1887

Chapter 10 : Application of the Anammox Process

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Application of the Anammox Process, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap10-2.gif

Abstract:

This chapter presents an overview of physiological parameters relevant for design and operation of the nitritationanammox, based on which different treatment and start-up strategies as well as environmental impact can be evaluated. For a proper evaluation of the one-reactor nitritation-anammox process, such parameters for ammonia oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) are of importance. Ammonium removal with the anammox process always consists of partial nitritation followed by the anammox process. In the denitrification-anammox process, nitrite does not stem from partial oxidation of ammonium but from partial denitrification of nitrate. Reject water treatment can significantly contribute to the overall performance with relatively small reactors. The recently elaborated possibility of removal of nitrogen at very low ammonium concentrations would be a true game-changer: should this become feasible, then the anammox process can be applied in the main line of municipal wastewater treatment plants and treatment of organic matter in wastewater treatment plants (WWTP) can be completely focused on digestion. The chapter concludes with an overview on the state of the art of full-scale implementation of the nitritation-anammox process.

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10

Key Concept Ranking

Anaerobic Ammonium Oxidation
0.47763446
Wastewater Treatment Plants
0.4308915
Anaerobic Sludge Digestion
0.42299038
0.47763446
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The costs of nitrogen removal mainly consist of aeration (electricity) and electron donor and are compared for classical nitrification-denitrification (A), nitritation-denitrification (B), and the nitritation-anammox process (C). Methanol is used as the carbon source for calculatory purposes; only catabolic processes are taken into account.

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Competition between AOB (dashed lines), anammox bacteria (thick solid lines), and NOB (solid lines) for the substrates oxygen, ammonium/ammonia, and nitrite. For a one-reactor nitritation-anammox process, oxygen limitation under sufficient ammonium levels is the most favorable condition.

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Startup of three full-scale nitritation-anammox reactors (two-reactor processes [in Rotterdam and Lichtenvoorde], one-reactor process [in Olburgen]) started up consecutively by the same company. The start-up time decreased in later startups, as a result of availability of biomass for inoculation and application of knowledge.

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Number of fully operational one-reactor (solid line) and two-reactor (dashed line) anammox processes and amount of nitrogen removed (tons of N/day; black, one-reactor process; gray, two-reactor process).

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Reduction of space requirement by separate treatment of industrial wastewater and reject water (top circle) with a capacity of 40,000 p.e. compared to the sewage treatment plant (bottom circle) with a capacity of 90,000 p.e.; picture of the separate treatment in frame.

