1887

Chapter 6 : Switching and Mating

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Switching and Mating, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap06-2.gif

Abstract:

The chapter focuses on the switching and mating processes of species. Hull and Johnson found orthologs of three mating-type genes in the mating type-like (MTL) locus. Although the scheme for mating and the regulation of the response to the mating pheromones proved in subsequent studies to be in general similar to that of and hence that of the hemiascomycetes in general, the biggest surprise was the fundamental and unique role that white-opaque switching played in the mating process of . The response of an opaque cell to pheromone produced by the opposite mating type was shown to be highly similar to that of , including the components of the major regulatory pathway that transduces the pheromone signal. The spontaneous transition between the white and opaque phenotypes by a selected group of strains had been shown to affect a number of phenotypic and virulence traits before the discovery by Miller and Johnson that it was an essential step in the mating process. The sensitivity of the opaque phenotype to high temperature caused a conundrum regarding the relationship of host and mating. The host signals that have been identified stimulate the rate of white-to-opaque switching, but switching occurs spontaneously and in both directions. Gradients of pheromone would be extremely prone to mechanical disruption and dissipation by diffusion if in a purely liquid environment. A biofilm would provide a protective environment against disruption, and a porous matrix would reduce diffusion.

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6

Key Concept Ranking

Gene Expression and Regulation
0.5298135
Single Nucleotide Polymorphism
0.41012618
0.5298135
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Genotype at the mating-type locus and basic regulation of mating types. (A) Mating-type locus of an /α cell; (B) mating-type locus of an / cell; (C) mating-type locus of an α/α cell; (D) inhibition of a and α gene expression and mating by the 1-α2 complex in /α cells; (E) induction of genes and mating in / cells; (F) induction of α genes and mating in α/α cells. The genes in all panels are described in the text. doi:10.1128/9781555817176.ch6.f1

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cell biology of shmoo formation and fusion. (A) Initial opaque / and α/α cells; (B) shmoo formation, in which mating projections form; (C) chemotropism of tubes towards each other; (D) fusion of tubes; (E) fusion of daughter cell nuclei; (F) growth of daughter cell and division of tetraploid nucleus; (G) further nuclear chiasms; (H) budding of daughter cell. Arrows point to nuclei. doi:10.1128/9781555817176.ch6.f2

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The mating process of involves homozygosis at the locus, a switch from white to opaque, mating, and the return to a diploid from a tetraploid state. Note that mating competency is attained through a switch from white to opaque. doi:10.1128/9781555817176.ch6.f3

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The pheromone response of white cells shares the upper components of the conserved pheromone response pathways of opaque cells and haploid cells in the mating process. Homology between components is noted by the symbol “=” and lack of homology by the symbol “≅”. doi:10.1128/9781555817176.ch6.f4

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Spontaneous switching is regulated by at least three environmental components of the gastrointestinal tract, CO, glucose, and GlcNAc. Each function through the Ras1/ cAMP pathway and an unidentified pathway. CO and GlcNAc have one major and one minor pathway. The glucose effect is much lower than that of CO and GlcNAc. All pathways function through Wor1. doi:10.1128/9781555817176.ch6.f5

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

It has been hypothesized ( ) that the white cell response to pheromone is to facilitate mating by developing an enhanced biofilm which serves as a protective environment for opaque cell mating. The hypothesized steps are as follows. (A) White / and α/α cells overlap in nature. (B) Rare opaque / and α/α cells appear as a result of spontaneous switching. (C) These minority opaque cells induce white cells of opposite mating type to form a biofilm. (D) Biofilms protect pheromone gradients while driving chemotropism in the mating process. doi:10.1128/9781555817176.ch6.f6

