Chapter 5 : Genome Instability and DNA Repair

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Genome Instability and DNA Repair, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap05-2.gif


This chapter describes DNA repair systems that have not been described for species even though orthologues are found at least in the genome databases. A section of the chapter describes the genetic plasticity as it relates to drug resistance. In haploid cells, the rate of spontaneous mutation in the nuclear genome is rather low under laboratory conditions. An additional marker of the genetic instability in is represented by aneuploidies. Aneuploidies are common in laboratory strains of but are especially abundant when those strains have been subjected to genetic manipulations, including several laboratory strains successively derived from CAI-4, or treated with mutagenic agents such as UV light. Genetic instability could be caused by an increase in the rate of mutations in the form of single base substitutions, microinsertions, and microdeletions. These alterations are known to arise from errors during normal DNA replication by polymerases δ and ε and are usually corrected before being fixed by methyl mismatch repair (MMR). It was suggested that has evolved additional DNA repair systems to defend itself against killing by the oxygen radicals generated by macrophages. For an opportunistic pathogen, drug resistance represents an excellent and practical system to correlate phenotypic traits with genomic changes. Azoles are drugs commonly used in clinics. Hypermutable subpopulations are characterized by the presence of secondary mutations unrelated to that selected, which are distributed throughout the genome.

Citation: Larriba G, Calderone R. 2012. Genome Instability and DNA Repair, p 57-74. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch5

Key Concept Ranking

DNA Synthesis
Restriction Fragment Length Polymorphism
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Mechanism of reciprocal translocations mediated by MRS. MRS, when acting as direct repeats, but not as inverted repeats, may cause chimerical chromosomes. The chimerical chromosomes shown have been found in strain WO-1. (B) Scheme of Chr1 and the genetic system used to determine recombination rates in (for details, see text). doi:10.1128/9781555817176.ch5.f1

Citation: Larriba G, Calderone R. 2012. Genome Instability and DNA Repair, p 57-74. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

Molecular models for DSBR, SDSA, BIR, and SSA pathways of HR. According to current models, HR events are initiated by the introduction of a DSB in a DNA molecule. The ends of a DSB are resected by nucleases (MRX and Sae2, followed by the exonuclease Exo1 and/or the helicase-topoisomerase complex Sgs1-Top3-Rmi1) that leave 3’ ssDNA overhanging ends ( ) which are first coated by RPA to prevent formation of DNA secondary structures (a). RPA recruits Rad52, which, in turn, displaces RPA, at the time that it interacts with Rad51 and facilitates the formation of a Rad51-ssDNA right-handed helical nucleoprotein filament (b). Other proteins, such as Rad55 and Rad57, may also help in the formation of the filament ( ) (not shown). The Rad51 filament locates a homologous DNA donor and with the help of Rad54 causes chromatin remodeling, DNA unwinding, and strand exchange with the homologous partner ( ) (c). This process generates a displaced strand, which is a substrate for RPA and Rad52, and forms a structure known a D loop (c). Then Rad51 is displaced through the action of Rad54, and the 3’ end of the invading strand becomes a substrate for elongation by DNA polymerases ( ) (d). Synthesis of DNA results in further DNA displacement and binding of RPA and Rad52. BIR may occur when only one end of the DSB has homology to the template or the other end is lost (left column); the homologous end can undergo strand invasion into a homologous or nonhomologous chromosome, forming a replication fork (k); long segments of the template that can extend until the telomere are then replicated, resulting in long tracts of GC (l). The final product contains the undamaged molecule and one of the two molecules resulting from a CO in DSBR (half-CO). When both ends of the DSB have homology to the template, two events can occur. In SDSA the newly synthesized band dissociates from the template and reanneals to the other resected DNA end (i). After DNA synthesis and ligation, the recombined molecules are resolved as non-COs (j). Alternatively, the displaced strand now captures the second resected end and anneals it to the D loop (second-end capture), a process promoted by Rad52 ( ) (e). DNA synthesis from the second end and ligation result in a double Holliday junction (f) which is resolved as either non-COs (g) or COs (h). When a DSB occurs between direct repeats, recombination may take place by SSA (upper right). Resection of the 5’ ends allows annealing of the direct repeats of both DNA molecules; this event is followed by resection of the 3’ overhanging ends by the endonuclease Rad1-Rad10 (see text), DNA synthesis, and ligation. SSA results in the loss of one of the direct repeats and the intervening sequence. doi:10.1128/9781555817176.ch5.f2

Citation: Larriba G, Calderone R. 2012. Genome Instability and DNA Repair, p 57-74. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

Mechanisms of fluconazole resistance in due to aneuploidies. (Top left) Fluconazole-susceptible (Flu) . Fluconazole (blue star) enters the cell by facilitated diffusion (Mansfield et al., 10th Candida and Candidiasis, 2010, ASM Conferences, Miami, FL). Efflux pumps (green) and (red) excrete fluconazole out of the cell. Sensitive Erg11 (lanosterol demethylase) (blue ellipse) is inhibited by fluconazole, and this results in the synthesis of toxic sterols that destabilize the plasma membrane. (Top right) Flu cell. The asterisk after the Tac1, Mrr1, and Erg11 indicates that the corresponding gene is in homozygosis. Mutated Erg11 that has become Flu is indicated as a hexagon. (Bottom) Schemes of isochromosome i(5L) and a chimerical chromosome ( ). The presence of an extra i(5L) implies an increase in the copy number of both and transcriptional activator . The presence of an extra chimerical chromosome i(5L)-3R implies also an additional increase in the copy number of Other genes related to fluconazole resistance are indicated in chromosomes 4, 6, and 7 (as described in reference ). doi:10.1128/9781555817176.ch5.f3

Citation: Larriba G, Calderone R. 2012. Genome Instability and DNA Repair, p 57-74. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aguilera, A.,, S. Chavez, and, F. Malagon. 2000. Mitotic recombination in yeast: elements controlling its incidence. Yeast 16:731754.
