Chapter 13 : Nitrification in the Ocean

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Nitrification in the Ocean, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap13-2.gif


This chapter focuses on very recent developments and their implications for nitrogen cycling in the marine environment. Nitrification does not influence the net N inventory of the ocean directly except by small losses to the gaseous pool of nitrous oxide, but it does determine the distribution of N among important dissolved inorganic nitrogen pools. The ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) oxidize ammonium to nitrite, and nitrite oxidizers, convert the nitrite to nitrate, which can be a very important N source for many kinds of phytoplankton. The only cultivated ammonia oxidizers were bacteria. These cultures have provided the basis of physiological inferences about ecological niches and environmental regulation of nitrification in the ocean. The most important development in the study of nitrification in the ocean in the last decade is the discovery of AOA. The implications of this discovery may not result in big changes in our understanding of the rates and distribution of nitrification in the ocean. Despite their somewhat restricted phylogenetic range, the bacterial nitrifiers are polyphyletic, and the phenotype has apparently arisen independently numerous times. Recent discoveries in the marine nitrogen cycle and in nitrification, in particular, point out the important gaps in our understanding, both at the level of microorganisms and at the ecosystem level.

Citation: Ward B. 2011. Nitrification in the Ocean, p 325-345. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch13

Key Concept Ranking

Bacteria and Archaea
Anaerobic Ammonium Oxidation
Nitrogen Cycle
Microbial Ecosystems
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The biological nitrogen cycle, showing the role of nitrification in linking the oxidized and reduced components of the dissolved inorganic nitrogen pools.

Citation: Ward B. 2011. Nitrification in the Ocean, p 325-345. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic of the role of nitrification in the surface ocean. Plankton, phytoplankton and zooplankton, the grazing food web; PN, particulate nitrogen, living or dead; DON, dissolved organic nitrogen. (Left) Nitrification occurs in the deep ocean, and nitrate is supplied to the euphotic zone by mixing. This physical separation between the processes of nitrate assimilation and regeneration, as described in the New Production Paradigm ( ), means that at steady state, the rate of nitrate assimilation is equivalent to the rate of export production (sinking or otherwise removal of PN from the euphotic zone). (Right) Nitrification occurs in the euphotic zone as well as at depth, implying that nitrate assimilation cannot be equated to export production. Other processes that complicate the simple application of the New Production Paradigm are also shown: DON is a much greater flux than previously imagined, and nitrogen fixation can be a significant source of new production is some regions of the ocean.

Citation: Ward B. 2011. Nitrification in the Ocean, p 325-345. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Possible linkages between nitrification and denitrification, including anammox, across an oxic/anoxic interface. The interface could be at the sediment/water interface or in the gradient at the upper boundary of an open ocean OMZ. P/DON, particulate/dissolved organic nitrogen, which is supplied to the system by primary production in overlying waters. The dashed lines imply diffusion, while the solid arrows represent microbial transformations of dissolved nitrogen compounds.

Citation: Ward B. 2011. Nitrification in the Ocean, p 325-345. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agogue, H.,, M. Brink,, J. Dinasquet, and, G. J. Herndl. 2008. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788791.
2. Ando, Y.,, T. Nakagawa,, R. Takahashi,, K. Yoshihara, and, T. Tokuyama. 2009. Seasonal changes in abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria and their nitrification in sand of an eelgrass zone. Microb. Environ. 24:2127.
3. Bange, H. W.,, T. Rixen,, A. M. Johansen,, R. L. Siefert,, R. Ramesh,, V. Ittekkot,, M. R. Hoffmann, and, M. O. Andreae. 2000. A revised nitrogen budget for the Arabian Sea. Glob. Biogeochem. Cycles 14:12831297.
4. Bange, H. W.,, S. W. A. Naqvi, and, L. A. Codispoti. 2005. The nitrogen cycle in the Arabian Sea. Progr. Oceanogr. 65:145158.