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Hypothesized evolution of the white pheromone response pathway. Note that all components were derived from ancestral pathways still active in (A) The upper components were all derived from the ancestral pathways for the pheromone response of mating competent cells to pheromone. (B) The transcription factor Tec1 was derived from a filamentation pathway. (C) The downstream genes upregulated by Tec1 were derived from the biofilm program. See the work of Sahni et al. ( ) for details. doi:10.1128/9781555817176.ch6.f7

Citation: Soll D. 2012. Switching and Mating, p 75-90. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817176.ch06
1. Alby, K.,, D. Schaefer, and, R. J. Bennett. 2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460:890893.
2. Anderson, J.,, L. Cundiff,, B. Schnars,, M. X. Gao,, I. Mackenzie, and, D. R. Soll. 1989. Hypha formation in the white-opaque transition of Candida albicans. Infect. Immun. 57:458467.
3. Anderson, J.,, R. Mihalik, and, D. R. Soll. 1990. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J. Bacteriol. 172:224235.
4. Anderson, J. M.,, and D. R. Soll. 1987. Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J. Bacteriol. 169:55795588.
5. Aparicio, O. M.,, B. L. Billington, and, D. E. Gottschling. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:12791287.
6. Barbour, A. G. 2003. Antigenic variation in Borrelia: relapsing fever and Lyme borreliosis, p. 319–356. In A. Craig and, A. Scherf (ed.), Antigenic Variation. Academic Press Elsevier, London, United Kingdom.
7. Barry, J. D.,, and R. McCulloch. 2003. Trypanosome antigenic variation—a heavy investment in the evasion of immunity, p. 224–242. In A. Craig and, A. Scherf (ed.), Antigenic Variation. Academic Press Elsevier, London, United Kingdom.
8. Bennett, R. J.,, M. A. Uhl,, M. G. Miller, and, A. D. Johnson. 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23:81898201.
9. Bennett, R. J.,, M. G. Miller,, P. R. Chua,, M. E. Maxon, and, A. D. Johnson. 2005. Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol. Microbiol. 55:10461059.
10. Bennett, R. J.,, and A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
11. Bennett, R. J.,, and A. D. Johnson. 2006. The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans. Mol. Microbiol. 62:100119.
12. Bergen, M. S.,, E. Voss, and, D. R. Soll. 1990. Switching at the cellular level in the white-opaque transition of Candida albicans. J. Gen. Microbiol. 136:19251936.
13. Borneman, A. R.,, T. A. Gianoulis,, Z. D. Zhang,, H. Yu,, J. Rozowsky,, M. R. Seringhaus,, L. Y. Wang,, M. Gerstein, and, M. Snyder. 2007. Divergence of transcription factor binding sites across related yeast species. Science 317:815819.
14. Borst, P. 2003. Mechanisms of antigenic variation: an overview, p. 1–15. In A. Craig and, A. Scherf (ed.), Antigenic Variation. Academic Press Elsevier, London, United Kingdom.
15. Bougnoux, M. E.,, C. Pujol,, D. Diogo,, C. Bouchier,, D. R. Soll, and, C. d’Enfert. 2008. Mating is rare within as well as between clades of the human pathogen Candida albicans. Fungal Genet. Biol. 45:221231.
16. Braun, B. R.,, H. M. van Het,, C. d’Enfert,, M. Martchenko,, J. Dungan,, A. Kuo,, D. O. Inglis,, M. A. Uhl,, H. Hogues,, M. Berriman,, M. Lorenz,, A. Levitin,, U. Oberholzer,, C. Bachewich,, D. Harcus,, A. Marcil,, D. Dignard,, T. Iouk,, R. Zito,, L. Frangeul,, F. Tekaia,, K. Rutherford,, E. Wang,, C. A. Munro,, S. Bates,, N. A. Gow,, L. L. Hoyer,, G. Kohler,, J. Morschhauser,, G. Newport,, S. Znaidi,, M. Raymond,, B. Turcotte,, G. Sherlock,, M. Costanzo,, J. Ihmels,, J. Berman,, D. Sanglard,, N. Agabian,, A. P. Mitchell,, A. D. Johnson,, M. White-way, and, A. Nantel. 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet. 1:3657.