2. Aguilera, A.,, and B. Gomez-Gonzalez. 2008. Genome instability: a mechanistic view of its causes and consequences. Nat. Rev. Genet. 9:204217.
3. Ahmad, A.,, M. Kabir,, A. Kravets,, E. Andaluz,, G. Larriba, and, E. Rustchenko. 2008. Chromosome instability and unusual features of some widely used strains of Candida albicans. Yeast 25:433448.
4. Alby, K.,, D. Schaefer, and, R. Bennett. 2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460:890893.
5. Alonso-Monge, R.,, F. Navarro-Garcia,, E. Roman,, A. I. Negredo,, B. Eisman,, C. Nombela, and, J. Pla. 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot. Cell 2:351361.
6. Andaluz, E.,, A. Bellido,, J. Gómez-Raja,, A. Selmecki,, K. Bouchonville,, R. Calderone,, J. Berman, and, G. Larriba. 2011. Rad52 function prevents chromosome loss and truncation in Candida albicans. Mol. Microbiol. 79:14621482.
7. Andaluz, E.,, J. Gomez-Raja,, B. Hermosa,, T. Ciudad,, E. Rustchenko,, R. Calderone, and, G. Larriba. 2007. Loss and fragmentation of chromosome 5 are major events linked to the adaptation of rad52-ΔΔ strains of Candida albicans to sorbose. Fungal Genet. Biol. 44:789798.
8. Andaluz, E.,, T. Ciudad,, J. Gómez-Raja,, R. Calderone, and, G. Larriba. 2006. Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol. Microbiol. 59:14521472.
9. Andaluz, E.,, T. Ciudad, and, G. Larriba. 2002. An evaluation of the role of LIG4 in genomic instability and adaptive mutagenesis in Candida albicans. FEMS Yeast Res. 2:341348.
10. Andaluz, E.,, R. Calderone,, G. Reyes, and, G. Larriba. 2001. Phenotypic analysis and virulence of Candida albicans LIG4 mutants. Infect. Immun. 69:137147.
11. Anderson, J. B.,, C. Sirjusingh, and, N. Ricker. 2004. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 168:19151923.
12. Arbour, M.,, E. Epp,, H. Hogues,, A. Sellam,, C. Lacroix,, J. Rauceo,, A. Mitchell,, M. Whiteway, and, A. Nantel. 2009. Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants. FEMS Yeast Res. 9:10701077.
13. Argueso, J. L.,, J. Westmoreland,, P. A. Mieczkowski,, M. Gawel,, T. D. Petes, and, M. A. Resnick. 2008. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl. Acad. Sci. USA 105:1184511850.
14. Auerbach, P. A.,, and B. Demple. 2010. Roles of Rev1, Pol ζ, Pol32 and Pol η in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae. Mutagenesis 25:6369.
15. Bai, Y.,, A. P. Davis, and, L. S. Symington. 1999. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153:11171130.
16. Bai, Y.,, and L.S. Symington. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:20252037.
17. Barton, R. C.,, and S. Scherer. 1994. Induced chromosome rearrangements and morphologic variation in Candida albicans. J. Bacteriol. 176:756763.
18. Baum, M.,, K. Sanyal,, P. K. Mishra,, N. Thaler, and, J. Carbon. 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc. Natl. Acad. Sci. USA 103:1487714882.
19. Bennett, R. J.,, and A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
20. Boiteux, S.,, and M. Guillet. 2004. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3:112.
21. Bouchonville, K.,, A. Forche,, K. E. Tang,, A. Selmecki, and, J. Berman. 2009. Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukaryot. Cell 8:15541566.
22. Bougnoux, M. E.,, D. Diogo,, N. Francois,, B. Sendid,, S. Veirmeire,, J. F. Colombel,, C. Bouchier,, H. Van Kruiningen,, C. d’Enfert, and, D. Poulain. 2006. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J. Clin. Microbiol. 44:18101820.
23. Bougnoux, M. E.,, D. M. Aanensen,, S. Morand,, M. Theraud,, B. G. Spratt, and, C. d’Enfert. 2004. Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infect. Genet. Evol. 4:243252.
24. Bougnoux, M. E.,, S. Morand, and, C. d’Enfert. 2002. Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. J. Clin. Microbiol. 40:12901297.