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817145.ch10
1. Abma, W.,, C. E. Schultz,, J. W. Mulder,, M. C. M. van Loosdrecht,, W. R. L. van der Star,, M. Strous, and, T. Tokutomi. 2007. The advance of Anammox. Water21 36:3637.
2. Abma, W. R.,, W. Driessen,, R. Haarhuis, and, M. C. M. van Loosdrecht. 2010. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci. Technol. 61:17151722.
3. Anthonisen, A. C.,, R. C. Loehr,, T. B. S. Prakasam, and, E. G. Srinath. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48:835852.
4. Arrojo, B.,, M. Figueroa,, A. Mosquera-Corral,, J. L. Campos, and, R. Mendez. 2008. Influence of gas flow-induced shear stress on the operation of the Anammox process in a SBR. Chemosphere 72:16871693.
5. Arvin, E.,, and P. Harremoës. 1990. Concepts and models for biofilm reactor performance. Water Sci. Technol. 22(1–2):171192.
6. Beier, M.,, M. Sander, and, K.-H. Rosenwinkel. 2008. Kombination anaerober Vorbehandlung mit dem Verfahren der Deammonifikation zur energieeffizienten Behandlung organisch hoch belasteter Industrieabwässer. [Combination of anaerobic pretreatment and deammonification for efficient treatment of high loaded organic industrial waste-water]. GWF, Wasser/Abwasser 149:8087.
7. Cema, G.,, B. Szatkowska,, E. Plaza,, J. Trela, and, J. Surmacz-Gorska. 2006. Nitrogen removal rates at a technical-scale pilot plant with the one-stage partial nitritation/Anammox process. Water Sci. Technol. 54:209217.
8. Chen, X.,, P. Zheng,, R. Jin,, B. Hu,, S. Zhou, and, G. Ding. 2007. Biological nitrogen removal from monosodium glutamate-containing industrial wastewater with the Anaerobic Ammonium Oxidation (ANAMMOX) process. Huanjing Kexue Xuebao 27:747752.
9. Dalsgaard, T.,, and B. Thamdrup. 2002. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68:38023808.
10. Dapena-Mora, A.,, J. L. Campos,, A. Mosquera-Corral,, M. S. M. Jetten, and, R. Méndez. 2004. Stability of the ANAMMOX process in a gas-lift reactor and a SBR. J. Biotechnol. 110:159170.
11. Dapena-Mora, A.,, J. L. Campos,, A. Mosquera-Corral, and, R. Méndez. 2006. Anammox process for nitrogen removal from anaerobically digested fish canning effluents. Water Sci. Technol. 53:265274.
12. Dapena-Mora, A.,, I. Fernández,, J. L. Campos,, A. Mosquera-Corral,, R. Méndez, and, M. S. M. Jetten. 2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb. Technol. 40:859865.
13. De Clippeleir, H.,, S. E. Vlaeminck,, M. Carballa, and, W. Verstraete. 2009. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor. Bioresour. Technol. 100:50105015.
14. de Graaff, M. S.,, H. Temmink,, G. Zeeman,, M. C. M. van Loosdrecht, and, C. J. M. Buisman. 2011. Autotrophic nitrogen removal from black water: calcium addition as a requirement for settle-ability. Water Res. 45:6374.
15. Denecke, M.,, V. Rekers, and, U. Walter. 2007. Einsparpotentiale bei der biologischen Reinigung von Deponiesickerwasser. [Cost savings potentials in the biological treatment of landfill leachates.] Muell Abfall 39:47.
16. Dosta, J.,, I. Fernandez,, J. R. Vazquez-Padin,, A. Mosquera-Corral,, J. L. Campos,, J. Mata-Alvarez, and, R. Mendez. 2008. Short- and long-term effects of temperature on the Anammox process. J. Hazard. Mater. 154:688693.
17. Egli, K.,, U. Fanger,, P. J. J. Alvarez,, H. Siegrist,, J. R. Van der Meer, and, A. J. B. Zehnder. 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 175:198207.
18. Fujii, T.,, H. Sugino,, J. D. Rouse, and, K. Furukawa. 2002. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier. J. Biosci. Bioeng. 94:412418.
19. Fux, C.,, M. Bohler,, P. Huber, and, H. Siegrist. 2001. Stickstoffelimination durch anaerobe Ammoniumoxidation (Anammox) [Nitrogen elimination during anaerobic ammonium oxidation (Anammox).] Stuttgarter Berichte zur Siedlungswasserwirtschaft 166:3549.