17. Butler, G.,, M. D. Rasmussen,, M. F. Lin,, M. A. Santos,, S. Sakthikumar,, C. A. Munro,, E. Rheinbay,, M. Grabherr,, A. Forche,, J. L. Reedy,, I. Agrafioti,, M. B. Arnaud,, S. Bates,, A. J. Brown,, S. Brunke,, M. C. Costanzo,, D. A. Fitzpatrick,, P. W. de Groot,, D. Harris,, L. L. Hoyer,, B. Hube,, F. M. Klis,, C. Kodira,, N. Lennard,, M. E. Logue,, R. Martin,, A. M. Neiman,, E. Nikolaou,, M. A. Quail,, J. Quinn,, M. C. Santos,, F. F. Schmitzberger,, G. Sherlock,, P. Shah,, K. A. Silverstein,, M. S. Skrzypek,, D. Soll,, R. Staggs,, I. Stansfield,, M. P. Stumpf,, P. E. Sudbery,, T. Srikantha,, Q. Zeng,, J. Berman,, M. Berriman,, J. Heitman,, N. A. Gow,, M. C. Lorenz,, B. W. Birren,, M. Kellis, and, C. A. Cuomo. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657662.
18. Chen, J.,, J. Chen,, S. Lane, and, H. Liu. 2002. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol. Microbiol. 46:13351344.
19. Chen, P.,, S. K. Sapperstein,, J. D. Choi, and, S. Michaelis. 1997. Biogenesis of the Saccharomyces cerevisiae mating pheromone a-factor. J. Cell Biol. 136:251269.
20. Cherkasova, V.,, D. M. Lyons, and, E. A. Elion. 1999. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Genetics 151:9891004.
21. Cote, P.,, and M. Whiteway. 2008. The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest. Mol. Microbiol. 68:392404.
22. Daniels, K. J.,, T. Srikantha,, S. R. Lockhart,, C. Pujol, and, D. R. Soll. 2006. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25:22402252.
23. Dignard, D.,, and M. Whiteway. 2006. SST2, a regulator of G-protein signaling for the Candida albicans mating response pathway. Eukaryot. Cell 5:192202.
24. Dignard, D.,, A. L. El-Naggar,, M. E. Logue,, G. Butler, and, M. Whiteway. 2007. Identification and characterization of MFA1, the gene encoding Candida albicans a-factor pheromone. Eukaryot. Cell 6:487494.
25. Dranginis, A. M. 1990. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature 347:682685.
26. Dumitru, R.,, D. H. Navarathna,, C. P. Semighini,, C. G. Elowsky,, R. V. Dumitru,, D. Dignard,, M. Whiteway,, A. L. Atkin, and, K. W. Nickerson. 2007. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot. Cell 6:465472.
27. Forche, A.,, G. Schonian,, Y. Graser,, R. Vilgalys, and, T. G. Mitchell. 1999. Genetic structure of typical and atypical populations of Candida albicans from Africa. Fungal Genet. Biol. 28:107125.
28. Forche, A.,, K. Alby,, D. Schaefer,, A. D. Johnson,, J. Berman, and, R. J. Bennett. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6:e110.
29. Gartner, A.,, A. Jovanović,, D.-I. Jeoung,, S. Bourlat,, F. R. Cross, and, G. Ammerer. 1998. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo. Mol. Cell. Biol. 18:36813691.
30. Geiger, J.,, D. Wessels,, S. R. Lockhart, and, D. R. Soll. 2004. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect. Immun. 72:667677.
31. Goldman, G. H.,, M. E. da Silva Ferreira,, M. E. dos Reis,, M. Savoldi,, D. Perlin,, S. Park,, P. C. Godoy Martinez,, M. H. Goldman, and, A. L. Colombo. 2004. Evaluation of fluconazole resistance mechanisms in Candida albicans clinical isolates from HIV-infected patients in Brazil. Diagn. Microbiol. Infect. Dis. 50:2532.
32. Gottschling, D. E.,, O. M. Aparicio,, B. L. Billington, and, V. A. Zakian. 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751762.