25. Butler, G.,, M. D. Rasmussen,, M. F. Lin,, M. A. Santos,, S. Sakthikumar,, C. A. Munro,, E. Rheinbay,, M. Grabherr,, A. Forche,, J. L. Reedy,, I. Agrafioti,, M. B. Arnaud,, S. Bates,, A. J. Brown,, S. Brunke,, M. C. Costanzo,, D. A. Fitzpatrick,, P. W. de Groot,, D. Harris,, L. L. Hoyer,, B. Hube,, F. M. Klis,, C. Kodira,, N. Lennard,, M. E. Logue,, R. Martin,, A. M. Neiman,, E. Nikolaou,, M. A. Quail,, J. Quinn,, M. C. Santos,, F. F. Schmitzberger,, G. Sherlock,, P. Shah,, K. A. Silverstein,, M. S. Skrzypek,, D. Soll,, R. Staggs,, I. Stansfield,, M. P. Stumpf,, P. E. Sudbery,, T. Srikantha,, Q. Zeng,, J. Berman,, M. Berriman,, J. Heitman,, N. A. Gow,, M. C. Lorenz,, B. W. Birren,, M. Kellis, and, C. A. Cuomo. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657662.
26. Campos, P. R.,, and L. M. Wahl. 2010. The adaptation rate of asexuals: deleterious mutations, clonal interference and population bottlenecks. Evolution 64:19731983.
27. Chan, J. E.,, and R. D. Kolodner. 2011. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty elements. PLoS Genet. 7:e1002089.
28. Chauhan, N.,, T. Ciudad,, A. Rodriguez-Alejandre,, G. Larriba,, R. Calderone, and, E. Andaluz. 2005. Virulence and karyotype analyses of rad52 mutants of Candida albicans: regeneration of a truncated chromosome of a reinte-grant strain (rad52/RAD52) in the host. Infect. Immun. 73:80698078.
29. Chen, X.,, B. B. Magee,, D. Dawson,, P. T. Magee, and, C. A. Kumamoto. 2004. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol. Microbiol. 51:551565.
30. Chibana, H.,, and P. T. Magee. 2009. The enigma of the major repeat sequence of Candida albicans. Future Microbiol. 4:171179.
31. Chu, W. S.,, B. B. Magee, and, P. T. Magee. 1993. Construction of an SfiI macrorestriction map of the Candida albicans genome. J. Bacteriol. 175:66376651.
32. Ciudad, T.,, E. Andaluz,, O. Steinberg-Neifach,, N. F. Lue,, N. A. Gow,, R. A. Calderone, and, G. Larriba. 2004. Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length. Mol. Microbiol. 53:11771194.
33. Cöic, E.,, T. Feldman,, A. S. Landman, and, J. E. Haber. 2008. Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae. Genetics 179:199211.
34. Coste, A.,, A. Selmecki,, A. Forche,, D. Diogo,, M. E. Bougnoux,, C. d’Enfert,, J. Berman, and, D. Sanglard. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6:18891904.
35. Coste, A.,, V. Turner,, F. Ischer,, J. Morschhauser,, A. Forche,, A. Selmecki,, J. Berman,, J. Bille, and, D. Sanglard. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172:21392156.
36. Cowen, L.,, D. Sanglard,, D. Calabrese,, C. Sirjusingh,, J. B. Anderson, and, L. M. Kohn. 2000. Evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 182:15151522.
37. Daigaku, Y.,, A. A. Davies, and, H. D. Ulrich. 2010. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465:951955.
38. Daley, J. M.,, P. L. Palmbos,, D. Wu, and, T. E. Wilson. 2005. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39:431451.
39. Davis, A. P.,, and L. S. Symington. 2001. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159:515525.
40. Deem, A.,, K. Barker,, K. Vanhulle,, B. Downing,, A. Vayl, and, A. Malkova. 2008. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179:18451860.
41. Desai, M. M.,, D. S. Fisher, and, A. W. Murray. 2007. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17:385394.
42. Diogo, D.,, C. Bouchier,, C. d’Enfert, and, M. E. Bougnoux. 2009. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet. Biol. 46:159168.
43. Dowell, R. D.,, O. Ryan,, A. Jansen,, D. Cheung,, S. Agar-wala,, T. Danford,, D. A. Bernstein,, P. A. Rolfe,, L. E. Heisler,, B. Chin,, C. Nislow,, G. Giaever,, P. C. Phillips,, G. R. Fink,, D. K. Gifford, and, C. Boone. 2010. Genotype to phenotype: a complex problem. Science 328:469.
44. Dunham, M. J.,, H. Badrane,, T. Ferea,, J. Adams,, P. O. Brown,, F. Rosenzweig, and, D. Botstein. 2002. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99:1614416149.
45. Dunkel, N.,, J. Blass,, P. D. Rogers, and, J. Morschhauser. 2008. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69:827840.
46. Dunkel, N.,, T. T. Liu,, K. S. Barker,, R. Homayouni,, J. Morschhauser, and, P. D. Rogers. 2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell 7:11801190.
47. Ehrenreich, I. M.,, N. Torabi,, Y. Jia,, J. Kent,, S. Martis,, J. A. Shapiro,, D. Gresham,, A. A. Caudy, and, L. Kruglyak. 2010. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:10391042.
