L. van Niftrik,, J. Rattray,, J. de Vossenberg,, M. C. Schmid,, J. S. S. Damste,, M. S. M. Jetten, and, M. Strous. 2008. “Candidatus Brocadia fulgida”: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol. Ecol. 63:4655.
21. Kindaichi, T.,, I. Tsushima,, Y. Ogasawara,, M. Shimokawa,, N. Ozaki,, H. Satoh, and, S. Okabe. 2007. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl. Environ. Microbiol. 73:49314939.
22. Kuypers, M. M. M.,, A. O. Sliekers,, G. Lavik,, M. Schmid,, B. B. Jorgensen,, J. G. Kuenen,, J. S. Sinninghe Damsté,, M. Strous, and, M. S. M. Jetten. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608611.
23. Kuypers, M. M. M.,, G. Lavik,, D. Woebken,, M. Schmid,, B. M. Fuchs,, R. Amann,, B. B. Jorgensen, and, M. S. M. Jetten. 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl. Acad. Sci. USA 102:64786483.
24. Lam, P.,, M. M. Jensen,, G. Lavik,, D. F. McGinnis,, B. Muller,, C. J. Schubert,, R. Amann,, B. Thamdrup, and, M. M. M. Kuypers. 2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc. Natl. Acad. Sci. USA 104:71047109.
25. Lindsay, M. R.,, R. I. Webb,, M. Strous,, M. S. Jetten,, M. K. Butler,, R. J. Forde, and, J. A. Fuerst. 2001. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175:413429.
26. Mascitti, V.,, and E. J. Corey. 2004. Total synthesis of (+/-)-pentacycloanammoxic acid. J. Am. Chem. Soc. 126:1566415665.
27. Methe, B. A.,, K. E. Nelson,, J. A. Eisen,, I. T. Paulsen,, W. Nelson,, J. F. Heidelberg,, D. Wu,, M. Wu,, N. Ward,, M. J. Beanan,, R. J. Dodson,, R. Madupu,, L. M. Brinkac,, S. C. Daugherty,, R. T. DeBoy,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, S. A. Sullivan,, D. H. Haft,, J. Selengut,, T. M. Davidsen,, N. Zafar,, O. White,, B. Tran,, C. Romero,, H. A. Forberger,, J. Weidman,, H. Khouri,, T. V. Feldblyum,, T. R. Utterback,, S. E. Van Aken,, D. R. Lovley, and, C. M. Fraser. 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:19671969.
28. Mulder, A.,, A. A. Vandegraaf,, L. A. Robertson, and, J. G. Kuenen. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol. Ecol. 16:177183.
29. Nielsen, M.,, A. Bollmann,, O. Sliekers,, M. Jetten,, M. Schmid,, M. Strous,, I. Schmidt,, L. H. Larsen,, L. P. Nielsen, and, N. P. Revsbech. 2005. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol. Ecol. 51:247256.
30. Op den Camp, H.,, B. Kartal,, D. Guven,, L. van Niftrik,, S. C. M. Haaijer,, W. R. L. van der Star,, K. T. van de Pas-Schoonen,, A. Cabezas,, Z. Ying,, M. C. Schmid,, M. M. M. Kuypers,, J. van de Vossenberg,, H. R. Harhangi,, C. Picioreanu,, M. C. M. van Loosdrecht,, J. G. Kuenen,, M. Strous, and, M. S. M. Jetten. 2006. Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochem. Soc. Trans. 34:174178.
31. Otte, S.,, N. G. Grobben,, L. A. Robertson,, M. S. M. Jetten, and, J. G. Kuenen. 1996. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl. Environ. Microbiol. 62:24212426.
32. Penton, C. R.,, A. H. Devol, and, J. M. Tiedje. 2006. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol. 72:68296832.
33. Quan, Z. X.,, S. K. Rhee,, J. E. Zuo,, Y. Yang,, J. W. Bae,, J. R. Park,, S. T. Lee, and, Y. H. Park. 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ. Microbiol. 10:31303139.
34. Rattray, J. E.,, J. van de Vossenberg,, E. C. Hopmans,, B. Kartal,, L. van Niftrik,, W. I. Rijpstra,, M. Strous,, M. S. Jetten,, S. Schouten, and, J. S. Damste. 2008. Ladderane lipid distribution in four genera of anammox bacteria. Arch. Microbiol. 190:5166.
35. Richards, F. A. 1965. Anoxic basins and fjords. In J. P. Ripley and, G. Skirrow (ed.), Chemical Oceanography. Academic Press, London, United Kingdom.
36. Schalk, J.,, S. de Vries,, J. G. Kuenen, and, M. S. M. Jetten. 2000. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 39:54055412.