33. Graser, Y.,, M. Volovsek,, J. Arrington,, G. Schonian,, W. Presber,, T. G. Mitchell, and, R. Vilgalys. 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93:1247312477.
34. Heitman, J. 2009. Microbial genetics: love the one you’re with. Nature 460:807808.
35. Hnisz, D.,, T. Schwarzmuller, and, K. Kuchler. 2009. Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol. Microbiol. 74:115.
36. Huang, G.,, H. Wang,, S. Chou,, X. Nie,, J. Chen, and, H. Liu. 2006. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc. Natl. Acad. Sci. USA 103:1281312818.
37. Huang, G.,, T. Srikantha,, N. Sahni,, S. Yi, and, D. R. Soll. 2009. CO2 regulates white-to-opaque switching in Candida albicans. Curr. Biol. 19:330334.
38. Huang, G.,, S. Yi,, N. Sahni,, K. J. Daniels,, T. Srikantha, and, D. R. Soll. 2010. N-Acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 6:e1000806.
39. Hube, B.,, M. Monod,, D. A. Schofield,, A. J. Brown, and, N. A. Gow. 1994. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol. Microbiol. 14:8799.
40. Hull, C. M.,, and A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
41. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
42. Ibrahim, A. S.,, B. B. Magee,, D. C. Sheppard,, M. Yang,, S. Kauffman,, J. Becker,, J. E. Edwards, Jr., and, P. T. Magee. 2005. Effects of ploidy and mating type on virulence of Candida albicans. Infect. Immun. 73:73667374.
43. Joly, S.,, C. Pujol, and, D. R. Soll. 2002. Microevolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans. Infect. Genet. Evol. 2:1937.
44. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
45. Kennedy, M. J.,, A. L. Rogers,, L. R. Hanselmen,, D. R. Soll, and, R. J. Yancey, Jr. 1988. Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes. Mycopathologia 102:149156.
46. Klar, A. J.,, T. Srikantha, and, D. R. Soll. 2001. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158:919924.
47. Kvaal, C.,, S. A. Lachke,, T. Srikantha,, K. Daniels,, J. McCoy, and, D. R. Soll. 1999. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67:66526662.
48. Kvaal, C. A.,, T. Srikantha, and, D. R. Soll. 1997. Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect. Immun. 65:44684475.
49. Lachke, S. A.,, S. R. Lockhart,, K. J. Daniels, and, D. R. Soll. 2003. Skin facilitates Candida albicans mating. Infect. Immun. 71:49704976.
50. Lan, C. Y.,, G. Newport,, L. A. Murillo,, T. Jones,, S. Scherer,, R. W. Davis, and, N. Agabian. 2002. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 99:1490714912.
51. Legrand, M.,, P. Lephart,, A. Forche,, F. M. Mueller,, T. Walsh,, P. T. Magee, and, B. B. Magee. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52:14511462.
52. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti,, and G. R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939949.
53. Lockhart, S. R.,, C. Pujol,, K. J. Daniels,, M. G. Miller,, A. D. Johnson,, M. A. Pfaller, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737745.
54. Lockhart, S. R.,, K. J. Daniels,, R. Zhao,, D. Wessels, and, D. R. Soll. 2003. Cell biology of mating in Candida albicans. Eukaryot. Cell 2:4961.
55. Lockhart, S. R.,, R. Zhao,, K. J. Daniels, and, D. R. Soll. 2003. Alpha-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot. Cell 2:847855.
56. Lohse, M. B.,, and A. D. Johnson. 2009. White-opaque switching in Candida albicans. Curr. Opin. Microbiol. 12:650654.
57. Madhani, H. D.,, and G. R. Fink. 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:13141317.