5. Bano, N.,, and J. T. Hollibaugh. 2000. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 66:19601969.
6. Beman, M. J.,, B. N. Popp, and, C. A. Francis. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J. 2:429441.
7. Bender, M. L.,, K. A. Fanning,, P. N. Froelich, and, G. R. Heath. 1977. Interstitial nitrate profiles and oxidation of sedimentary organic matter in the eastern Equatorial Atlantic. Science 198:605609.
8. Berelson, W. M. 2001. The flux of particulate organic carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies. Oceanography 14:5967.
9. Bernhard, A. E.,, T. Donn,, A. E. Giblin, and, D. A. Stahl. 2005. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7:12891297.
10. Bock, E.,, and M. Wagner. 2006. Oxidation of inorganic nitrogen compounds as an energy source, p. 457–495. In M. Dowkin (ed.), The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Springer Verlag, New York, NY.
11. Bock, E.,, I. Schmidt,, R. Stuven, and, D. Zart. 1995. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163:1620.
12. Caffrey, J. M.,, N. Bano,, K. Kalanetra, and, J. T. Hollibaugh. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J. 1:660662.
13. Cantera, J. J. L.,, and L. Y. Stein. 2007. Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environ. Microbiol. 9:765776.
14. Capone, D. G.,, D. A. Bronk,, M. R. Mulholland, and, E. J. Carpenter (ed.). 2008. Nitrogen in the Marine Environment, 2nd ed. Academic Press, Burlington, MA.
15. Carlucci, A. F.,, and P. M. McNally. 1969. Nitrification by marine bacteria in low concentrations of substrate and oxygen. Limnol. Oceanogr. 14:736.
16. Casciotti, K. L.,, and B. B. Ward. 2001. Nitrite reductase genes in ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 67:22132221.
17. Casciotti, K. L.,, and B. B. Ward. 2005. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol. Ecol. 52:197205.
18. Christian, J. R.,, M. R. Lewis, and, D. M. Karl. 1997. Vertical fluxes of carbon, nitrogen, and phosphorus in the North Pacific Subtropical Gyre near Hawaii. J. Geophys. Res. 102:1566715677.
19. Clark, D. R.,, A. P. Rees, and, I. Joint. 2008. Ammonium regeneration and nitrification rates in the oligotrophic Atlantic Ocean: implications for new production estimates. Limnol. and Oceanogr. 53:5262.
20. Codispoti, L.,, J. Brandes,, J. Christensen,, A. Devol,, S. Naqvi,, H. Paerl, and, T. Yoshinari. 2001. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci. Marina 65:85105.
21. Cohen, Y.,, and L. I. Gordon. 1978. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep Sea Res. 6:509525.
22. Dalsgaard, T.,, D. E. Canfield,, J. Petersen,, B. Thamdrup, and, J. Acuna-Gonzalez. 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606608.
23. De Corte, D.,, T. Yokokawa,, M. M. Varela,, H. Agogue, and, G. J. Herndl. 2009. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J. 3:147158.
24. Delong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:56855689.
25. Devol, A. H. 2008. Denitrification, including Anammox, p. 263–301. In D. G. Capone,, D. A. Bronk,, M. R. Mulholland,, and E. J. Carpenter (ed.), Nitrogen in the Marine Environment, 2nd ed. Academic Press, Burlington, MA.
26. Dore, J. E.,, and D. M. Karl. 1996. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at station ALOHA. Limnol. Oceanogr. 41:16191628.
27. Dugdale, R. C.,, and J. J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in marine production. Limnol. Oceanogr. 12:196206.
28. Ehrich, S.,, D. Behrens,, E. Lebedeva,, W. Ludwig, and, E. Bock. 1995. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov., and its phylogenetic relationship. Arch. Microbiol. 164:1623.
29. Eppley, R. W.,, and B. J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677680.
30. Erguder, T. H.,, N. Boon,, L. Wittebolle,, M. Marzorati, and, W. Verstraete. 2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol. Rev. 33:855869.
31. Fernandez, C.,, and P. Raimbault. 2007. Nitrogen regeneration in the NE Atlantic Ocean and its impact on seasonal new, regenerated and export production. Mar. Ecol. Prog. Ser. 337:7992.
32. Francis, C. A.,, G. D. O’Mullan, and, B. B. Ward. 2003. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1:129140.
