1887

Chapter 19 : Biofilm Formation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biofilm Formation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap19-2.gif

Abstract:

This chapter focuses on biofilm formation by the pathogenic fungus . Biofilms are surface-associated microbial communities surrounded by an extracellular matrix. The chapter examines the steps of biofilm formation, from the genes known to function in biofilm development, the cell-cell communication within the biofilm, the environmental responses that contribute to biofilm formation, the drug resistance of biofilms, and experimental techniques used to study biofilms. Cell wall genes and adhesins provide mechanisms that promote biofilm initiation, and the transcription factors that regulate their expression couple biofilm initiation with internal and external signals. The study of transcription factors has laid the framework for gene regulatory networks. While much is now known, detailed testing of other known adherence factors, cell wall proteins, transcription factors, kinases, and others is required to identify more genes involved in biofilm formation, and the elucidation of upstream regulation of these factors will allow for greater insights into the signaling events important for biofilm development. Quorum sensing governs functions as diverse as bioluminescence and virulence. It has a vital role in bacterial biofilm dynamics, and its role in biofilms is now beginning to be understood. While major challenges lie ahead to further refine the gene regulatory networks and correlate them to in vivo results, it is nonetheless an exciting time for the field of biofilm formation.

Citation: Finkel J, Mitchell A. 2012. Biofilm Formation in , p 299-315. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch19

Key Concept Ranking

Cell Wall Proteins
0.45789373
DNA Microarray Analysis
0.40971592
0.45789373
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The three different morphologies of cells. (A) Yeast form cells comprise either a single oval cell or an oval mother cell and smaller daughter cells (seen attached to most cells). (B) Pseudohyphal cells, abnormal elongated budding cells, can contain multiple buds. (C) Hyphal cells are large oval cells with long narrow continuous germ tube protrusions. doi:10.1128/9781555817176.ch19.f1

Citation: Finkel J, Mitchell A. 2012. Biofilm Formation in , p 299-315. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic diagram of the different steps of in vitro biofilm development. (A) In the first step, yeast form cells adhere to the substrate. (B) In the second step, the cells multiply and accumulate. Germ tubes begin to form, and extracellular matrix production begins. (C) In the third step, the biofilm enlarges, with increased cell density, yeast cells, and hyphal cells. Extracellular matrix production increases, enveloping the biofilm. (D) In the final step, yeast cells are dispersed to further colonize the surrounding environment. doi:10.1128/9781555817176.ch19.f2

Citation: Finkel J, Mitchell A. 2012. Biofilm Formation in , p 299-315. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Graphic representation of known pathways involved in biofilm formation. The first three steps of biofilm formation are presented. Arrows with a plus sign represent positive genetic control. “T” bars with a minus sign represent inhibitory action by the protein(s) on the particular step. Those proteins not associated with a particular pathway are presented as follows in the category that best represents their hypothesized function: adhesion, Gin4, Ire1, and Och1; biomass, Als2, Pep12, Pmt1, and Ume6; filamentation, Cbk1, Efg1, Flo8, Kem1, Mds3, Mkc1, and Suv3; and rescue of biofilm defect, Als3, Als5, Als7, Als9, Czf1, and Ece1. doi:10.1128/9781555817176.ch19.f3