58. Magee, B. B.,, and P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289:310313.
59. Magee, B. B.,, M. Legrand,, A. M. Alarco,, M. Raymond, and, P. T. Magee. 2002. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol. Microbiol. 46:13451351.
60. Magee, B. B.,, M. D. Sanchez,, D. Saunders,, D. Harris,, M. Berriman, and, P. T. Magee. 2008. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet. Biol. 45:338350.
61. Manoharlal, R.,, J. Gorantala,, M. Sharma,, D. Sanglard, and, R. Prasad. 2010. PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans. Microbiology 156:313326.
62. Miller, M. G.,, and A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293302.
63. Mishra, P. K.,, M. Baum, and, J. Carbon. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278:455465.
64. Moran, G.,, C. Stokes,, S. Thewes,, B. Hube,, D. C. Coleman, and, D. Sullivan. 2004. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150:33633382.
65. Moran, G. P.,, D. J. Sullivan,, M. C. Henman,, C. E. McCreary,, B. J. Harrington,, D. B. Shanley, and, D. C. Coleman. 1997. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob. Agents Chemother. 41:617623.
66. Morrow, B.,, J. Anderson,, J. Wilson, and, D. R. Soll. 1989. Bidirectional stimulation of the white-opaque transition of Candida albicans by ultraviolet irradiation. J. Gen. Microbiol. 135:12011208.
67. Morrow, B.,, T. Srikantha, and, D. R. Soll. 1992. Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol. Cell. Biol. 12:29973005.
68. Morrow, B.,, T. Srikantha,, J. Anderson, and, D. R. Soll. 1993. Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect. Immun. 61:18231828.
69. Nasmyth, K. A. 1982. Molecular genetics of yeast mating type. Annu. Rev. Genet. 16:439500.
70. Nielsen, K.,, and J. Heitman. 2007. Sex and virulence of human pathogenic fungi. Adv. Genet. 57:143173.
71. Odds, F. C. 1987. Candida infection: an overview. Crit. Rev. Microbiol. 15:15.
72. Odds, F. C.,, M. E. Bougnoux,, D. J. Shaw,, J. M. Bain,, A. D. Davidson,, D. Diogo,, M. D. Jacobsen,, M. Lecomte,, S. Y. Li,, A. Tavanti,, M. C. Maiden,, N. A. Gow, and, C. d’Enfert. 2007. Molecular phylogenetics of Candida albicans. Eukaryot. Cell 6:10411052.
73. Oehlen, L.,, and F. R. Cross. 1998. The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett. 429:8388.
74. Panwar, S. L.,, M. Legrand,, D. Dignard,, M. Whiteway, and, P. T. Magee. 2003. MFα1, the gene encoding the α mating pheromone of Candida albicans. Eukaryot. Cell 2:13501360.
75. Peter, M.,, A. Gartner,, J. Horecka,, G. Ammerer, and, I. Herskowitz. 1993. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747760.
76. Pillus, L.,, and J. Rine. 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59:637647.
77. Pujol, C.,, J. Reynes,, F. Renaud,, M. Raymond,, M. Tibayrenc,, F. J. Ayala,, F. Janbon,, M. Mallie, and, J. M. Bastide. 1993. The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc. Natl. Acad. Sci. USA 90:94569459.
78. Pujol, C.,, S. Joly,, B. Nolan,, T. Srikantha, and, D. R. Soll. 1999. Microevolutionary changes in Candida albicans identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive sequence RPS at specific genomic sites. Microbiology 145(Pt. 10):2635–2646.
79. Pujol, C.,, K. J. Daniels,, S. R. Lockhart,, T. Srikantha,, J. B. Radke,, J. Geiger, and, D. R. Soll. 2004. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3:10151027.
80. Pujol, C.,, A. Dodgson, and, D. R. Soll. 2005. Population genetics of ascomycetes pathogenic to humans and animals, p. 149–188. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Scientific Press, Norfolk, United Kingdom.