33. Francis, C. A.,, K. J. Roberts,, M. J. Beman,, A. E. Santoro, and, B. B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102:1468314688.
34. Fuhrman, J. A.,, K. McCallum, and, A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148149.
35. Goreau, T. J.,, W. A. Kaplan,, S. C. Wofsy,, M. B. McElroy,, F. W. Valois, and, S. W. Watson. 1980. Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40:526532.
36. Guerrero, M. A.,, and R. D. Jones. 1996. Photo-inhibition of marine nitrifying bacteria. 1. Wavelength-dependent response. Mar. Ecol. Prog. Ser. 141:183192.
37. Gundersen, K. 1966. The growth and respiration of Nitrosocystis oceanus at different partial pressures of oxygen. J. Gen. Microbiol. 42:387396.
38. Hallam, S. J.,, T. J. Mincer,, C. Schleper,, C. M. Preston,, K. Roberts,, P. M. Richardson, and, E. F. DeLong. 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 4:520536.
39. Hansman, R. L.,, S. Griffin,, J. T. Watson,, E. R. M. Druffel,, A. E. Ingalls, and, A. Pearson. 2009. The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc. Natl. Acad. Sci. USA 106:65136518.
40. Hemp, J.,, L. A. Pace,, M. G. Klotz,, L. Y. Stein,, T. J. Martinez, and, R. B. Gennis. 2008. Diversity of the heme-copper nitric oxide reductases: evidence for multiple independent origins. Abstr. Am. Soc. Microbiol. 108:462.
41. Hollibaugh, J. T.,, N. Bano, and, H. W. Ducklow. 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68:14781484.
42. Horrigan, S. G.,, A. F. Carlucci, and, P. M. Williams. 1981. Light inhibition of nitrification in sea-surface films. J, Mar. Res. 39:557565.
43. Ingalls, A. E.,, S. R. Shah,, R. L. Hansman,, L. I. Aluwihare,, G. M. Santos,, E. R. M. Druffel, and, A. Pearson. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. USA 103:64426447.
44. Jensen, K. M.,, M. H. Jensen, and, E. Kristensen. 1996. Nitrification and denitrification in Wadden Sea sediments (Konigshafen, Island of Sylt, Germany) as measured by nitrogen isotope pairing and isotope dilution. Aquat. Microb. Ecol. 11:181191.
45. Jorgensen, K. S.,, H. B. Jensen, and, J. Sorensen. 1984. Nitrous-oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations. Can. J. Microbiol. 30:10731078.
46. Kalanetra, K. M.,, N. Bano, and, J. T. Hollibaugh. 2009. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ. Microbiol. 11:24342445.
47. Karner, M. B.,, E. F. DeLong, and, D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:5075010.
48. Konneke, M.,, A. E. Berhnard,, J. R. de la Torre,, C. B. Walker,, J. B. Waterbury, and, D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543546.
49. Koops, H. P.,, U. Purkhold,, A. Pommerening-Roser,, G. Timmermann, and, M. Wagner. 2006. The lithoautotrophic ammonia-oxidizing bacteria, p. 778–811. In M. Dworkin (ed.), The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Springer-Verlag, New York, NY.
50. Krishnan, K. P.,, S. O. Fernandes,, P. A. L. Bharathi,, L. K. Kumari,, S. Nair,, A. K. Pratihary, and, B. R. Rao. 2008. Anoxia over the western continental shelf of India: Bacterial indications of intrinsic nitrification feeding denitrification. Mar. Environ. Res. 65:445455.
51. Kuypers, M. M. M.,, A. O. Sliekers,, G. Lavik,, M. Schmid,, B. B. Jorgensen,, J. G. Kuenen,, J. S. S. Damste,, M. Strous, and, M. S. M. Jetten. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608611.
52. Kuypers, M. M.,, G. Lavik,, D. Woebken,, M. Schmid,, B. M. Fuchs,, R. Amann,, B. B. Jørgensen, and, M. S. M. Jetten. 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl. Acad. Sci. USA 102:64786483.
53. Laanbroek, H. J.,, P. L. E. Bodelier, and, S. Gerards. 1994. Oxygen-consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Arch. Microbiol. 161:156162.
