1887

Chapter 16 : Adhesins in Opportunistic Fungal Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Adhesins in Opportunistic Fungal Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap16-2.gif

Abstract:

This chapter deals with cell surface proteins in two species, and , and in their nonpathogenic relative , specifically focusing on the diversity and function of proteins implicated in adherence of the yeasts to each other or to other surfaces, including host cells. The most extensively studied family of adhesins in any species is the one corresponding to the gene family, which includes eight family members. Two adhesins in family IV have similarity to the protein corresponding to DAN1 in , another subtelomeric adhesin whose expression is regulated by oxygen availability in the environment. Mass spectrometry was identify covalently linked cell wall proteins (CWPs), including adhesins, on the surface of . In total, five adhesins were detected: Epa6 and four uncharacterized proteins that were subsequently named Awp1 to -4 (adhesin-like wall protein). The genes play essential roles during flocculation, a process by which yeast cells bind to the mannose residues on the surface of neighboring cells, forming clusters of cells called flocs, and sediment. CWPs are key to the interaction of fungi with the environment, and not surprisingly, changes within the CWP repertoire accompany the evolutionary adaptation to a particular niche. The relatively limited repertoire of genes in primarily serves to mediate yeast-yeast interactions that adapt it to growth in communities/biofilms as well as to respond to nutritional cues.

Citation: Zordan R, Cormack B. 2012. Adhesins in Opportunistic Fungal Pathogens, p 243-259. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch16

Key Concept Ranking

Sodium Dodecyl Sulfate
0.43214157
Reverse Transcriptase PCR
0.42866486
Cell Wall Proteins
0.4180331
Urinary Tract Infections
0.40927812
0.43214157
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic of protein domains in the Als adhesins. The protein domains and repeat motifs described in the section “Structure of GPI-Anchored Adhesins” are indicated in the key. Each drawing is to scale, with tandem repeats collapsed such that one motif unit is shown and the number of repeat units is indicated below the drawing. The consensus sequence for the Als TRD repeat unit is xNxTVTTTExWSxSxATTTTxTxPPxGTDxVIIxEP (75% identity among 176 variants). Diagonal lines represent the 132- to 137-mer repeats spanning from SSESR to SDE; these have been designated the VASES repeats in previous publications ( ). Genes are as follows: (orf19.5741), (orf19.1097), (orf19.1816), (orf19.4555), (orf19.5736), (orf19.7414), (orf19.7400), and (orf19.5742). doi:10.1128/9781555817176.ch16.f1

Citation: Zordan R, Cormack B. 2012. Adhesins in Opportunistic Fungal Pathogens, p 243-259. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic of protein domains in the adhesins Hwp1 and Eap1. Protein domains and repeat motifs described in the section “Non-Als adhesins in ” are indicated in the key. Each drawing is to scale, with tandem repeats collapsed such that one motif unit is shown and the number of repeat units is indicated below the drawing. Motifs found in Hwp1 ( ), as well as the motifs found in Eap1 ( ), have been described previously, though the number of tandem repeats was determined from our bioinformatic analysis and may differ from previously published analyses. Genes are as follows: (orf19.1321) and (orf19.1401). doi:10.1128/9781555817176.ch16.f2

Citation: Zordan R, Cormack B. 2012. Adhesins in Opportunistic Fungal Pathogens, p 243-259. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Diagram of locations with respect to chromosome ends. Shown is a collapsed view of positioning with respect to chromosome ends. The boxed T designates the telomere. *, and are present in the BG2 strain of but not CBS138. **, the published sequence of Chr L-R stops in the ribosomal DNA locus, which lies between and the telomere. Thus, the distances mapped for and are likely underestimates, as it is unknown how many ribosomal DNA repeats lie between the s and the telomere on this chromosome. doi:10.1128/9781555817176.ch16.f3

Citation: Zordan R, Cormack B. 2012. Adhesins in Opportunistic Fungal Pathogens, p 243-259. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 4 (CHAPTER 16)
COLOR PLATE 4 (CHAPTER 16)