37. Schmid, M.,, U. Twachtmann,, M. Klein,, M. Strous,, S. Juretschko,, M. S. M. Jetten,, J. W. Metzger,, K. H. Schleifer, and, M. Wagner. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23:93106.
38. Schmid, M.,, K. Walsh,, R. Webb,, W. I. C. Rijpstra,, K. van de Pas-Schoonen,, M. J. Verbruggen,, T. Hill,, B. Moffett,, J. Fuerst,, S. Schouten,, J. S. Sinninghe Damsté,, J. Harris,, P. Shaw,, M. Jetten, and, M. Strous. 2003. Candidatus Scalindua brodae,” sp nov., “Candidatus Scalindua wagneri,” sp nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 26:529538.
39. Schmid, M. C.,, N. Risgaard-Petersen,, J. van de Vossenberg,, M. M. M. Kuypers,, G. Lavik,, J. Petersen,, S. Hulth,, B. Thamdrup,, D. Canfield,, T. Dalsgaard,, S. Rysgaard,, M. K. Sejr,, M. Strous,, H. J. M. Op den Camp, and, M. S. M. Jetten. 2007. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ. Microbiol. 9:14761484.
40. Schneider, D.,, and C. L. Schmidt. 2005. Multiple Rieske proteins in prokaryotes: where and why? Biochim. Biophys. Acta 1710:112.
41. Schouten, S.,, M. Strous,, M. M. M. Kuypers,, W. I. C. Rijpstra,, M. Baas,, C. J. Schubert,, M. S. M. Jetten, and, J. S. Sinninghe Damsté. 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70:37853788.
42. Schubert, C. J.,, E. Durisch-Kaiser,, B. Wehrli,, B. Thamdrup,, P. Lam, and, M. M. M. Kuypers. 2006. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol. 8:18571863.
43. Shimamura, M.,, T. Nishiyama,, H. Shigetomo,, T. Toyomoto,, Y. Kawahara,, K. Furukawa, and, T. Fujii. 2007. Isolation of a multiheme protein from an anaerobic ammonium-oxidizing enrichment culture with features of a hydrazine-oxidizing enzyme. Appl. Environ. Microbiol. 73:10651072.
44. Shimamura, M.,, T. Nishiyama,, K. Shinya,, Y. Kawahara,, K. Furukawa, and, T. Fujii. 2008. Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine-oxidizing enzyme. J. Biosci. Bioeng. 105:243248.
45. Simon, J. 2002. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol. Rev. 26:285309.
46. Sinninghe Damsté, J. S.,, W. I. C. Rijpstra,, J. A. J. Geenevasen,, M. Strous, and, M. S. M. Jetten. 2005. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272:42704283.
47. Sinninghe Damsté, J. S.,, M. Strous,, W. I. C. Rijpstra,, E. C. Hopmans,, J. A. J. Geenevasen,, A. C. T. van Duin,, L. A. van Niftrik, and, M. S. M. Jetten. 2002. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708712.
48. Sliekers, A. O.,, N. Derwort,, J. L. C. Gomez,, M. Strous,, J. G. Kuenen, and, M. S. M. Jetten. 2002. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 36:24752482.
49. Strohm, T. O.,, B. Griffin,, W. G. Zumft, and, B. Schink. 2007. Growth yields in bacterial denitrification and nitrate ammonification. Appl. Environ. Microbiol. 73:14201424.
50. Strous, M.,, E. Pelletier,, S. Mangenot,, T. Rattei,, A. Lehner,, M. W. Taylor,, M. Horn,, H. Daims,, D. Bartol-Mavel,, P. Wincker,, V. Barbe,, N. Fonknechten,, D. Vallenet,, B. Segurens,, C. Schenowitz-Truong,, C. Medigue,, A. Collingro,, B. Snel,, B. E. Dutilh,, H. J. M. Op den Camp,, C. van der Drift,, I. Cirpus,, K. T. van de Pas-Schoonen,, H. R. Harhangi,, L. van Niftrik,, M. Schmid,, J. Keltjens,, J. van de Vossenberg,, B. Kartal,, H. Meier,, D. Frishman,, M. A. Huynen,, H. W. Mewes,, J. Weissenbach,, M. S. M. Jetten,, M. Wagner, and, D. Le Paslier. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790794.
51. Strous, M.,, J. J. Heijnen,, J. G. Kuenen, and, M. S. M. Jetten. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50:589596.
52. Strous, M.,, J. A. Fuerst,, E. H. M. Kramer,, S. Logemann,, G. Muyzer,, K. T. van de Pas-Schoonen,, R. Webb,, J. G. Kuenen, and, M. S. M. Jetten. 1999a. Missing lithotroph identified as new planctomycete. Nature 400:446449.
