Chapter 7 : Detection and Clinical Significance of Variability among Isolates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Detection and Clinical Significance of Variability among Isolates, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap07-2.gif


Strain variability is a central topic in the discussion of biology. Most of the isolates that are studied are derived from clinical specimens. Therefore, a discussion of variability among isolates within a particular species starts with decisions that are made in the diagnostic microbiology laboratory. Studies of genetic variability may also be conducted from the perspective of assessing genomic rearrangements. The nature of genomic rearrangements in the diploid was understood more clearly from construction of a physical map of its eight pairs of chromosomes. DNA fingerprinting probe sequences useful in phylogenetic and epidemiological studies are derived from the major repeat sequence (MRS). The MRS is also present in the closely related . Events such as mutation and mitotic recombination also can contribute to variability among strains. One study examined whether the local wildlife population was responsible for maintaining a reservoir of isolates specific to a defined geographic area in the midwestern United States. The work was expanded to include collection of isolates from domestic animals. Results showed that there is a significant difference in the clade distribution of isolates from humans and wildlife, demonstrating population isolation between the groups. The work demonstrates the impressive display of genetic variability that can develop when challenged with exposure to antifungal drugs. A given isolate of can undergo an impressive range of genetic changes at the level of point mutation to alterations in whole chromosomes.

Citation: Hoyer L. 2012. Detection and Clinical Significance of Variability among Isolates, p 91-99. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch7

Key Concept Ranking

Candida albicans
Candida tropicalis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Dendrogram constructed using the unweighted-pair group method with arithmetic mean for 1,391 isolates typed by MLST ( ). The scale at the bottom shows distances, with the vertical dashed line at the value of 0.04 used to designate clades. Clade numbers are shown on the right, with vertical bars to indicate their relative sizes. isolates are placed into clade 13, which is the cluster that is least similar to the others ( ). Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555817176.ch7.f1

Citation: Hoyer L. 2012. Detection and Clinical Significance of Variability among Isolates, p 91-99. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achtman, M.,, and M. Wagner. 2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6:431440.
2. Adam, H.,, M. Groenewald,, S. Mohan,, S. Richardson,, U. Bunn,, C. F. C. Gibas,, S. Poutman, and, L. Sigler. 2009. Identification of new species, Candida subhashii, as a cause of peritonitis. Med. Mycol. 47:305311.
3. Ahmad, A.,, M. Anaul Kabir,, A. Kravets,, E. Andaluz,, G. Larriba, and, E. Rustchenko. 2008. Chromosome instability and unusual features of some widely used strains of Candida albicans. Yeast 25:433448.
4. Alonso-Vargas, R.,, L. Elorduy,, E. Eraso,, J. F. Canos,, J. Guarros,, J. Ponton, and, G. Quindos. 2008. Isolation of Candida africana, probable atypical strains of Candida albicans, from a patient with vaginitis. Med. Mycol. 46:167170.
5. Arbour, M.,, E. Epp,, H. Hogues,, A. Sellam,, C. Lacroix,, J. Rauceo,, A. Mitchell,, M. Whiteway, and, A. Nantel. 2009. Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants. FEMS Yeast Res. 9:10701077.
6. Bennett, R. J.,, and A. D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59:233255.
7. Bouchonville, K.,, A. Forche,, K. E. S. Tang,, A. Selmecki, and, J. Berman. 2009. Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukayot. Cell 8:15541566.
8. Bougnoux, M.-E.,, D. Diogo,, N. François,, B. Sendid,, S. Veirmeire,, J. F. Colombel,, C. Bouchier,, H. Van Kruiningen,, C. d’Enfert, and, D. Poulain. 2006. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J. Clin. Microbiol. 44:18101820.
9. Bougnoux, M.-E.,, A. Tavanti,, C. Bouchier,, N. A. R. Gow,, A. Magnier,, A. D. Davidson,, M. C. J. Maiden,, C. d’Enfert, and, F. C. Odds. 2003. Collaborative consensus for optimized multilocus sequence typing of Candida albicans. J. Clin. Microbiol. 41:52655266.