Schematic of protein domains in a subset of the Epa adhesins. The section “Structure/function analysis of Epa adhesins” discusses the modular structure of the Epa adhesins. Each drawing is to scale, with TRs collapsed such that one motif unit is shown and the number of repeat units is indicated below the drawing. The key contains the length of each repeat motif and the number of variants observed among all Epa proteins. For shorter motifs, the key also contains the consensus sequence (75% identity among variants). The VRSTLP motif has the consensus VRSTLPSSAGSNETSINVPFSSSTESNTSTSSTSTSNSKx ( ). The TASTTY motif has the consensus xTASTTYxPGxVxxxTTISTYxTxITGxDNRxTPETVFVVETP. Certain regions (diagonal lines; orange boxes) contain a mixture of shorter motif units linked together in various combinations; these areas are drawn to indicate the full length of the region and have not been collapsed to represent the shorter sequences. The lattice boxes denote a region rich in Ser and Glu residues, which occasionally has the sequence SSSSExxxxESESE repeated at nonregular intervals. Motifs in Epa1- to -5 have been published previously ( ). The VSHITT, SFFIT, and TTITL motifs also have been described previously ( ). doi:10.1128/9781555817176.ch16.f4

Citation: Zordan R, Cormack B. 2012. Adhesins in Opportunistic Fungal Pathogens, p 243-259. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817176.ch16
1. Almeida, R. S.,, S. Brunke,, A. Albrecht,, S. Thewes,, M. Laue,, J. E. Edwards,, S. G. Filler, and, B. Hube. 2008. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4:e1000217.
2. Argimon, S.,, J. A. Wishart,, R. Leng,, S. Macaskill,, A. Mavor,, T. Alexandris,, S. Nicholls,, A. W. Knight,, B. Enjalbert,, R. Walmsley,, F. C. Odds,, N. A. Gow, and, A. J. Brown. 2007. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot. Cell 6:682692.
3. Austin, S. J.,, W. Fujimoto,, K. W. Marvin,, T. M. Vollberg,, L. Lorand, and, A. M. Jetten. 1996. Cloning and regulation of cornifin β, a new member of the cornifin/spr family. Suppression by retinoic acid receptor-selective retinoids. J. Biol. Chem. 271:37373742.
4. Bastidas, R. J.,, J. Heitman, and, M. E. Cardenas. 2009. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 5:e1000294.
5. Bester, M. C.,, I. S. Pretorius, and, F. F. Bauer. 2006. The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+-dependent flocculation by Flo8p and Mss11p. Curr. Genet. 49:375383.
6. Bockmuhl, D. P.,, and J. F. Ernst. 2001. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157:15231530.
7. Braun, B. R.,, and A. D. Johnson. 2000. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:5767.
8. Braus, G. H.,, O. Grundmann,, S. Bruckner, and, H. U. Mosch. 2003. Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol. Biol. Cell 14:42724284.
9. Brown, C. A.,, A. W. Murray, and, K. J. Verstrepen. 2010. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr. Biol. 20:895903.
10. Bumgarner, S. L.,, R. D. Dowell,, P. Grisafi,, D. K. Gifford, and, G. R. Fink. 2009. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl. Acad. Sci. USA 106:1832118326.
11. Castano, I.,, S. J. Pan,, M. Zupancic,, C. Hennequin,, B. Dujon, and, B. P. Cormack. 2005. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol. Microbiol. 55:12461258.
12. Chandra, J.,, D. M. Kuhn,, P. K. Mukherjee,, L. L. Hoyer,, T. McCormick, and, M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183:53855394.
13. Cheng, G.,, K. Wozniak,, M. A. Wallig,, P. L. Fidel, Jr.,, S. R. Trupin, and, L. L. Hoyer. 2005. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect. Immun. 73:16561663.
14. Coleman, D. A.,, S. H. Oh,, X. Zhao,, H. Zhao,, J. T. Hutchins,, J. H. Vernachio,, J. M. Patti, and, L. L. Hoyer. 2009. Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J. Microbiol. Methods 78:7178.
15. Cormack, B. P.,, N. Ghori, and, S. Falkow. 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578582.