53. Strous, M.,, J. G. Kuenen, and, M. S. M. Jetten. 1999b. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65:32483250.
54. Third, K. A.,, A. O. Sliekers,, J. G. Kuenen, and, M. S. M. Jetten. 2001. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24:588596.
55. Tsushima, I.,, Y. Ogasawara,, T. Kindaichi,, H. Satoh, and, S. Okabe. 2007. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res. 41:16231634.
56. Van de Graaf, A. A.,, A. Mulder,, P. Debruijn,, M. S. M. Jetten,, L. A. Robertson, and, J. G. Kuenen. 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61:12461251.
57. Van de Graaf, A. A.,, P. deBruijn,, L. A. Robertson,, M. S. M. Jetten, and, J. G. Kuenen. 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:21872196.
58. Van de Graaf, A. A.,, P. deBruijn,, L. A. Robertson,, M. S. M. Jetten, and, J. G. Kuenen. 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor. Microbiology 143:24152421.
59. Van de Pas-Schoonen, K. T.,, S. Schalk-Otte,, S. Haaijer,, M. Schmid,, H. O. den Camp,, M. Strous,, J. G. Kuenen, and, M. S. M. Jetten. 2005. Complete conversion of nitrate into dinitrogen gas in co-cultures of denitrifying bacteria. Biochem. Soc. Trans. 33:205209.
60. Van de Vossenberg, J.,, A. J. M. Driessen,, W. D. Grant, and, W. N. Konings. 1999. Lipid membranes from halophilic and alkali-halophilic archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles 3:253257.
61. Van de Vossenberg, J.,, J. E. Rattray,, W. Geerts,, B. Kartal,, L. van Niftrik,, E. G. van Donselaar,, J. S. Sinninghe Damste,, M. Strous, and, M. S. Jetten. 2008. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ Microbiol. 10:31203129.
62. Van der Oost, J.,, A. P. N. De Boer,, J.-W. L. De Gier,, W. G. Zumft,, A. H. Stouthamer and, R. J. M. Van Spanning. 1994. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett. 121:110.
63. Van der Star, W. R.,, A. I. Miclea,, U. G. van Dongen,, G. Muyzer,, C. Picioreanu, and, M. C. van Loosdrecht. 2008. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101:286294.
64. Van der Star, W. R. L.,, W. R. Abma,, D. Blommers,, J. W. Mulder,, T. Tokutomi,, M. Strous,, C. Picioreanu, and, M. C. M. Van Loosdrecht. 2007. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41:41494163.
65. Van Niftrik, L.,, W. J. C. Geerts,, E. G. van Donselaar,, B. M. Humbel,, R. I. Webb,, J. A. Fuerst,, A. J. Verkleij,, M. S. M. Jetten, and, M. Strous. 2008a. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J. Bacteriol. 190:708717.
66. Van Niftrik, L.,, W. J. C. Geerts,, E. G. van Donselaar,, B. M. Humbel,, A. Yakushevska,, A. J. Verkleij,, M. S. M. Jetten, and, M. Strous. 2008b. Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J. Struct. Biol. 161:401410.
67. Ward, B. B. 2003. Significance of anaerobic ammonium oxidation in the ocean. Trends Microbiol. 11:408410.
68. Zehr, J. P.,, and B. B. Ward. 2002. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Environ. Microbiol. 68:10151024.

Tables

Generic image for table
TABLE 1

Comparison between anaerobic (anammox) and aerobic ammonia-oxidizing (nitrification) bacteria

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Generic image for table
TABLE 2

Oxidation of organic acids and nitrate reduction by anammox bacteria

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8
Generic image for table
TABLE 3

Selected genes from genome of coding for enzymes in the central catabolic and anabolic pathways ( )

Citation: Kartal B, Keltjens J, Jetten M. 2011. Metabolism and Genomics of Anammox Bacteria, p 181-200. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error