54. Lam, P.,, J. P. Cowen, and, R. D. Jones. 2004. Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microbiol. Ecol. 47:191206.
55. Lam, P.,, M. M. Jensen,, G. Lavik,, D. F. McGinnis,, B. Muller,, C. J. Schubert,, R. Amann,, B. Thamdrup, and, M. M. Kuypers. 2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc. Natl. Acad. Sci. USA 104:71047109.
56. Laursen, A. E.,, and S. P. Seitzinger. 2002. The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments. Cont. Shelf Res. 22:13971416.
57. Lilley, M.,, D. Butterfield,, E. J. Olson,, J. E. Lupton,, S. A. Macko, and, R. E. McDuff. 1993. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:4547.
58. Lipschultz, F.,, O. C. Zafiriou,, S. C. Wofsy,, M. B. Melroy,, F. W. Valois, and, S. W. Watson. 1981. Production of NO and N2O by soil nitrifying bacteria. Nature 294:641643.
59. Lipschultz, F.,, S. C. Wofsy,, B. B. Ward,, L. A. Codispoti,, G. J. W. Friedrich, and, J. W. Elkins. 1990. Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the Eastern Tropical South Pacific Ocean. Deep Sea Res. 37:15131541.
60. Lomas, M. W.,, and F. Lipschultz. 2006. Forming the primary nitrite maximum: nitrifiers or phytoplankton? Limnol. Oceanogr. 51:24532467.
61. Martens-Habbena, W.,, P. M. Berube,, H. Urakawa,, J. R. de la Torre and, D. A. Stahl. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976979.
62. Martin, J. H.,, G. A. Knauer,, D. M. Karl, and, W. W. Broenkow. 1987. Vertex-carbon cycling in the northeast Pacific. Deep Sea Res., Part A 34:267285.
63. Meyer, R. L.,, D. E. Allen, and, S. Schmidt. 2008. Nitrification and denitrification as sources of sediment nitrous oxide production: a microsensor approach. Mar. Chem. 110:6876.
64. Mincer, T. J.,, M. J. Church,, L. T. Taylor,, C. Preston,, D. M. Kar, and, E. F. DeLong. 2007. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 9:11621175.
65. Molina, V.,, O. Ulloa,, L. Farias,, H. Urrutia,, S. Ramirez,, P. Junier, and, K. P. Witzel. 2007. Ammonia-oxidizing beta-Proteobacteria from the oxygen minimum zone off northern Chile. Appl. Environ. Microbiol. 73:35473555.
66. Morris, R. M.,, M. S. Rappe,, S. A. Connon,, K. L. Vergin,, W. A. Siebold,, C. A. Carlson, and, S. J. Giovannoni. 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806810.
67. Mosier, A. C.,, and C. A. Francis. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol. 10:30023016.
68. Mulder, A.,, A. A. van de Graaf,, L. A. Robertson, and, J. G. Kuenen. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol. Ecol. 16:177183.
69. Muller-Neugluck, M.,, and H. Engel. 1961. Photoinaktivierung von Nitrobacter winogradskyi Buch. Arch. Mikrobiol. 39:130138.
70. Nevison, C.,, J. H. Butler, and, J. W. Elkins. 2003. Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Glob. Biogeochem. Cycles 17:1119.
71. O’Mullan, G. D.,, and B. B. Ward. 2005. Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl. Environ. Microbiol. 71:697705.
72. Olson, R. J. 1981a. 15N tracer studies of the primary nitrite maximum. J. Mar. Res. 39:203226.
73. Olson, R. J. 1981b. Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J. Mar. Res. 39:227238.
74. Ouverney, C. C.,, and J. A. Fuhrman. 2000. Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66:4829.
75. Prosser, J. I.,, and G. W. Nicol. 2008. Relative contribution of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10:29312941.
76. Purkhold, U.,, M. Wagner,, B. Timmermann,, A. Pommerening-Roser, and, H.-P. Koops. 2003. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Microbiol. 53:14851494.
77. Revsbech, N. P.,, N. Risgaard-Petersen,, A. Schramm, and, L. P. Nielsen. 2006. Nitrogen transformations in stratified aquatic microbial ecosystems. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 90:361375.