16. Cullen, P. J.,, and G. F. Sprague, Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. USA 97:1361913624.
17. Daniels, K. J.,, S. R. Lockhart,, J. F. Staab,, P. Sundstrom, and, D. R. Soll. 2003. The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol. Biol. Cell 14:49204930.
18. de Boer, A. D.,, P. W. de Groot,, G. Weindl,, M. Schaller,, D. Riedel,, R. Diez-Orejas,, F. M. Klis,, C. G. de Koster,, H. L. Dekker,, U. Gross,, O. Bader, and, M. Weig. 2010. The Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast 27:611624.
19. de Groot, P. W.,, A. D. de Boer,, J. Cunningham,, H. L. Dekker,, L. de Jong,, K. J. Hellingwerf,, C. de Koster, and, F. M. Klis. 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 3:955965.
20. de Groot, P. W.,, K. J. Hellingwerf, and, F. M. Klis. 2003. Genome-wide identification of fungal GPI proteins. Yeast 20:781796.
21. de Groot, P. W.,, E. A. Kraneveld,, Q. Y. Yin,, H. L. Dekker,, U. Gross,, W. Crielaard,, C. G. de Koster,, O. Bader,, F. M. Klis, and, M. Weig. 2008. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot. Cell 7:19511964.
22. De Las Penas, A.,, S. J. Pan,, I. Castano,, J. Alder,, R. Cregg, and, B. P. Cormack. 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes Dev. 17:22452258.
23. de Nobel, J. G.,, F. M. Klis,, J. Priem,, T. Munnik, and, H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491499.
24. Domergue, R.,, I. Castano,, A. De Las Penas,, M. Zupancic,, V. Lockatell,, J. R. Hebel,, D. Johnson, and, B. P. Cormack. 2005. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866870.
25. Ene, I. V.,, and R. J. Bennett. 2009. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot. Cell 8:19091913.
26. Fankhauser, N.,, and P. Maser. 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21:18461852.
27. Fichtner, L.,, F. Schulze, and, G. H. Braus. 2007. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol. Microbiol. 66:12761289.
28. Fidalgo, M.,, R. R. Barrales,, J. I. Ibeas, and, J. Jimenez. 2006. Adaptive evolution by mutations in the FLO11 gene. Proc. Natl. Acad. Sci. USA 103:1122811233.
29. Filler, S. G.,, J. N. Swerdloff,, C. Hobbs, and, P. M. Luck-ett. 1995. Penetration and damage of endothelial cells by Candida albicans. Infect. Immun. 63:976983.
30. Frank, A. T.,, C. B. Ramsook,, H. N. Otoo,, C. Tan,, G. Soybelman,, J. M. Rauceo,, N. K. Gaur,, S. A. Klotz, and, P. N. Lipke. 2010. Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. Eukaryot. Cell 9:405414.
31. Frieman, M. B.,, J. M. McCaffery, and, B. P. Cormack. 2002. Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Mol. Microbiol. 46:479492.
32. Fu, Y.,, A. S. Ibrahim,, D. C. Sheppard,, Y. C. Chen,, S. W. French,, J. E. Cutler,, S. G. Filler, and, J. E. Edwards, Jr. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol. Microbiol. 44:6172.
33. Gagiano, M.,, M. Bester,, D. van Dyk,, J. Franken,, F. F. Bauer, and, I. S. Pretorius. 2003. Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol. Microbiol. 47:119134.
34. Garcia-Sanchez, S.,, S. Aubert,, I. Iraqui,, G. Janbon,, J. M. Ghigo, and, C. d’Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3:536545.
35. Gaur, N. K.,, S. A. Klotz, and, R. L. Henderson. 1999. Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect. Immun. 67:60406047.
36. Govender, P.,, J. L. Domingo,, M. C. Bester,, I. S. Pretorius, and, F. F. Bauer. 2008. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74:60416052.
37. Green, C. B.,, G. Cheng,, J. Chandra,, P. Mukherjee,, M. A. Ghannoum, and, L. L. Hoyer. 2004. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267275.
38. Green, C. B.,, S. M. Marretta,, G. Cheng,, F. F. Faddoul,, E. J. Ehrhart, and, L. L. Hoyer. 2006. RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Med. Mycol. 44:103111.
39. Green, C. B.,, X. Zhao,, K. M. Yeater, and, L. L. Hoyer. 2005. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151:10511060.
40. Green, S. R.,, and A. D. Johnson. 2004. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Mol. Biol. Cell 15:41914202.