81. Ramirez-Zavala, B.,, O. Reuss,, Y. N. Park,, K. Ohlsen, and, J. Morschhauser. 2008. Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog. 4:e1000089.
82. Reedy, J. L.,, A. M. Floyd, and, J. Heitman. 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19:891899.
83. Remenyi, A.,, M. C. Good,, R. P. Bhattacharyya, and, W. A. Lim. 2005. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol. Cell 20:951962.
84. Rikkerink, E. H.,, B. B. Magee, and, P. T. Magee. 1988. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J. Bacteriol. 170:895899.
85. Roberts, C. J.,, B. Nelson,, M. J. Marton,, R. Stoughton,, M. R. Meyer,, H. A. Bennett,, Y. D. He,, H. Dai,, W. L. Walker,, T. R. Hughes,, M. Tyers,, C. Boone, and, S. H. Friend. 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873880.
86. Robles, J. C.,, L. Koreen,, S. Park, and, D. S. Perlin. 2004. Multilocus sequence typing is a reliable alternative method to DNA fingerprinting for discriminating among strains of Candida albicans. J. Clin. Microbiol. 42:24802488.
87. Rustad, T. R.,, D. A. Stevens,, M. A. Pfaller, and, T. C. White. 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148:10611072.
88. Sadhu, C.,, D. Hoekstra,, M. J. McEachern,, S. I. Reed, and, J. B. Hicks. 1992. A G-protein α subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-α2 repressor. Mol. Cell. Biol. 12:19771985.
89. Sahni, N.,, S. Yi,, K. J. Daniels,, T. Srikantha,, C. Pujol, and, D. R. Soll. 2009. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog. 5:e1000601.
90. Sahni, N.,, S. Yi,, C. Pujol, and, D. R. Soll. 2009. The white cell response to pheromone is a general characteristic of Candida albicans strains. Eukaryot. Cell 8:251256.
91. Sahni, N.,, S. Yi,, K. J. Daniels,, G. Huang,, T. Srikantha, and, D. R. Soll. 2010. Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS Biol. 8:e1000363.
92. Sánchez-Martínez, C.,, and J. Pérez-Martín. 2002. Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans. Eukaryot Cell 1:865874.
93. Schaefer, D.,, P. Cote,, M. Whiteway, and, R. J. Bennett. 2007. Barrier activity in Candida albicans mediates pheromone degradation and promotes mating. Eukaryot. Cell 6:907918.
94. Schwartz, M. A.,, and H. D. Madhani. 2004. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38:725748.
95. Schweizer, A.,, S. Rupp,, B. N. Taylor,, M. Röllinghoff, and, K. Schröppel. 2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38:435445.
96. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller, and, D. R. Soll. 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169:189197.
97. Soll, D. R.,, C. J. Langtimm,, J. McDowell,, J. Hicks, and, R. Galask. 1987. High-frequency switching in Candida strains isolated from vaginitis patients. J. Clin. Microbiol. 25:16111622.
98. Soll, D. R. 1992. High-frequency switching in Candida albicans. Clin. Microbiol. Rev. 5:183203.
99. Soll, D. R. 1995. The use of computers in understanding how animal cells crawl. Int. Rev. Cytol. 163:43104.
100. Soll, D. R. 2002. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop. 81:101110.
101. Soll, D. R. 2009. Why does Candida albicans switch? FEMS Yeast Res. 9:973–989.
102. Soll, D. R.,, C. Pujol, and, T. Srikantha. 2009. Sex: deviant mating in yeast. Curr. Biol. 19:R509–R511.
103. Sonneborn, A.,, B. Tebarth, and, J. F. Ernst. 1999. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect. Immun. 67:46554660.
104. Srikantha, T.,, and D. R. Soll. 1993. A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131:5360.