10. Campanha, N. H.,, K. H. Neppelenbroek,, D. M. Spolidorio,, L. C. Spolidorio, and, A. C. Pavarina. 2005. Phenotypic methods and commercial systems for the discrimination between C. albicans and C. dubliniensis. Oral Dis. 11:392398.
11. Chen, X.,, B. B. Magee,, D. Dawson,, P. T. Magee, and, C. A. Kumamoto. 2004. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol. Microbiol. 51:551565.
12. Chibana, H.,, and P. T. Magee. 2009. The enigma of the major repeat sequence of Candida albicans. Future Microbiol. 4:171179.
13. Chu, W. S.,, B. B. Magee, and, P. T. Magee. 1993. Construction of an SfiI macrorestriction map of the Candida albicans genome. J. Bacteriol. 175:66376651.
14. Coste, A.,, A. Selmecki,, A. Forche,, D. Diogo,, M.-E. Bougnoux,, C. d’Enfert,, J. Berman, and, D. Sanglard. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6:18891904.
15. Diogo, D.,, C. Bouchier,, C. d’Enfert, and, M.-E. Bougnoux. 2009. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet. Biol. 46:159168.
16. Dodgson, A. R.,, K. J. Dodgson,, C. Pujol,, M. A. Pfaller, and, D. R. Soll. 2004. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob. Agents Chemother. 48:22232227.
17. Dodgson, A. R.,, C. Pujol,, D. W. Denning,, D. R. Soll, and, A. J. Fox. 2003. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J. Clin. Microbiol. 41:57095717.
18. Forche, A.,, P. T. Magee,, B. B. Magee, and, G. May. 2004. Genome-wide single-nucleotide polymorphism map for Candida albicans. Eukaryot. Cell 3:705714.
19. Forche, A.,, P. T. Magee,, A. Selmecki,, J. Berman, and, G. May. 2009. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182:799811.
20. Forche, A.,, G. May,, J. Beckerman,, S. Kauffman,, J. Becker, and, P. T. Magee. 2003. A system for studying genetic changes in Candida albicans during infection. Fungal Genet. Biol. 39:3850.
21. Forche, A.,, G. May, and, P. T. Magee. 2005. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot. Cell 4:156165.
22. Forche, A.,, M. Steinbach, and, J. Berman. 2009. Efficient and rapid identification of Candida albicans allelic status using SNP-RFLP. FEMS Yeast Res. 9:10611069.
23. Gonçalves, S. S.,, C. S. Amorim,, M. Nucci,, A. C. B. Padovan,, M. R. S. Briones,, A. S. A. Melo, and, A. L. Colombo. 2010. Prevalence rates and antifungal susceptibility profiles of the Candida parapsilosis species complex: results from a nationwide surveillance of candidaemia in Brazil. Clin. Microbiol. Infect. 16:885887.
24. Gräser, Y.,, M. Volovsek,, J. Arrington,, G. Schonian,, W. Presber,, T. G. Mitchell, and, R. Vilgalys. 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93:1247312477.
25. Holmes, A. R.,, S. Tsao,, S.-W. Ong,, E. Lamping,, K. Niimi,, B. C. Monk,, M. Niimi,, A. Kaneko,, B. R. Holland,, J. Schmid, and, R. D. Cannon. 2006. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol. Microbiol. 62:170186.
26. Hoyer, L. L. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9:176180.
27. Hoyer, L. L.,, C. B. Green,, S.-H. Oh,, and X. Zhao. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med. Mycol. 46:115.
28. Hoyer, L. L.,, and J. E. Hecht. 2001. The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18:4960.
29. Hull, C. M.,, and A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
30. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the ‘asexual’ yeast Candida albicans in a mammalian host. Science 289:307310.
31. Ibrahim, A. S.,, B. B. Magee,, D. C. Sheppard,, M. Yang,, S. Kauffman,, J. Becker,, J. E. Edwards, Jr., and, P. T. Magee. 2005. Effects of ploidy and mating type on virulence of Candida albicans. Infect. Immun. 73:73667374.