41. Guo, B.,, C. A. Styles,, Q. Feng, and, G. R. Fink. 2000. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97:1215812163.
42. Halme, A.,, S. Bumgarner,, C. Styles, and, G. R. Fink. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405415.
43. Heringa, J.,, and P. Argos. 1993. A method to recognize distant repeats in protein sequences. Proteins 17:391441.
44. Hoyer, L. L. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9:176180.
45. Hoyer, L. L.,, C. B. Green,, S. H. Oh, and, X. Zhao. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med. Mycol. 46:115.
46. Hoyer, L. L.,, and J. E. Hecht. 2001. The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18:4960.
47. Hoyer, L. L.,, and J. E. Hecht. 2000. The ALS6 and ALS7 genes of Candida albicans. Yeast 16:847855.
48. Hoyer, L. L.,, T. L. Payne,, M. Bell,, A. M. Myers, and, S. Scherer. 1998. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33:451459.
49. Hoyer, L. L.,, S. Scherer,, A. R. Shatzman, and, G. P. Livi. 1995. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. Microbiol. 15:3954.
50. Ibrahim, A. S.,, B. J. Spellberg,, V. Avanesian,, Y. Fu, and, J. E. Edwards, Jr. 2006. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect. Immun. 74:30393041.
51. Ibrahim, A. S.,, B. J. Spellberg,, V. Avenissian,, Y. Fu,, S. G. Filler, and, J. E. Edwards, Jr. 2005. Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect. Immun. 73:9991005.
52. Iraqui, I.,, S. Garcia-Sanchez,, S. Aubert,, F. Dromer,, J. M. Ghigo,, C. d’Enfert, and, G. Janbon. 2005. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol. Microbiol. 55:12591271.
53. Kadosh, D.,, and A. D. Johnson. 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 16:29032912.
54. Kang, S.,, and H. Choi. 2005. Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. Colloids Surf. B Biointerfaces 46:7077.
55. Kapteyn, J. C.,, L. L. Hoyer,, J. E. Hecht,, W. H. Muller,, A. Andel,, A. J. Verkleij,, M. Makarow,, H. Van Den Ende, and, F. M. Klis. 2000. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol. 35:601611.
56. Kapteyn, J. C.,, H. Van Den Ende, and, F. M. Klis. 1999. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta 1426:373383.
57. Kaur, R.,, R. Domergue,, M. L. Zupancic, and, B. P. Cormack. 2005. A yeast by any other name: Candida glabrata and its interaction with the host. Curr. Opin. Microbiol. 8:378384.
58. Klis, F. M. 1994. Review: cell wall assembly in yeast. Yeast 10:851869.
59. Klis, F. M.,, A. Boorsma, and, P. W. De Groot. 2006. Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185202.
60. Klis, F. M.,, L. H. Caro,, J. H. Vossen,, J. C. Kapteyn,, A. F. Ram,, R. C. Montijn,, M. A. Van Berkel, and, H. Van den Ende. 1997. Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem. Soc. Trans. 25:856860.
61. Klotz, S. A.,, N. K. Gaur,, D. F. Lake,, V. Chan,, J. Rauceo, and, P. N. Lipke. 2004. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect. Immun. 72:20292034.
62. Kobayashi, O.,, N. Hayashi,, R. Kuroki, and, H. Sone. 1998. Region of FLO1 proteins responsible for sugar recognition. J. Bacteriol. 180:65036510.
63. Kobayashi, O.,, H. Yoshimoto, and, H. Sone. 1999. Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Curr. Genet. 36:256261.
64. Kollar, R.,, B. B. Reinhold,, E. Petrakova,, H. J. Yeh,, G. Ashwell,, J. Drgonova,, J. C. Kapteyn,, F. M. Klis, and, E. Cabib. 1997. Architecture of the yeast cell wall: β(1→6)-glucan interconnects mannoprotein, β(1→3)-glucan, and chitin. J. Biol. Chem. 272:1776217775.
65. Kumamoto, C. A.,, and M. D. Vinces. 2005. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7:15461554.
66. Leng, P.,, P. R. Lee,, H. Wu, and, A. J. Brown. 2001. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183:40904093.
67. Li, F.,, and S. P. Palecek. 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154:11931203.
68. Li, F.,, and S. P. Palecek. 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell 2:12661273.