105. Srikantha, T.,, L. K. Tsai,, K. Daniels, and, D. R. Soll. 2000. EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J. Bacteriol. 182:15801591.
106. Srikantha, T.,, L. Tsai,, K. Daniels,, A. J. Klar, and, D. R. Soll. 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183:46144625.
107. Srikantha, T.,, A. R. Borneman,, K. J. Daniels,, C. Pujol,, W. Wu,, M. R. Seringhaus,, M. Gerstein,, S. Yi,, M. Snyder, and, D. R. Soll. 2006. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot. Cell 5:16741687.
108. Stokes, C.,, G. P. Moran,, M. J. Spiering,, G. T. Cole,, D. C. Coleman, and, D. J. Sullivan. 2007. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Fungal Genet. Biol. 44:920931.
109. Stoldt, V. R.,, A. Sonneborn,, C. E. Leuker, and, J. F. Ernst. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16:19821991.
110. Sullivan, D. J.,, T. J. Westerneng,, K. A. Haynes,, D. E. Bennett, and, D. C. Coleman. 1995. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141(Pt. 7):15071521.
111. Sullivan, D. J.,, G. P. Moran, and, D. C. Coleman. 2005. Candida dubliniensis: ten years on. FEMS Microbiol. Lett. 253:917.
112. Tavanti, A.,, N. A. Gow,, M. C. Maiden,, F. C. Odds, and, D. J. Shaw. 2004. Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genet. Biol. 41:553562.
113. Tavanti, A.,, A. D. Davidson,, M. J. Fordyce,, N. A. Gow,, M. C. Maiden, and, F. C. Odds. 2005. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J. Clin. Microbiol. 43:56015613.
114. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389399.
115. Tzung, K. W.,, R. M. Williams,, S. Scherer,, N. Federspiel,, T. Jones,, N. Hansen,, V. Bivolarevic,, L. Huizar,, C. Komp,, R. Surzycki,, R. Tamse,, R. W. Davis, and, N. Agabian. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98:32493253.
116. Vargas, K.,, P. W. Wertz,, D. Drake,, B. Morrow, and, D. R. Soll. 1994. Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum. Infect. Immun. 62:13281335.
117. Vinces, M. D.,, and C. A. Kumamoto. 2007. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology 153:28772884.
118. White, T. C.,, S. H. Miyasaki, and, N. Agabian. 1993. Three distinct secreted aspartyl proteinases in Candida albicans. J. Bacteriol. 175:61266133.
119. Wu, W.,, C. Pujol,, S. R. Lockhart, and, D. R. Soll. 2005. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169:13111327.
120. Wu, W.,, S. R. Lockhart,, C. Pujol,, T. Srikantha, and, D. R. Soll. 2007. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol. Microbiol. 64:15871604.
121. Yi, S.,, N. Sahni,, K. J. Daniels,, C. Pujol,, T. Srikantha, and, D. R. Soll. 2008. The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans. Mol. Biol. Cell 19:957970.
122. Yi, S.,, N. Sahni,, C. Pujol,, K. J. Daniels,, T. Srikantha,, N. Ma, and, D. R. Soll. 2009. A Candida albicans-specific region of the alpha-pheromone receptor plays a selective role in the white cell pheromone response. Mol. Microbiol. 71:925947.
123. Zhao, R.,, K. J. Daniels,, S. R. Lockhart,, K. M. Yeater,, L. L. Hoyer, and, D. R. Soll. 2005. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Eukaryot. Cell 4:11751190.
124. Zordan, R. E.,, D. J. Galgoczy, and, A. D. Johnson. 2006. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl. Acad. Sci. USA 103:1280712812.
125. Zordan, R. E.,, M. G. Miller,, D. J. Galgoczy,, B. B. Tuch, and, A. D. Johnson. 2007. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 5:e256.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error