48. Endo, K.,, Y. Tago,, Y. Daigaku, and, K. Yamamoto. 2007. Error-free RAD52 pathway and error-prone REV3 pathway determines spontaneous mutagenesis in Saccharomyces cerevisiae. Genes Genet. Syst. 82:3542.
49. Espejel, S.,, S. Franco,, S. Rodriguez-Perales,, S. D. Bouffler,, J. C. Cigudosa, and, M. A. Blasco. 2002. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 21:22072219.
50. Fisher, T. S.,, and V. A. Zakian. 2005. Ku: a multifunctional protein involved in telomere maintenance. DNA Repair 4:12151226.
51. Forche, A.,, P. T. Magee,, A. Selmecki,, J. Berman, and, G. May. 2009. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182:799811.
52. Forche, A.,, K. Alby,, D. Schaefer,, A. D. Johnson,, J. Berman, and, R. J. Bennett. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6:e110.
53. Forche, A.,, G. May, and, P. T. Magee. 2005. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot. Cell 4:156165.
54. Forche, A.,, P. T. Magee,, B. B. Magee, and, G. May. 2004. Genome-wide single-nucleotide polymorphism map for Candida albicans. Eukaryot. Cell 3:705714.
55. Forche A.,, G. May,, J. Beckerman,, S. Kauffman,, J. Becker, and, P. T. Magee. 2003. A system for studying genetic changes in Candida albicans during infection. Fungal Genet. Biol. 39:3850.
56. Fradin, C.,, M. Kretschmar,, T. Nichterlein,, C. Gaillardin,, C. d’Enfert, and, B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47:15231543.
57. Galhardo, R. S.,, P. J. Hastings, and, S. M. Rosenberg. 2007. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42:399435.
58. Game, J. C.,, and S. B. Chernikova. 2009. The role of RAD6 in recombinational repair, checkpoints, and meiosis via histone modification. DNA Repair 9:470482.
59. Garcia-Prieto, F.,, J. Gomez-Raja,, E. Andaluz,, R. Calderone, and, G. Larriba. 2010. Role of the homologous recombination genes RAD51 and RAD59 in the resistance of Candida albicans to UV light, radiomimetic and anti-tumor compounds and oxidizing agents. Fungal Genet. Biol. 47:433445.
60. Gerik, K. J.,, X. Li,, A. Pautz, and, P. M. Burgers. 1998. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273:1974719755.
61. Gomez-Raja, J.,, E. Andaluz,, B. Magee,, R. Calderone, and, G. Larriba. 2008. A single SNP, G929T (Gly310Val), determines the presence of a functional and a nonfunctional allele of HIS4 in Candida albicans SC5314: detection of the non-functional allele in laboratory strains. Fungal Genet. Biol. 45:527541.
62. Gonzalez, C.,, L. Hadany,, R. G. Ponder,, M. Price,, P. J. Hastings, and, S. M. Rosenberg. 2008. Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet. 4:e1000208.
63. Graser, Y.,, M. Volovsek,, J. Arrington,, G. Schonian,, W. Presber,, T. G. Mitchell, and, R. Vilgalys. 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93:1247312477.
64. Greenberg, J. R.,, N. P. Price,, R. P. Oliver,, F. Sherman, and, E. Rustchenko. 2005. Candida albicans SOU1 encodes a sorbose reductase required for l-sorbose utilization. Yeast 22:957969.
65. Gresham, D.,, M. M. Desai,, C. M. Tucker,, H. T. Jenq,, D. A. Pai,, A. Ward,, C. G. DeSevo,, D. Botstein, and, M. J. Dunham. 2008. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4:e1000303.
66. Habraken, Y.,, P. Sung,, L. Prakash, and, S. Prakash. 1995. Structure-specific nuclease activity in yeast nucleotide excision repair protein Rad2. J. Biol. Chem. 270:3019430198.
67. Hanna, M.,, L. G. Ball,, A. H. Tong,, C. Boone, and, W. Xiao. 2007. Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork. Mutat. Res. 625:164176.
68. Harfe, B. D.,, and S. Jinks-Robertson. 2000. Mismatch repair proteins and mitotic genome stability. Mutat. Res. 451:151167.
69. Heilmann, C. J.,, S. Schneider,, K. S. Barker,, P. D. Rogers, and, J. Morschhauser. 2010. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob. Agents Chemother. 54:353359.
70. Hicks, W. M.,, M. Kim, and, J. E. Haber. 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:8285.
71. Hoege, C.,, B. Pfander,, G. L. Moldovan,, G. Pyrowolakis, and, S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135141.
72. Hube, B. 2004. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr. Opin. Microbiol. 7:336341.
73. Hwang, J. Y.,, S. Smith, and, K. Myung. 2005. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Genetics 169:19271937.
74. Ibrahim, A. S.,, B. B. Magee,, C. D. Sheppard,, M. Yang,, S. Kauffman,, J. Becker,, J. E. Edwards, Jr., and, P. T. Magee. 2005. Effects of ploidy and mating type on virulence of Candida albicans. Infect. Immun. 73:73667374.