78. Revsbech, N. P.,, L. H. Larsen,, J. Gundersen,, T. Dalsgaard,, O. Ulloa, and, B. Thamdrup. 2009. Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol. Oceanogr. Methods 7:371381.
79. Richards, F. A. 1965. Anoxic basins and fjords, p. 611–645. In J. P. Riley, and G. Skirrow (ed.), Chemical Oceanography, vol. 1. Academic Press, London, United Kingdom.
80. Richards, F. A.,, and W. W. Broenkow. 1971. Chemical changes, including nitrate reduction, in Darwin Bay, Galapagos Archipelago, over a 2-month period, 1969. Limnol. Oceanogr. 16:758.
81. Santinelli, C.,, B. B. Manca,, G. P. Gasparini,, L. Nannicini, and, A. Seritti. 2006. Vertical distribution of dissolved organic carbon (DOC) in the Mediterranean Sea. Clim. Res. 31:205216.
82. Schleper, C.,, G. Jurgens, and, M. Jonuscheit. 2005. Genomic studies of uncultivated Archaea. Nat. Rev. Microbiol. 3:479488.
83. Shaw, L. J.,, G. W. Nicol,, Z. Smith,, J. Fear,, J. I. Prosser, and, E. M. Baggs. 2006. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 8:214222.
84. Sheridan, C. C.,, C. Lee,, S. G. Wakeham, and, J. K. B. Bishop. 2002. Suspended particle organic composition and cycling in surface and midwaters of the equatorial Pacific Ocean. Deep Sea Res., Part I 49:19832008.
85. Sliekers, A. O.,, K. A. Third,, W. Abma,, J. G. Kuenen, and, M. S. M. Jetten. 2003. CANON and anammox in a gas-lift reactor. FEMS Microbiol. Lett. 218:339344.
86. Smith, A. J.,, and D. S. Hoare. 1968. Acetate assimilation by Nitrobacter agilis in relation to its obligate autotrophy. J. Bacteriol. 95:844.
87. Smith, Z.,, A. McCaig,, J. Stephen,, T. Embley, and, J. I. Prosser. 2001. Species diversity of uncultured and cultured populations of soil and marine ammonia oxidizing bacteria. Microb. Ecol. 42:228237.
88. Starkenburg, S. R.,, P. S. G. Chain,, L. A. Sayavedra-Soto,, L. Hauser,, M. L. Land,, F. W. Larimer,, S. A. Malfatti,, M. G. Klotz,, P. J. Bottomley,, D. J. Arp, and, W. J. Hickey. 2006. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl. Environ. Microbiol. 72:20502063.
89. Starkenburg, S. R.,, F. W. Larimer,, L. Y. Stein,, M. G. Klotz,, P. S. G. Chain,, L. A. Sayavedra-Soto,, A. T. Poret-Peterson,, M. E. Gentry,, D. J. Arp,, B. Ward, and, P. J. Bottomley. 2008. Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Appl. Environ. Microbiol. 74:28522863.
90. Steinberg, D. K.,, S. A. Goldthwait, and, D. A. Hansell. 2002. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep Sea Res. Part I 49:14451461.
91. Stephen, J. R.,, A. E. McCaig,, Z. Smith,, J. I. Prosser and, T. M. Embley. 1996. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62:41474154.
92. Suess, E. 1980. Particulate organic-carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288:260263.
93. Suntharalingam, P., and J. L. Sarmiento. 2000. Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circulation model. Glob. Biogeochem. Cycles 14:429454.
94. Sutka, R. L.,, N. E. Ostrom,, P. H. Ostrom, and, M. S. Phanikumar. 2004. Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North Pacific Subtropical Gyre to the Eastern Tropical North Pacific. Geochim. Cosmochim. Acta 68:517527.
95. Teira, E.,, P. Lebaron,, H. van Aken, and, G. J. Herndl. 2006. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol. Oceanogr. 51:21312144.
96. Teske, A.,, E. Alm,, J. M. Regan,, S. Toze,, B. E. Rittmann, and, D. A. Stahl. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176:66236630.