20. Fux, C.,, V. Marchesi,, I. Brunner, and, H. Siegrist. 2004. Anaerobic ammonium oxidation of ammonium-rich waste streams in fixed-bed reactors. Water Sci. Technol. 49:7782.
21. Gaul, T.,, S. Maerker, and, S. Kunst. 2005. Start-up of moving bed biofilm reactors for deammonification: the role of hydraulic retention time, alkalinity and oxygen supply. Water Sci. Technol. 52:127133.
22. Gong, Z.,, S. Liu,, F. Yang,, H. Bao, and, K. Furukawa. 2008. Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. Bioresour. Technol. 99:27492756.
23. Güven, D.,, A. Dapena-Mora,, B. Kartal,, M. C. Schmid,, B. Maas,, K. Van de Pas-Schoonen,, S. Sozen,, R. Méndez,, H. J. M. Op den Camp,, M. S. M. Jetten,, M. Strous, and, I. Schmidt. 2005. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 71:10661071.
24. Hao, X.,, J. J. Heijnen, and, M. C. M. Van Loosdrecht. 2002. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol. Bioeng. 77:266277.
25. Hao, X. D.,, and M. C. M. van Loosdrecht. 2004. Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process. Water Sci. Technol. 49:8390.
26. Hao, X. D.,, X. O. Cao,, C. Picioreanu, and, M. C. M. van Loosdrecht. 2005. Model-based evaluation of oxygen consumption in a partial nitrification-Anammox biofilm process. Water Sci. Technol. 52:155160.
27. Heijnen, J. J.,, M. C. M. van Loosdrecht,, R. Mulder,, R. Weltevrede, and, A. Mulder. 1993. Development and scale-up of an aerobic biofilm air-lift suspension reactor. Water Sci. Technol. 27:253261.
28. Hellinga, C.,, A. A. J. C. Schellen,, J. W. Mulder,, M. C. M. Van Loosdrecht, and, J. J. Heijnen. 1998. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 37:135142.
29. Hippen, A.,, K.-H. Rosenwinkel,, G. Baumgarten, and, C. F. Seyfried. 1997. Aerobic de-ammonification: a new experience in the treatment of waste-waters. Water Sci. Technol. 35:111120.
30. Hippen, A.,, C. Helmer,, S. Kunst,, K. H. Rosen-winkel, and, C. F. Seyfried. 2001. Six years’ practical experience with aerobic/anoxic deammonification in biofilm systems. Water Sci. Technol. 44:3948.
31. Hwang, I. S.,, K. S. Min,, E. Choi, and, Z. Yun. 2005. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process. Water Sci. Technol. 52:487494.
32. Isaka, K.,, Y. Suwa,, Y. Kimura,, T. Yamagishi,, T. Sumino, and, S. Tsuneda. 2008. Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol. Appl. Microbiol. Biotechnol. 81:379385.
33. Joss, A.,, D. Salzgeber,, J. Eugster,, R. Konig,, K. Rottermann,, S. Burger,, P. Fabijan,, S. Leumann,, J. Mohn, and, H. Siegrist. 2009. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ. Sci. Technol. 43:53015306.
34. Kalyuzhnyi, S.,, M. Gladchenko,, A. Mulder, and, B. Versprille. 2006. DEAMOX - New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res. 40:36373645.
35. Kampschreur, M. J.,, C. Picioreanu,, N. Tan,, R. Kleerebezem,, M. S. M. Jetten, and, M. C. M. Van Loosdrecht. 2007. Unraveling the source of nitric oxide emission during nitrification. Water Environ. Res. 79:24992509.
36. Kampschreur, M. J.,, W. R. L. Van der Star,, H. A. Wielders,, J. W. Mulder,, M. S. M. Jetten, and, M. C. M. Van Loosdrecht. 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res. 42:812826.
37. Kampschreur, M. J.,, R. Poldermans,, R. Kleerebezem,, W. R. L. van der Star,, R. Haarhuis,, W. R. Abma,, M. S. M. Jetten, and, M. C. M. van Loosdrecht. 2009. Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Sci. Technol. 60:32113217.
38. Kartal, B.,, M. Koleva,, R. Arsov,, W. van der Star,, M. S. M. Jetten, and, M. Strous. 2006. Adaptation of a freshwater anammox population to high salinity wastewater. J. Biotechnol. 126:546553.
39. Kartal, B.,, J. G. Kuenen, and, M. C. M. van Loosdrecht. 2010. Sewage treatment with Anammox. Science 328:702703.
40. Kartal, B.,, M. M. M. Kuypers,, G. Lavik,, J. Schalk,, H. J. M. Op den Camp,, M. S. M. Jetten, and, M. Strous. 2007. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9:635642.