75. Ira, G.,, and J. E. Haber. 2002. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22:63846392.
76. Ivanov, E. L.,, N. Sugawara,, K. Fishman-Lobell, and, J. E. Haber. 1996. Genetics requirements for the single-strand break annealing pathway of double strand break repair in Saccharomyces cerevisiae. Genetics 142:693704.
77. Iwaguchi, S. I.,, M. Sato,, B. B. Magee,, P. T. Magee,, K. Makimura, and, T. Suzuki. 2001. Extensive chromosome translocation in a clinical isolate showing the distinctive carbohydrate assimilation profile from a candidiasis patient. Yeast 18:10351046.
78. Iwaguchi, S. I.,, M. Homma, and, K. Tanaka. 1990. Variation in the electrophoretic karyotype analysed by the assignment of DNA probes in Candida albicans. J. Gen. Microbiol. 136:24332442.
79. Janbon, G.,, F. Sherman, and, E. Rustchenko. 1998. Monosomy of a specific chromosome determines l-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc. Natl. Acad. Sci. USA 95:51505155.
80. Jiricny, J. 2006. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7:335346.
81. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
82. Kabir, M. A.,, A. Ahmad,, J. R. Greenberg,, Y. K. Wang, and, E. Rustchenko. 2005. Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators. Proc. Natl. Acad. Sci. USA 102:1214712152.
83. Kao, K. C.,, and G. Sherlock. 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40:14991504.
84. Kathe, S. D.,, R. Barrantes-Reynolds,, P. Jaruga,, M. R. Newton,, C. J. Burrows,, V. Bandaru,, M. Dizdaroglu,, J. P. Bond, and, S. S. Wallace. 2009. Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. DNA Repair 8:643653.
85. Kolodner, R. D.,, and G. T. Marsischky. 1999. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9:8996.
86. Krogh, B. O.,, and L. S. Symington. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38:233271.
87. Larriba, G.,, and R. Calderone. 2008. Heterozygosity and loss of heterozygosity in Candida albicans, p. 43–52. In G. San Blas and, R. Calderone (ed.), Pathogenic Fungi: Host Interactions and Emerging Strategies for Control. Horizon Press, Wymondham, United Kingdom.
88. Lasker, B. A.,, G. F. Carle,, G. S. Kobayashi, and, G. Medoff. 1989. Comparison of the separation of Candida albicans chromosome-size DNA by pulse-field gel electrophoresis techniques. Nucleic Acids Res. 17:37833793.
89. Lawrence, C. W. 2002. Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair 1:425435.
90. Legrand, M.,, C. L. Chan,, P. A. Jauert, and, D. T. Kirkpatrick. 2008. Analysis of base excision and nucleotide excision repair in Candida albicans. Microbiology 154:24462456.
91. Legrand, M.,, C. L. Chan,, P. A. Jauert, and, D. T. Kirkpatrick. 2007. Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans. Eukaryot. Cell 6:21942205.
92. Legrand, M.,, C. L. Chan,, P. A. Jauert, and, D. T. Kirkpatrick. 2011. The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans. Fungal Genet. Biol. 48:823830.
93. Leng, P.,, P. E. Sudbery, and, A. J. P. Brown. 2000. Rad6 represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol. Microbiol. 35:12641275.
94. Lenormand, T.,, and S. P. Otto. 2000. The evolution of recombination in a heterogeneous environment. Genetics 156:423438.
95. Lephart, P. R.,, and P. T. Magee. 2006. Effect of the major repeat sequence on mitotic recombination in Candida albicans. Genetics 174:17371744.
96. Lephart, P. R.,, H. Chibana, and, P. T. Magee. 2005. Effect of the major repeat sequence on chromosome loss in Candida albicans. Eukaryot. Cell 4:733741.
97. Lin, C. Y.,, Y. C. Chen,, H. J. Lo,, K. W. Chen, and, S. Y. Li. 2007. Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing. J. Clin. Microbiol. 45:24522459.
98. Llorente, B.,, C. E. Smith, and, L. S. Symington. 2008. Break-induced replication: what is it and what is it for? Cell Cycle 7:859864.
99. Lockhart, S. R.,, J. J. Fritch,, A. S. Meier,, K. Schroppel,, T. Srikantha,, R. Galask, and, D. R. Soll. 1995. Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. J. Clin. Microbiol. 33:15011509.
100. Lydeard, J. R.,, S. Jain,, M. Yamaguchi, and, J. E. Haber. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820823.
101. Lynch, M.,, W. Sung,, K. Morris,, N. Coffey,, C. R. Landry,, E. B. Dopman,, W. J. Dickinson,, K. Okamoto,, S. Kulkarni,, D. L. Hartl, and, W. K. Thomas. 2008. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. USA 105:92729277.
102. Lyndaker, A. M.,, and E. Alani. 2010. A tale of tails: insights into the coordination of 3’ end processing during homologous recombination. Bioessays 31:315321.
103. Mable, B. K.,, and S. P. Otto. 2001. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genet. Res. 77:926.
104. Magee, B. B.,, M. D. Sanchez,, D. Saunders,, D. Harris,, M. Berriman, and, P. T. Magee. 2008. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species of Candida dubliniensis from the virulent Candida albicans. Fungal Genet. Biol. 45:338350.