69. Li, F.,, and S. P. Palecek. 2005. Identification of Candida albicans genes that induce Saccharomyces cerevisiae cell adhesion and morphogenesis. Biotechnol. Prog. 21:16011609.
70. Li, F.,, M. J. Svarovsky,, A. J. Karlsson,, J. P. Wagner,, K. Marchillo,, P. Oshel,, D. Andes, and, S. P. Palecek. 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 6:931939.
71. Lipke, P. N.,, and R. Ovalle. 1998. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180:37353740.
72. Liu, H.,, C. A. Styles, and, G. R. Fink. 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144:967978.
73. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti, and, G. R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939949.
74. Lott, T. J.,, B. P. Holloway,, D. A. Logan,, R. Fundyga, and, J. Arnold. 1999. Towards understanding the evolution of the human commensal yeast Candida albicans. Microbiology 145(Pt. 5):11371143.
75. Loza, L.,, Y. Fu,, A. S. Ibrahim,, D. C. Sheppard,, S. G. Filler, and, J. E. Edwards, Jr. 2004. Functional analysis of the Candida albicans ALS1 gene product. Yeast 21:473482.
76. Ma, B.,, S. J. Pan,, R. Domergue,, T. Rigby,, M. Whiteway,, D. Johnson, and, B. P. Cormack. 2009. High-affinity transporters for NAD+ precursors in Candida glabrata are regulated by Hst1 and induced in response to niacin limitation. Mol. Cell. Biol. 29:40674079.
77. Ma, B.,, S. J. Pan,, M. L. Zupancic, and, B. P. Cormack. 2007. Assimilation of NAD+ precursors in Candida glabrata. Mol. Microbiol. 66:1425.
78. MacCallum, D. M.,, L. Castillo,, K. Nather,, C. A. Munro,, A. J. Brown,, N. A. Gow, and, F. C. Odds. 2009. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell 8:373387.
79. Moreno-Ruiz, E.,, M. Galan-Diez,, W. Zhu,, E. Fernandez-Ruiz,, C. d’Enfert,, S. G. Filler,, P. Cossart, and, E. Veiga. 2009. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11:11791189.
80. Mundy, R. D.,, and B. Cormack. 2009. Expression of Candida glabrata adhesins after exposure to chemical preservatives. J. Infect. Dis. 199:18911898.
81. Naglik, J. R.,, F. Fostira,, J. Ruprai,, J. F. Staab,, S. J. Challacombe, and, P. Sundstrom. 2006. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J. Med. Microbiol. 55:13231327.
82. Nailis, H.,, S. Kucharikova,, M. Ricicova,, P. Van Dijck,, D. Deforce,, H. Nelis, and, T. Coenye. 2010. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 10:114.
83. Nailis, H.,, R. Vandenbroucke,, K. Tilleman,, D. Deforce,, H. Nelis, and, T. Coenye. 2009. Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. Mycopathologia 167:917.
84. Nobile, C. J.,, D. R. Andes,, J. E. Nett,, F. J. Smith,, F. Yue,, Q. T. Phan,, J. E. Edwards,, S. G. Filler, and, A. P. Mitchell. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2:e63.
85. Nobile, C. J.,, and A. P. Mitchell. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15:11501155.
86. Nobile, C. J.,, J. E. Nett,, D. R. Andes, and, A. P. Mitchell. 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot. Cell 5:16041610.
87. Nobile, C. J.,, H. A. Schneider,, J. E. Nett,, D. C. Sheppard,, S. G. Filler,, D. R. Andes, and, A. P. Mitchell. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18:10171024.
88. O’Connor, L.,, S. Lahiff,, F. Casey,, M. Glennon,, M. Cormican, and, M. Maher. 2005. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol. Cell. Probes 19:153162.
89. Oh, S. H.,, G. Cheng,, J. A. Nuessen,, R. Jajko,, K. M. Yeater,, X. Zhao,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673681.
90. Otoo, H. N.,, K. G. Lee,, W. Qiu, and, P. N. Lipke. 2008. Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell 7:776782.
91. Pan, X.,, and J. Heitman. 2002. Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol. Cell. Biol. 22:39813993.
92. Park, H.,, C. L. Myers,, D. C. Sheppard,, Q. T. Phan,, A. A. Sanchez,, J. E. Edwards, and, S. G. Filler. 2005. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell. Microbiol. 7:499510.
93. Phan, Q. T.,, P. H. Belanger, and, S. G. Filler. 2000. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect. Immun. 68:34853490.