97. Treusch, A. H.,, S. Leininger,, A. Kletzin,, S. C. Schuster,, H. P. Klenk, and, C. Schleper. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7:19851995.
98. Usui, T.,, I. Koike, and, N. Ogura. 2001. N2O production, nitrification and denitrification in an estuarine sediment. Estuar. Coast. Shelf Sci. 52:769781.
99. van de Graaf, A. A.,, A. Mulder,, P. Debruijn,, M. S. M. Jetten,, L. A. Robertson, and, J. G. Kuenen. 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61:12461251.
100. Venter, C. J.,, K. Remington,, J. G. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelson,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, J.-H. Rogers, and, H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:6674.
101. Voss, M.,, J. W. Dippner, and, J. P. Montoya. 2001. Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean. Deep Sea Res., Part I 48:19051921.
102. Wakeham, S. G.,, C. Lee,, J. I. Hedges,, P. J. Hernes, and, M. L. Peterson. 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61:53635369.
103. Wankel, S. D.,, C. Kendall,, J. T. Pennington,, F. P. Chavez, and, A. Paytan. 2007. Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: observations from Monterey Bay, California. Glob. Biogeochem. Cycles 21•••.
104. Ward, B. B. 1987a. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch. Microbiol. 147:126133.
105. Ward, B. B. 1987b. Nitrogen transformations in the Southern California Bight. Deep Sea Res. 34:785805.
106. Ward, B. B. 2005a. Molecular approaches to marine micobial ecology and the marine nitrogen cycle. Annu. Rev. Earth Planet. Sci. 33:301333.
107. Ward, B. B. 2005b. Temporal variability in nitrification rates and related biogeochemical factors in Monterey Bay, California, USA. Mar. Ecol. Prog. Ser. 292:97109.
108. Ward, B. B. 2008. Nitrification in marine systems, p. 199–261. In D. G. Capone,, D. A. Bronk,, M. R. Mulholland,, and E. J. Carpenter (ed.), Nitrogen in the Marine Environment, 2nd ed. Academic Press, Burlington, MA.
109. Ward, B. B.,, and K. Kilpatrick. 1990. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Cont. Shelf Res. 10:11931208.
110. Ward, B. B.,, and G. D. O’Mullan. 2002. Worldwide distribution of Nitrosococcus oceani, a marine ammonia-oxidizing gamma-proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. Appl. Environ. Microbiol. 68:41354157.
111. Ward, B. B.,, and O. C. Zafiriou. 1988. Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific. Deep Sea Res. 35:11271142.
112. Ward, B. B.,, M. C. Talbot, and, M. J. Perry. 1984. Contributions of phytoplankton and nitrifying bacteria to ammonium and nitrite dynamics in coastal water. Cont. Shelf Res. 3:383398.
113. Ward, B. B.,, K. A. Kilpatrick,, E. Renger, and, R. W. Eppley. 1989. Biological nitrogen cycling in the nitracline. Limnol. Oceanogr. 34:493513.
114. Watson, S. W.,, and J. B. Waterbury. 1971. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Microbiol. 77:203230.
115. Watson, S. W.,, E. Bock,, F. W. Valois,, J. B. Waterbury, and, U. Schlosser. 1986. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144:17.
116. Woese, C. R.,, L. J. Magrum, and, G. E. Fox. 1978. Archaebacteria. J. Mol. Evol. 11:245252.
117. Wuchter, C.,, B. Abbas,, M. J. L. Coolen,, L. Herfort,, J. van Bleijswijk,, P. Timmers,, M. Strous,, E. Teira,, G. H. Herndl,, J. J. Middelburg,, S. Schouten, and, J. S. S. Damste. 2006. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. USA 103:1231712322.
118. Yakimov, M. M.,, V. La Cono, and, R. Denaro. 2009. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea. Deep Sea Res., Part Ii 56:748754.
119. Yool, A.,, A. P. Martin,, C. Fernandez, and, D. R. Clark. 2007. The significance of nitrification for oceanic new production. Nature 447:9991002.
120. Zart, D.,, and E. Bock. 1998. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol. 169:282286.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error