105. Magee, B. B.,, and P. T. Magee. 1987. Electrophoretic karyotypes and chromosome numbers in Candida species. J. Gen. Microbiol. 133:425430.
106. Magee, P. T. 2007. Genomic structure and dynamics in Candida albicans, p. 7–28. In C. d’Enfert and, B. Hube (ed.), Candida: Comparative and Functional Genomics. Caister Academic Press, Norfolk, United Kingdom.
107. Malkova, A.,, E. L. Ivanov, and, J. E. Haber. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced replication. Proc. Natl. Acad. Sci. USA 93:71317136.
108. Malkova, A.,, M. L. Naylor,, M. Yamaguchi,, G. Ira, and, J. E. Haber. 2005. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell. Biol. 25:933944.
109. Mandegar, M. A.,, and S. P. Otto. 2007. Mitotic recombination counteracts the benefits of genetic segregation. Proc. Biol. Sci. 274:13011307.
110. Mansfield, B. E.,, H. N. Oltean,, B. G. Oliver,, S. J. Hoot,, S. E. Leyde,, L. Hedstrom, and, T. C. White. 2010. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog. 6:e1001126.
111. Marr, K. A.,, C. N. Lyons,, K. Ha,, T. R. Rustad, and, T. C. White. 2001. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob. Agents Chemother. 45:5259.
112. Martinez, S. L.,, and R. D. Kolodner. 2010. Functional analysis of human mismatch repair gene mutations identifies weak alleles and polymorphisms capable of polygenic interactions. Proc. Natl. Acad. Sci. USA 107:50705075.
113. Masutani, C.,, M. Araki,, A. Yamada,, R. Kusumoto,, T. Nogimori,, T. Maekawa,, S. Iwai, and, F. Hanaoka. 1999. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:34913501.
114. Mazin, A. V.,, A. A. Alexeev, and, S. C. Kowalczykowski. 2003. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J. Biol. Chem. 278:1402914036.
115. McDonald, J. P.,, and R. Rothstein. 1994. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 Rad52 independent recombination. Genetics 137:393405.
116. McEachern, M.,, and J. E. Haber. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75:111135.
117. Mimitou, E. P.,, and L. S. Symington. 2009. DNA end resection: many nucleases make light work. DNA Repair 8:983995.
118. Mishina, Y.,, E. M. Duguid, and, C. He. 2006. Direct reversal of DNA alkylation damage. Chem. Rev. 106:215232.
119. Modrich, P. 2006. Mechanisms in eukaryotic mismatch repair. J. Biol. Chem. 281:3030530309.
120. Morio, F.,, C. Loge,, B. Besse,, C. Hennequin, and, P. Le Pape. 2010. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn. Microbiol. Infect. Dis. 66:373384.
121. Morrow, D. M.,, C. Connelly, and, P. Hieter. 1997. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382.
122. Morschhauser, J. 2010. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet. Biol. 47:94106.
123. Morschhauser, J.,, K. S. Barker,, T. T. Liu,, B. W. J. Bla,, R. Homayouni, and, P. D. Rogers. 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3:e164.
124. Mott, C.,, and L. S. Symmington. 2011. RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair 10:408415.
125. Navarro-Garcia, F.,, R. M. Perez-Diaz,, B. B. Magee,, J. Pla,, C. Nombela, and, P. Magee. 1995. Chromosome reorganization in Candida albicans 1001 strain. J. Med. Vet. Mycol. 33:361366.
126. Nelson, J. R.,, C. W. Lawrence, and, D. C. Hinkle. 1996. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729731.
127. Niimi, K.,, B. C. Monk,, A. Hirai,, K. Hatakenaka,, T. Umeyama,, E. Lamping,, K. Maki,, K. Tanabe,, T. Kamimura,, F. Ikeda,, Y. Uehara,, R. Kano,, A. Hasegawa,, R. D. Cannon, and, M. Niimi. 2010. Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J. Antimicrob. Chemother. 65:842852.
128. Nimonkar, A. V.,, R. A. Sica, and, S. C. Kowalczykowski. 2009. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc. Natl. Acad. Sci. USA 106:30773082.
129. Noble, S.,, and A. D. Johnson. 2007. Genetics of Candida albicans, a diploid human fungal pathogen. Annu. Rev. Genet. 14:423426.
130. Odds, F. C. 2010. Molecular phylogenetics and epidemiology of Candida albicans. Future Microbiol. 5:6779.
131. Odds, F. C.,, M. E. Bougnoux,, D. J. Shaw,, J. M. Bain,, A. D. Davidson,, D. Diogo,, M. D. Jacobsen,, M. Lecomte,, S. Y. Li,, A. Tavanti,, M. C. Maiden,, N. A. Gow, and, C. d’Enfert. 2007. Molecular phylogenetics of Candida albicans. Eukaryot. Cell 6:10411052.
132. Odds, F. C.,, A. D. Davidson,, M. D. Jacobsen,, A. Tavanti,, J. A. Whyte,, C. C. Kibbler,, D. H. Ellis,, M. C. Maiden,, D. J. Shaw, and, N. A. Gow. 2006. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J. Clin. Microbiol. 44:36473658.