94. Phan, Q. T.,, C. L. Myers,, Y. Fu,, D. C. Sheppard,, M. R. Yeaman,, W. H. Welch,, A. S. Ibrahim,, J. E. Edwards, Jr., and, S. G. Filler. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5:e64.
95. Rachidi, N.,, M. J. Martinez,, P. Barre, and, B. Blondin. 2000. Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol. Microbiol. 35:14211430.
96. Ramsook, C. B.,, C. Tan,, M. C. Garcia,, R. Fung,, G. Soybelman,, R. Henry,, A. Litewka,, S. O’Meally,, H. N. Otoo,, R. A. Khalaf,, A. M. Dranginis,, N. K. Gaur,, S. A. Klotz,, J. M. Rauceo,, C. K. Jue, and, P. N. Lipke. 2010. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot. Cell 9:393404.
97. Rauceo, J. M.,, R. De Armond,, H. Otoo,, P. C. Kahn,, S. A. Klotz,, N. K. Gaur, and, P. N. Lipke. 2006. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot. Cell 5:16641673.
98. Rigden, D. J.,, L. V. Mello, and, M. Y. Galperin. 2004. The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem. Sci. 29:335339.
99. Roberts, R. L.,, and G. R. Fink. 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8:29742985.
100. Rolland, T.,, B. Dujon, and, G. F. Richard. 2010. Dynamic evolution of megasatellites in yeasts. Nucleic Acids Res. 38:47314739.
101. Rosas-Hernandez, L. L.,, A. Juarez-Reyes,, O. E. Arroyo-Helguera,, A. De Las Penas,, S. J. Pan,, B. P. Cormack, and, I. Castano. 2008. yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. Eukaryot. Cell 7:21682178.
102. Rupp, S.,, E. Summers,, H. J. Lo,, H. Madhani, and, G. Fink. 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18:12571269.
103. Sanchez, A. A.,, D. A. Johnston,, C. Myers,, J. E. Edwards, Jr.,, A. P. Mitchell, and, S. G. Filler. 2004. Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro. Infect. Immun. 72:598601.
104. Sato, M.,, H. Maeba,, J. Watari, and, M. Takashio. 2002. Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast. J. Biosci. Bioeng. 93:395398.
105. Sheppard, D. C.,, M. R. Yeaman,, W. H. Welch,, Q. T. Phan,, Y. Fu,, A. S. Ibrahim,, S. G. Filler,, M. Zhang,, A. J. Waring, and, J. E. Edwards, Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279:3048030489.
106. Sherman, D. J.,, T. Martin,, M. Nikolski,, C. Cayla,, J. L. Souciet, and, P. Durrens. 2009. Genolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res. 37:D550–D554.
107. Skrzypek, M. S.,, M. B. Arnaud,, M. C. Costanzo,, D. O. Inglis,, P. Shah,, G. Binkley,, S. R. Miyasato, and, G. Sherlock. 2010. New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res. 38:D428–D432.
108. Smith, R. L.,, and A. D. Johnson. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 25:325330.
109. Sonneborn, A.,, D. P. Bockmuhl,, M. Gerads,, K. Kurpanek,, D. Sanglard, and, J. F. Ernst. 2000. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol. 35:386396.
110. Spellberg, B.,, A. S. Ibrahim,, M. R. Yeaman,, L. Lin,, Y. Fu,, V. Avanesian,, A. S. Bayer,, S. G. Filler,, P. Lipke,, H. Otoo, and, J. E. Edwards, Jr. 2008. The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect. Immun. 76:45744580.
111. Spellberg, B. J.,, A. S. Ibrahim,, V. Avanesian,, Y. Fu,, C. Myers,, Q. T. Phan,, S. G. Filler,, M. R. Yeaman, and, J. E. Edwards, Jr. 2006. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J. Infect. Dis. 194:256260.
112. Spellberg, B. J.,, A. S. Ibrahim,, V. Avenissian,, S. G. Filler,, C. L. Myers,, Y. Fu, and, J. E. Edwards, Jr. 2005. The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice. Infect. Immun. 73:61916193.
113. Staab, J. F.,, Y. S. Bahn,, C. H. Tai,, P. F. Cook, and, P. Sundstrom. 2004. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J. Biol. Chem. 279:4073740747.
114. Staab, J. F.,, S. D. Bradway,, P. L. Fidel, and, P. Sund-strom. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:15351538.
115. Staab, J. F.,, C. A. Ferrer, and, P. Sundstrom. 1996. Developmental expression of a tandemly repeated, prolineand glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J. Biol. Chem. 271:62986305.