41. Kimura, Y.,, K. Isaka,, F. Kazama, and, T. Sumino. 2010. Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl. Microbiol. Biotechnol. 86:359365.
42. Kuai, L.,, and W. Verstraete. 1998. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl. Environ. Microbiol. 64:45004506.
43. Ladiges, G.,, R. D. Thierbach,, M. Beier, and, Focken. 2006. Versuche zur zweistufigen Deammonifikation im Hamburger Klärwerksverbund. (Attempts at two-stage deammonification in the wastewater treament union of Hamburg.) Presented at the 6. Aachener Tagung mit Informationsforum: Sticksoffrückbelastung Stand der Technik 2006, Aachen, Germany.
44. Lamsam, A.,, S. Laohaprapanon, and, A. P. Annachhatre. 2008. Combined activated sludge with partial nitrification (AS/PN) and anammox processes for treatment of seafood processing waste-water. J. Environ. Sci. Health, Part A 43:11981208.
45. Lieu, P. K.,, R. Hatozaki,, H. Homan, and, K. Furukawa. 2005. Single-stage nitrogen removal using Anammox and partial nitritation (SNAP) for treatment of synthetic landfill leachate. Jpn. J. Water Treat. Biol. 41:103.
46. Ling, D. 2009. Experience from commissioning of full-scale DeAmmon™ plant at Himmerfjärden (Sweden), p. 403–410. In Lemtech Konsulting (ed.), Second IWA specialized conference: Nutrient Management in Wastewater Treatment Systems, Krakow, Poland.
47. Liu, C.,, T. Yamamoto,, T. Nishiyama,, T. Fujii, and, K. Furukawa. 2009. Effect of salt concentration in anammox treatment using non woven biomass carrier. J. Biosci. Bioeng. 107:519523.
48. Metcalf & Eddy, Inc., G. Tchobanoglous,, F. R. Burton, and, H. D. Stensel. 2003. Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, NY.
49. Mulder, A.,, A. A. Van de Graaf,, L. A. Robertson, and, J. G. Kuenen. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16:177184.
50. Nielsen, M.,, A. Bollmann,, O. Sliekers,, M. Jetten,, M. Schmid,, M. Strous,, I. Schmidt,, L. H. Larsen,, L. P. Nielsen, and, N. P. Revsbech. 2005. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol. Ecol. 51:247256.
51. Pathak, B. K.,, and F. Kazama. 2007. Influence of temperature and organic carbon on denammox process, p. 402–413. Proceedings CD of Nutrient Removal 2007, Baltimore, MD.
52. Pathak, B. K.,, F. Kazama,, Y. Saiki, and, T. Sumino. 2007. Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors. Bioresour. Technol. 98:22012206.
53. Picioreanu, C.,, J.-U. Kreft, and, M. C. M. Van Loosdrecht. 2004. Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70:30243040.
54. Qiao, S.,, T. Yamamoto,, M. Misaka,, K. Isaka,, T. Sumino,, Z. Bhatti, and, K. Furukawa. 2009. High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation-anammox process. Biodegradation 21:1120.
55. Rekers, V.,, M. Denecke, and, U. Walter. 2008. Betriebserfahrungen mit der anaeroben Deammonifikation von Deponiesickerwasser. DepoTech, Leoben, Austria.
56. Ruscalleda, M.,, H. Lopez,, R. Ganigue,, S. Puig,, M. D. Balaguer, and, J. Colprim. 2008. Heterotrophic denitrification on granular anammox SBR treating urban landfill leachate. Water Sci. Technol. 58:17491755.
57. Rysgaard, S.,, and R. N. Glud. 2004. Anaerobic N2 production in Arctic sea ice. Limnol. Oceanogr. 49:8694.
58. Rysgaard, S.,, R. N. Glud,, N. Risgaard-Petersen, and, T. Dalsgaard. 2004. Denitrification and anammox activity in Arctic marine sediments. Limnol. Oceanogr. 49:14931502.
59. Scaglione, D.,, S. Caffaz,, E. Bettazzi, and, C. Lubello. 2009. Experimental determination of Anammox decay coefficient. J. Chem. Technol. Biotechnol. 84:12501254.
60. Schmid, M.,, K. Walsh,, R. Webb,, W. Irene,, C. Rijpstra,, K. Van de Pas-Schoonen,, M. J. Verbruggen,, T. Hill,, B. Moffett,, J. Fuerst,, S. Schouten,, J. S. Sinninghe Damsté,, J. Harris,, P. Shaw,, M. Jetten, and, M. Strous. 2003. Candidatus “Scalindua brodae,” sp. nov., Candidatus “Scalindua wagneri,” sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 26:529538.