133. Oliver, B. G.,, J. L. Song,, J. H. Choiniere, and, T. C. White. 2007. cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot. Cell 6:22312239.
134. Otto, S. P.,, and A. C. Gerstein. 2008. The evolution of haploidy and diploidy. Curr. Biol. 18:R1121–R1124.
135. Pannunzio, N. R.,, G. M. Manthey, and, A. M. Bailis. 2008. RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae. DNA Repair 7:788800.
136. Pannunzio, N. R.,, G. M. Manthey, and, A. M. Bailis. 2010. RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr. Genet. 56:87100.
137. Paques, F.,, and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349404.
138. Pardo, B.,, B. Gomez-Gonzalez, and, A. Aguilera. 2009. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol. Life Sci. 66:10391056.
139. Perea, S.,, J. L. Lopez-Ribot,, B. L. Wickes,, W. R. Kirkpatrick,, O. P. Dib,, S. P. Bachmann,, S. M. Keller,, M. Martinez, and, T. F. Patterson. 2002. Molecular mechanisms of fluconazole resistance in Candida dubliniensis isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. 46:16951703.
140. Perepnikhatka, V.,, F. J. Fischer,, M. Niimi,, R. A. Baker,, R. D. Cannon,, Y. K. Wang,, F. Sherman, and, E. Rustchenko. 1999. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J. Bacteriol. 181:40414049.
141. Perlin, D. S. 2007. Resistance to echinocandin-class antifungal drugs. Drug Resist. Update 10:121130.
142. Pohl, T. J.,, and J. A. Nickoloff. 2008. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol. Cell. Biol. 28:897906.
143. Polakova, S.,, C. Blume,, J. A. Zarate,, M. Mentel,, D. Jorck-Ramberg,, J. Stenderup, and, J. Piskur. 2009. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc. Natl. Acad. Sci. USA 106:26882693.
144. Ponder, R. G.,, N. C. Fonville, and, S. M. Rosenberg. 2005. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol. Cell 19:791804.
145. Prado, F.,, F. Cortes-Ledesma,, P. Huertas, and, A. Aguilera. 2003. Mitotic recombination in Saccharomyces cerevisiae. Curr. Genet. 42:185198.
146. Prakash, S.,, R. E. Johnson, and, L. Prakash. 2005. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74:317353.
147. Prakash, S.,, and L. Prakash. 2000. Nucleotide excision repair in yeast. Mutat. Res. 451:1324.
148. Pujol, C.,, J. Reynes,, F. Renaud,, M. Raymond,, M. Tibayrenc,, F. J. Ayala,, F. Janbon,, M. Mallie, and, J. M. Bastide. 1993. The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc. Natl. Acad. Sci. USA 90:94569459.
149. Putnam, C. D.,, T. K. Hayes, and, R. D. Kolodner. 2009. Specific pathways prevent duplication-mediated genome rearrangements. Nature 460:984989.
150. Rattray, A. J.,, and L. S. Symington. 1994. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138:587595.
151. Rustad, T. R.,, D. A. Stevens,, M. A. Pfaller, and, T. C. White. 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148:10611072.
152. Rustchenko, E. 2007. Chromosome instability in Candida albicans. FEMS Yeast Res. 7:211.
153. Rustchenko, E. P.,, and F. Sherman. 2003. Genetic instability of Candida albicans, p. 723–777. In D. H. Howard (ed.), Pathogenic Fungi in Humans and Animals, 2nd ed. Marcel Dekker Inc., New York, NY.
154. Rustchenko, E. P.,, D. H. Howard, and, F. Sherman. 1997. Variation in assimilating functions occurs in spontaneous Candida albicans mutants having chromosomal alterations. Microbiology 143:17651778.
155. Rustchenko, E. P.,, D. H. Howard, and, F. Sherman. 1994. Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J. Bacteriol. 176:32313241.
156. Rustchenko-Bulgac, E. P.,, and D. H. Howard. 1993. Multiple chromosomal and phenotypic changes in spontaneous mutants of Candida albicans. J. Gen. Microbiol. 139:11951207.
157. Rustchenko-Bulgac, E. P. 1991. Variations of Candida albicans electrophoretic karyotypes. J. Bacteriol. 173:65866596.
158. Rustchenko-Bulgac, E. P.,, F. Sherman, and, J. B. Hicks. 1990. Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans. J. Bacteriol. 172:12761283.
159. Sancar, G. B. 1985. Expression of a Saccharomyces cerevisiae photolyase gene in Escherichia coli. J. Bacteriol. 161:769771.
160. Sanglard, D. 2007. Genomic view on antifungal resistance mechanisms among yeasts and fungal pathogens, p. 359–381. In C. d’Enfert and, B. Hube (ed.), Candida: Comparative and Functional Genomics. Caister Academic Press, Norfolk, United Kingdom.
161. Sanyal, K.,, M. Baum, and, J. Carbon. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl. Acad. Sci. USA 101:1137411379.
162. Scherer, S.,, and P. T. Magee. 1990. Genetics of Candida albicans. Microbiol. Rev. 54:226241.
163. Schoustra, S. E.,, A. J. Debets,, M. Slakhorst, and, R. F. Hoekstra. 2007. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet. 3:e68.