32. Jacobsen, M. D.,, T. Boekhout, and, F. C. Odds. 2008. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea. FEMS Yeast Res. 8:764770.
33. Jacobsen, M. D.,, M.-E. Bougnoux,, C. d’Enfert, and, F. C. Odds. 2008. Multilocus sequence typing of Candida albicans isolates from animals. Res. Microbiol. 159:436440.
34. Jacobsen, M. D.,, N. A. Gow,, M. C. Maiden,, D. J. Shaw, and, F. C. Odds. 2007. Strain typing and determination of population structure of Candida krusei by multilocus sequence typing. J. Clin. Microbiol. 45:317323.
35. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
36. Legrand, M.,, A. Forche,, A. Selmecki,, C. Chan,, D. T. Kirkpatrick, and, J. Berman. 2008. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies. PLoS Genet. 4:1828.
37. Lockhart, S. R.,, S. A. Messer,, M. A. Pfaller, and, D. J. Diekema. 2008. Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J. Clin. Microbiol. 46:26592664.
38. Lockhart, S. R.,, W. Wu,, J. B. Radke,, R. Zhao, and, D. R. Soll. 2005. Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans. Genetics 169:18831890.
39. MacCallum, D. M.,, L. Castillo,, K. Nather,, C. A. Munro,, A. J. P. Brown,, N. A. Gow, and, F. C. Odds. 2009. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell 8:373387.
40. Magee, B. B.,, and P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289:310313.
41. Maiden, M. C. 2006. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60:561588.
42. McManus, B. A.,, D. C. Coleman,, G. Moran,, E. Pinjon,, D. Diogo,, M.-E. Bougnoux,, S. Borecká-Melkusova,, H. Bujdaková,, P. Murphy,, C. d’Enfert, and, D. J. Sullivan. 2008. Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans. J. Clin. Microbiol. 46:652664.
43. Muller, H.,, A. Thierry,, J. Y. Coppee,, C. Hennequin,, O. Sismeiro,, E. Talla,, B. Dujon, and, C. Fairhead. 2009. Genomic polymorphism in the population of Candida glabrata: gene copy-number variation and chromosomal translocations. Fungal Genet. Biol. 46:264276.
44. Odds, F. C. 2009. In Candida albicans, resistance to flucytosine and terbinafine is linked to MAT locus homozygosity and multilocus sequence typing clade 1. FEMS Yeast Res. 9:10911101.
45. Odds, F. C. 2010. Molecular phylogenetics and epidemiology of Candida albicans. Future Microbiol. 5:6779.
46. Odds, F. C.,, M. E. Bougnoux,, D. J. Shaw,, J. M. Bain,, A. D. Davidson,, D. Diogo,, M. D. Jacobsen,, M. Lecomte,, S. Y. Li,, A. Tavnati,, M. C. Maiden,, N. A. Gow, and, C. d’Enfert. 2007. Molecular phylogenetics of Candida albicans. Eukaryot. Cell 6:10411052.
47. Oh, S.-H.,, G. Cheng,, J. A. Nuessen,, R. Jajko,, K. M. Yeater,, X. Zhao,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673681.
48. Pujol, C.,, M. A. Pfaller, and, D. R. Soll. 2004. Flucytosine resistance is restricted to a single genetic clade of Candida albicans. Antimicrob. Agents Chemother. 48:262266.
49. Romeo, O.,, and G. Criseo. 2008. Morphological, biochemical and molecular characterization of the first Italian Candida africana isolate. Mycoses 52:454457.
50. Rustchenko, E. 2007. Chromosome instability in Candida albicans. FEMS Yeast Res. 7:211.
51. Schmid, J.,, S. Herd,, P. R. Hunter,, R. D. Cannon,, M. S. Yasin,, S. Samad,, M. Carr,, D. Parr,, W. McKinney,, M. Schousboe,, B. Harris,, R. Ikram,, M. Harris,, A. Restrepo,, G. Hoyos, and, K. P. Singh. 1999. Evidence for a general-purpose genotype in Candida albicans, highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology 145:24052413.