61. Seyfried, C. F.,, A. Hippen,, C. Helmer,, S. Kunst, and, K. H. Rosenwinkel. 2001. One-stage deammonification: nitrogen elimination at low costs. Water Sci. Technol, 1:7180.
62. Siegrist, H.,, S. Reithaar,, G. Koch, and, P. Lais. 1998. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Sci. Technol. 38:241248.
63. Siegrist, H.,, D. Salzgeber,, J. Eugster, and, A. Joss. 2008. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 57:383388.
64. Sin, G.,, D. Kaelin,, M. J. Kampschreur,, I. Takacs,, B. Wett,, K. V. Gernaey,, L. Rieger,, H. Siegrist, and, M. C. M. van Loosdrecht. 2008. Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Sci. Technol. 58:11551171.
65. Sliekers, A. O.,, N. Derwort,, J. L. C. Gomez,, M. Strous,, J. G. Kuenen, and, M. S. M. Jetten. 2002. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 36:24752482.
66. Sliekers, A. O.,, S. Haaijer,, M. Schmid,, H. Harhangi,, K. Verwegen,, J. G. Kuenen, and, M. S. M. Jetten. 2004. Nitrification and Anammox with urea as the energy source. Syst. Appl. Microbiol. 27:271278.
67. Strous, M. 2000. Microbiology of anaerobic ammonium oxidation. PhD thesis. Delft University of Technology, Delft, The Netherlands.
68. Strous, M.,, E. Van Gerven,, J. G. Kuenen, and, M. Jetten. 1997. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Appl. Environ. Microbiol. 63:24462448.
69. Strous, M.,, J. J. Heijnen,, J. G. Kuenen, and, M. S. M. Jetten. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50:589596.
70. Strous, M.,, J. G. Kuenen, and, M. S. M. Jetten. 1999. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65:32483250.
71. Syron, E.,, and E. Casey. 2008. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 42:18331844.
72. Third, K. A.,, A. O. Sliekers,, J. G. Kuenen, and, M. S. M. Jetten. 2001. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24:588596.
73. Third, K. A.,, J. Paxman,, M. Schmid,, M. Strous,, M. S. M. Jetten, and, R. Cord-Ruwisch. 2005. Enrichment of Anammox from activated sludge and its application in the CANON process. Microb. Ecol. 49:236244.
74. Thöle, D.,, A. Cornelius, and, K.-H. Rosen-winkel. 2005. Großtechnische Erfahrungen zur Deammonifikation von Schlammwasser auf der Kläranlage Hattingen. [Full scale experiences with deammonification of sludge liquor at Hattingen wastewater treatment plant.] GWF, Wasser/Abwasser 146:104109.
75. Tokutomi, T.,, H. Yamauchi,, S. Nishihara,, M. Yoda, and, W. R. Abma. 2007. Demonstration of full-scale Anammox process in Japan. 4th IWA Leading Edge Conference & Exhibition on Water and Wastewater Technologies, Singapore. (Proceedings CD.)
76. Trela, J.,, E. Płaza,, B. Szatkowska,, B. Hultman,, J. Bosander, and, A.-G. Dahlberg. 2004. Deammonifakation som en ny process för behandling av avloppsströmmar med hög kvävehalt. [Deammonification as a new process for treatment of wastewater with a high nitrogen content.] Vatten 60:119127.
77. Tsushima, I.,, T. Kindaichi, and, S. Okabe. 2007. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Res. 41:785794.
78. Van de Graaf, A. A.,, P. De Bruijn,, L. A. Robertson,, M. S. M. Jetten, and, J. G. Kuenen. 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology 143:24152421.
79. Van de Vossenberg, J.,, J. E. Rattray,, W. Geerts,, B. Kartal,, L. Van Niftrik,, E. G. Van Donselaar,, J. S. S. Damsté,, M. Strous, and, M. S. M. Jetten. 2008. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ. Microbiol. 10:31203129.
80. Van der Star, W. R. L.,, W. R. Abma,, D. Blommers,, J. W. Mulder,, T. Tokutomi,, M. Strous,, C. Picioreanu, and, M. C. M. Van Loosdrecht. 2007. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41:41494163.
81. Van der Star, W. R. L.,, W. R. Abma,, D. Blommers,, J. W. Mulder,, T. Tokutomi,, M. Strous,, C. Picioreanu, and, M. C. M. Van Loosdrecht. 2008a. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 42:18251826. [Erratum, Water Res. 41:18, 2007.]