164. Schubert, S.,, P. D. Rogers, and, J. Morschhauser. 2008. Gain-of-function mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole-resistant Candida dubliniensis strains. Antimicrob. Agents Chemother. 52:42744280.
165. Selmecki, A.,, A. Forche, and, J. Berman. 2010. Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot. Cell 9:9911008.
166. Selmecki, A.,, M. Gerami-Neraj,, C. Paulson,, A. Forche, and, J. Berman. 2008. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68:624641.
167. Selmecki, A.,, A. Forche, and, J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367370.
168. Selmecki, A.,, S. Bergmann, and, J. Berman. 2005. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol. Microbiol. 55:15531565.
169. Selmecki, A. M.,, K. Dulmage,, L. E. Cowen,, J. B. Anderson, and, J. Berman. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5:e1000705.
170. Shin, J. H.,, M. J. Chae,, J. W. Song,, S. I. Jung,, D. Cho,, S. J. Kee,, S. H. Kim,, M. G. Shin,, S. P. Suh, and, D. W. Ryang. 2007. Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia. J. Clin. Microbiol. 45:23852391.
171. Shinohara, A.,, H. Ogawa, and, T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457470.
172. Silver, P. M.,, B. G. Oliver, and, T. C. White. 2004. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot. Cell 3:13911397.
173. Smith, C. E.,, A. F. Lam, and, L. S. Symington. 2009. Aberrant double-strand break repair resulting in half crossvers in mutants defective in Rad51 or the DNA polymerase δ complex. Mol. Cell. Biol. 29:14321441.
174. Snell, R. G.,, I. F. Hermans,, R. J. Wilkins, and, B. E. Corner. 1987. Chromosomal variations in Candida albicans. Nucleic Acids Res. 15:3625.
175. Solinger, J. A.,, K. Kiianitsa, and, W. D. Heyer. 2002. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol. Cell 10:11751188.
176. Spampinato, C. P.,, R. L. Gomez,, C. Galles, and, L. D. Lario. 2009. From bacteria to plants: a compendium of mismatch repair assays. Mutat. Res. 682:110128.
177. Staib, P.,, M. Krestmar,, T. Nichterlein,, H. Hof, and, J. Morschhäuser. 2002. Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol. Microbiol. 44:13511366.
178. Stellwagen, A. E.,, Z. W. Haimberger,, J. R. Veatch, and, D. E. Gottschling. 2003. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17:23842395.
179. Storchova, Z.,, A. Breneman,, J. Cande,, J. Dunn,, K. Burbank,, E. O’Toole, and, D. Pellman. 2006. Genome-wide analysis of polyploidy in yeast: scaling effects and genome stability. Nature 443:541547.
180. Sugawara, N.,, and J. E. Haber. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563575.
181. Sugawara, N.,, G. Ira, and, J. E. Haber. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20:53005309.
182. Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:2819428197.
183. Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11:11111121.
184. Sung, P.,, and D. L. Robberson. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453461.
185. Suzuki, T.,, I. Kobayashi,, T. Kanbe, and, K. Tanaka. 1989. High frequency variation of colony morphology and chromosome reorganization in the pathogenic yeast Candida albicans. J. Gen. Microbiol. 135:425434.
186. Symington, L. S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630670.
187. Tavanti, A.,, N. A. Gow,, M. C. Maiden,, F. C. Odds, and, D. J. Shaw. 2004. Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genet. Biol. 41:553562.
188. Torres, E. M.,, T. Sokolsky,, C. M. Tucker,, L. Y. Chan,, M. Boselli,, M. J. Dunham, and, A. Amon. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916924.
189. van het Hoog, M.,, T. J. Rast,, M. Martchenko,, S. Grindle,, D. Dignard,, H. Hogues,, C. Cuomo,, M. Berriman,, S. Scherer,, B. B. Magee,, M. Whiteway,, H. Chibana,, A. Nantel, and, P. T. Magee. 2007. Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol. 8:R52.
190. Van Houten, B.,, D. L. Croteau,, M. J. DellaVecchia,, H. Wang, and, C. Kisker. 2005. “Close-fitting sleeves”: DNA damage recognition by the UvrABC nuclease system. Mutat. Res. 577:92117.
191. White, T. C. 1997. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14α demethylase in Candida albicans. Antimicrob. Agents Chemother. 41:14881494.
192. Xiao, W.,, and L. Samson. 1992. The Saccharomyces cerevisiae MGT1 DNA repair methyltransferase gene: its promoter and entire coding sequence, regulation and in vivo biological functions. Nucleic Acids Res. 20:35993606.
193. Yoshida, J.,, K. Umezu, and, H. Maki. 2003. Positive and negative roles of homologous recombination in the maintenance of genome stability in Saccharomyces cerevisiae. Genetics 164:3146.
194. Zheng, X.,, Y. Wang, and, Y. Wang. 2004. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23:18451856.


Generic image for table

Pathways responsible for maintenance of genetic stability

Citation: Larriba G, Calderone R. 2012. Genome Instability and DNA Repair, p 57-74. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error