116. Staab, J. F.,, and P. Sundstrom. 1998. Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14:681686.
117. Stoldt, V. R.,, A. Sonneborn,, C. E. Leuker, and, J. F. Ernst. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morpho-genetic processes in fungi. EMBO J. 16:19821991.
118. Sundstrom, P. 2002. Adhesion in Candida spp. Cell. Microbiol. 4:461469.
119. Sundstrom, P.,, E. Balish, and, C. M. Allen. 2002. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J. Infect. Dis. 185:521530.
120. Sundstrom, P.,, J. E. Cutler, and, J. F. Staab. 2002. Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect. Immun. 70:32813283.
121. Thierry, A.,, C. Bouchier,, B. Dujon, and, G. F. Richard. 2008. Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata. Nucleic Acids Res. 36:59705982.
122. Thierry, A.,, B. Dujon, and, G. F. Richard. 2010. Megasatellites: a new class of large tandem repeats discovered in the pathogenic yeast Candida glabrata. Cell. Mol. Life Sci. 67:671676.
123. Van Mulders, S. E.,, E. Christianen,, S. M. Saerens,, L. Daenen,, P. J. Verbelen,, R. Willaert,, K. J. Verstrepen, and, F. R. Delvaux. 2009. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res. 9:178190.
124. Verstrepen, K. J.,, A. Jansen,, F. Lewitter, and, G. R. Fink. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37:986990.
125. Verstrepen, K. J.,, and F. M. Klis. 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60:515.
126. Verstrepen, K. J.,, T. B. Reynolds, and, G. R. Fink. 2004. Origins of variation in the fungal cell surface. Nat. Rev. Microbiol. 2:533540.
127. Wapinski, I.,, A. Pfeffer,, N. Friedman, and, A. Regev. 2007. Natural history and evolutionary principles of gene duplication in fungi. Nature 449:5461.
128. Weig, M.,, L. Jansch,, U. Gross,, C. G. De Koster,, F. M. Klis, and, P. W. De Groot. 2004. Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150:31293144.
129. Wheeler, R. T.,, D. Kombe,, S. D. Agarwala, and, G. R. Fink. 2008. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 4:e1000227.
130. Wheeler, R. T.,, M. Kupiec,, P. Magnelli,, C. Abeijon, and, G. R. Fink. 2003. A Saccharomyces cerevisiae mutant with increased virulence. Proc. Natl. Acad. Sci. USA 100:27662770.
131. Zakikhany, K.,, J. R. Naglik,, A. Schmidt-Westhausen,, G. Holland,, M. Schaller, and, B. Hube. 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 9:29382954.
132. Zhang, N.,, A. L. Harrex,, B. R. Holland,, L. E. Fenton,, R. D. Cannon, and, J. Schmid. 2003. Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res. 13:20052017.
133. Zhang, Z.,, and J. C. Reese. 2004. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J. Biol. Chem. 279:3924039250.
134. Zhao, X.,, S. H. Oh,, G. Cheng,, C. B. Green,, J. A. Nuessen,, K. Yeater,, R. P. Leng,, A. J. Brown, and, L. L. Hoyer. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:24152428.
135. Zhao, X.,, S. H. Oh, and, L. L. Hoyer. 2007. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med. Mycol. 45:429434.
136. Zhao, X.,, S. H. Oh, and, L. L. Hoyer. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153:23422350.
137. Zhao, X.,, S. H. Oh,, R. Jajko,, D. J. Diekema,, M. A. Pfaller,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2007. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genet. Biol. 44:12981309.
138. Zhao, X.,, S. H. Oh,, K. M. Yeater, and, L. L. Hoyer. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151:16191630.
139. Zhao, X.,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2003. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 149:29472960.
140. Zupancic, M. L.,, M. Frieman,, D. Smith,, R. A. Alvarez,, R. D. Cummings, and, B. P. Cormack. 2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 68:547559.

Tables

Generic image for table
TABLE 1

genes in

Citation: Zordan R, Cormack B. 2012. Adhesins in Opportunistic Fungal Pathogens, p 243-259. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error