82. Van der Star, W. R. L.,, A. I. Miclea,, L. G. J. M. Van Dongen,, G. Muyzer,, C. Picioreanu, and, M. C. M. Van Loosdrecht. 2008b. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101:286294.
83. Van Dongen, U.,, M. S. M. Jetten, and, M. C. M. Van Loosdrecht. 2001. The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci. Technol. 44(1):153160.
84. van Loosdrecht, M. C. M. 2008. Innovative nitrogen removal, p. 139–153. In M. Henze,, M. C. M. van Loosdrecht,, G. Ekama,, and D. Brdjanovic (ed.), Biological Wastewater Treatment, Principles, Modelling and Design. IWA Publishing, London, United Kingdom.
85. Van Loosdrecht, M. C. M.,, M. S. M. Jetten, and, W. Abma. 2001. Improving the sustainability of ammonium removal. Water21 30:5052.
86. Vlaeminck, S. E.,, L. F. F. Cloetens,, M. Carballa,, N. Boon, and, W. Verstraete. 2008. Granular biomass capable of partial nitritation and anammox. Water Sci. Technol. 58:11131120.
87. Vlaeminck, S. E.,, A. Terada,, B. F. Smets,, D. Van der Linden,, N. Boon,, W. Verstraete, and, M. Carballa. 2009. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environ. Sci. Technol. 43:50355041.
88. Volcke, E. I. P.,, M. C. M. van Loosdrecht, and, P. A. Vanrolleghem. 2006. Continuity-based model interfacing for plant-wide simulation: a general approach. Water Res. 40:28172828.
89. Walter, U.,, V. Rekers, and, M. Denecke. 2007. Betriebserfahrungen mit der Deammonifikation bei der biologischen Behandlung von Deponiesickerwasser. Umweltmagazin 37:1416.
90. Weissenbacher, N.,, I. Tatacs,, S. Murthy,, M. Fuerhacker, and, B. Wett. 2010. Gaseous nitrogen and carbon emissions from a full-scale deammonification plant. Water Environ. Res. 82:169175.
91. Wett, B. 2006. Solved upscaling problems for implementing deammonification of rejection water. Water Sci. Technol. 53:121128.
92. Wett, B.,, S. Murthy,, I. Takács,, M. Hell,, G. Bowden,, A. Deur, and, M. O’Shaughnessy. 2007. Key parameters for control of demon deammonification process, p. 424–236. Proceedings CD of “Nutrient Removal 2007,” Baltimore, MD.
93. Wicht, H.,, and M. Beier. 1995. N2O emission aus nitrifizierenden und denitrificierenden Kläranlagen. [N2O emission from nitrifying wastewater treatment plants.] Korrespondenz Abwasser 42:404406, 411–413.
94. Wiesmann, U. 1994. Biological nitrogen removal from wastewater, p. 113–154. In A. Fiechter (ed.), Advances in Biochemical Engineering/Biotechnology, vol. 51. Springer-Verlag, Berlin, Germany.
95. Wilsenach, J.,, M. C. Schmid, and, M. C. M. van Loosdrecht. 2006. Biological nitrogen removal from urine, p. 139–161. In J. Wilsenach (ed.), Treatment of Source Separated Urine and Its Effects on Waste-water Systems. Delft University of Technology, Delft, The Netherlands.
96. Wyffels, S.,, P. Boeckx,, K. Pynaert,, W. Verstraete, and, O. Van Cleemput. 2003. Sustained nitrite accumulation in a membrane-assisted bioreactor (MBR) for the treatment of ammonium-rich wastewater. J. Chem. Technol. Biotechnol. 78:412419.
97. Wyffels, S.,, P. Boeckx,, K. Pynaert,, D. Zhang,, O. Van Cleemput,, G. Chen, and, W. Verstraete. 2004. Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Sci. Technol. 49:5764.

Tables

Generic image for table
TABLE 1

Process options and names for nitrogen removal involving the anammox process ( )

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Generic image for table
TABLE 2

Overview of full-scale anammox reactors (>50 m) using the one-reactor or the two-reactor anammox process ( )

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10
Generic image for table
TABLE 3

Estimated volumetric conversion limitations and fluxes (shown in brackets) in different types of reactors for the anammox process and the one-reactor nitritation-anammox process

Citation: van der Star W, Abma W, Kartal B, van Loosdrecht M. 2011. Application of the Anammox Process, p 237-263. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error