52. Selmecki, A.,, S. Bergmann, and, J. Berman. 2005. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol. Microbiol. 55:15531565.
53. Selmecki, A.,, A. Forche, and, J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367370.
54. Selmecki, A.,, M. Gerami-Nejad,, C. Paulson,, A. Forche, and, J. Berman. 2008. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68:624641.
55. Selmecki, A. M.,, K. Dulmage,, L. E. Cowen,, J. B. Anderson, and, J. Berman. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5:e1000705.
56. Soll, D. R.,, and C. Pujol. 2003. Candida albicans clades. FEMS Immun. Med. Microbiol. 39:17.
57. Staib, P.,, M. Kretschmar,, T. Nichterlein,, H. Hof, and, J. Morschhäuser. 2002. Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol. Microbiol. 44:13511366.
58. Sullivan, D.,, and D. Coleman. 1998. Candida dubliniensis: characteristics and identification. J. Clin. Microbiol. 36:329334.
59. Sullivan, D. J.,, G. P. Moran,, E. Pinjon,, A. Al-Mosaid,, C. Stokes,, C. Vaughan, and, D. C. Coleman. 2004. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 4:369376.
60. Sullivan, D. J.,, T. J. Westerneng,, K. A. Haynes,, D. E. Bennett, and, D. C. Coleman. 1995. Candida dubliniensis sp. nov. phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141:15071521.
61. Tavanti, A.,, A. D. Davidson,, M. J. Fordyce,, N. A. R. Gow,, M. C. J. Maiden, and, F. C. Odds. 2005. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J. Clin. Microbiol. 43:56015613.
62. Tavanti, A.,, A. D. Davidson,, N. A. R. Gow,, M. C. J. Maiden, and, F. C. Odds. 2005. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 43:284292.
63. Tavanti, A.,, A. D. Davidson,, E. M. Johnson,, M. C. Maiden,, D. J. Shaw,, N. A. Gow, and, F. C. Odds. 2005. Multilocus sequence typing for differentiation of strains of Candida tropicalis. J. Clin. Microbiol. 43:55935600.
64. Tietz, H. J.,, M. Hopp,, A. Schmalreck,, W. Sterry, and, V. Czaika. 2001. Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses 44:437445.
65. van Asbeck, E.,, K. V. Clemons,, M. Martinez,, A. Tong, and, D. A. Stevens. 2008. Significant differences in drug susceptibility among species in the Candida parapsilosis group. Diagn. Microbiol. Infect. Dis. 62:106109.
66. Wrobel, L.,, J. K. Whittington,, C. Pujol,, S.-H. Oh,, M. O. Ruiz,, M. A. Pfaller,, D. J. Diekema,, D. R. Soll, and, L. L. Hoyer. 2008. Molecular phylogenetic analysis of a geographically and temporally matched set of Candida albicans isolates from humans and nonmigratory wildlife in central Illinois. Eukaryot. Cell 7:14751486.
67. Wu, W.,, S. R. Lockhart,, C. Pujol,, T. Srikantha, and, D. R. Soll. 2007. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol. Microbiol. 64:15871604.
68. Wu, W.,, C. Pujol,, S. R. Lockhart, and, D. R. Soll. 2005. Mechanisms of mating type homozygosis in C. albicans. Genetics 169:13111327.
69. Zhang, N.,, A. L. Harrex,, B. R. Holland,, L. E. Fenton,, R. D. Cannon, and, J. Schmid. 2003. Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hyper-mutable contingency locus. Genome Res. 13:20052017.
70. Zhao, X.,, S.-H. Oh, and, L. L. Hoyer. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153:23422350.
71. Zhao, X.,, S.-H. Oh,, R. Jajko,, D. J. Diekema,, M. A. Pfaller,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2007. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genet. Biol. 44:12981309.
72. Zhao, X.,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2003. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 149:29472960.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error