Citation: Finkel J, Mitchell A. 2012. Biofilm Formation in , p 299-315. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817176.ch19
1. Adam, B.,, G. S. Baillie, and, L. J. Douglas. 2002. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J. Med. Microbiol. 51: 344349.
2. Alem, M. A.,, M. D. Oteef,, T. H. Flowers, and, L. J. Douglas. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot. Cell 5: 17701779.
3. Al-Fattani, M. A., and, L. J. Douglas. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol. 55: 9991008.
4. Al-Fattani, M. A., and, L. J. Douglas. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48: 32913297.
5. Allison, D. G.,, B. Ruiz,, C. SanJose,, A. Jaspe, and, P. Gilbert. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 167: 179184.
6. Almirante, B.,, D. Rodriguez,, M. Cuenca-Estrella,, M. Almela,, F. Sanchez,, J. Ayats,, C. Alonso-Tarres,, J. L. Rodriguez-Tudela, and, A. Pahissa. 2006. Epidemiology, risk factors, and prognosis of Candida parapsilosis blood-stream infections: case-control population-based surveillance study of patients in Barcelona, Spain, from 2002 to 2003. J. Clin. Microbiol. 44: 16811685.
7. Andes, D.,, J. Nett,, P. Oschel,, R. Albrecht,, K. Marchillo, and, A. Pitula. 2004. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun. 72: 60236031.
8. Baillie, G. S., and, L. J. Douglas. 2000. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 46: 397403.
9. Baillie, G. S., and, L. J. Douglas. 1999. Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48: 671679.
10. Banerjee, M.,, D. S. Thompson,, A. Lazzell,, P. L. Carlisle,, C. Pierce,, C. Monteagudo,, J. L. Lopez-Ribot, and, D. Kadosh. 2008. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol. Biol. Cell 19: 13541365.
11. Bates, S.,, D. M. MacCallum,, G. Bertram,, C. A. Munro,, H. B. Hughes,, E. T. Buurman,, A. J. Brown,, F. C. Odds, and, N. A. Gow. 2005. Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J. Biol. Chem. 280: 2340823415.
12. Bennett, R. J., and, A. D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59: 233255.
13. Bennett, R. J.,, M. A. Uhl,, M. G. Miller, and, A. D. Johnson. 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23: 81898201.
14. Berger, A. 2002. What does zinc do? BMJ 325: 1062.
15. Bird, A.,, M. V. Evans-Galea,, E. Blankman,, H. Zhao,, H. Luo,, D. R. Winge, and, D. J. Eide. 2000. Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator. J. Biol. Chem. 275: 1616016166.
16. Reference deleted.
17. Blankenship, J. R.,, S. Fanning,, J. J. Hamaker, and, A. P. Mitchell. 2010. An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 6: e1000752.
18. Brooun, A.,, S. Liu, and, K. Lewis. 2000. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 44: 640646.
19. Brown, D. H., Jr.,, A. D. Giusani,, X. Chen, and, C. A. Kumamoto. 1999. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34: 651662.
20. Cao, Y. Y.,, Y. B. Cao,, Z. Xu,, K. Ying,, Y. Li,, Y. Xie,, Z. Y. Zhu,, W. S. Chen, and, Y. Y. Jiang. 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother. 49: 584–589.
21. Chaffin, W. L. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72: 495544.
22. Chandra, J.,, D. M. Kuhn,, P. K. Mukherjee,, L. L. Hoyer,, T. McCormick, and, M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 53855394.
23. Chen, H.,, M. Fujita,, Q. Feng,, J. Clardy, and, G. R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101: 50485052.
24. Costerton, J. W.,, P. S. Stewart, and, E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 13181322.
25. Crowe, J. D.,, I. K. Sievwright,, G. C. Auld,, N. R. Moore,, N. A. Gow, and, N. A. Booth. 2003. Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol. Microbiol. 47: 16371651.
26. Daniels, K. J.,, T. Srikantha,, S. R. Lockhart,, C. Pujol, and, D. R. Soll. 2006. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25: 22402252.
27. Davis, D.,, R. B. Wilson, and, A. P. Mitchell. 2000. RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol. Cell. Biol. 20: 971978.
28. Davis, D. A.,, V. M. Bruno,, L. Loza,, S. G. Filler, and, A. P. Mitchell. 2002. Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162: 15731581.
29. Davis, S. C.,, C. Ricotti,, A. Cazzaniga,, E. Welsh,, W. H. Eaglstein, and, P. M. Mertz. 2008. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 16: 2329.
30. Davis-Hanna, A.,, A. E. Piispanen,, L. I. Stateva, and, D. A. Hogan. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67: 4762.
31. De Sordi, L., and, F. A. Muhlschlegel. 2009. Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res. 9: 990999.
32. Ding, C., and, G. Butler. 2007. Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot. Cell 6: 13101319.
33. Douglas, L. J. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11: 3036.
34. Dranginis, A. M.,, J. M. Rauceo,, J. E. Coronado, and, P. N. Lipke. 2007. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol. Mol. Biol. Rev. 71: 282294.
35. Ene, I. V., and, R. J. Bennett. 2009. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot. Cell 8: 19091913.
36. Forrest, G. N.,, E. Weekes, and, J. K. Johnson. 2008. Increasing incidence of Candida parapsilosis candidemia with caspofungin usage. J. Infect. 56: 126129.
37. Fridkin, S. K.,, D. Kaufman,, J. R. Edwards,, S. Shetty, and, T. Horan. 2006. Changing incidence of Candida bloodstream infections among NICU patients in the United States: 1995–2004. Pediatrics 117: 16801687.
38. Garcia-Effron, G.,, S. K. Katiyar,, S. Park,, T. D. Edlind, and, D. S. Perlin. 2008. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 52: 23052312.
39. Garcia-Sanchez, S.,, S. Aubert,, I. Iraqui,, G. Janbon,, J. M. Ghigo, and, C. d’Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3: 536545.
40. Ghosh, S.,, B. W. Kebaara,, A. L. Atkin, and, K. W. Nick-erson. 2008. Regulation of aromatic alcohol production in Candida albicans. Appl. Environ. Microbiol. 74: 72117218.
41. Goyard, S.,, P. Knechtle,, M. Chauvel,, A. Mallet,, M. C. Prevost,, C. Proux,, J. Y. Coppee,, P. Schwartz,, F. Dromer,, H. Park,, S. G. Filler,, G. Janbon, and, C. d’Enfert. 2008. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol. Biol. Cell 19: 22512266.
42. Granger, B. L.,, M. L. Flenniken,, D. A. Davis,, A. P. Mitchell, and, J. E. Cutler. 2005. Yeast wall protein 1 of Candida albicans. Microbiology 151: 16311644.
43. Graser, Y.,, M. Volovsek,, J. Arrington,, G. Schonian,, W. Presber,, T. G. Mitchell, and, R. Vilgalys. 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93: 1247312477.
44. Green, C. B.,, G. Cheng,, J. Chandra,, P. Mukherjee,, M. A. Ghannoum, and, L. L. Hoyer. 2004. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150: 267275.
45. Greenberg, E. P. 2003. Bacterial communication and group behavior. J. Clin. Investig. 112: 12881290.
46. Greenberg, E. P. 2003. Bacterial communication: tiny teamwork. Nature 424: 134.
47. Hajjeh, R. A.,, A. N. Sofair,, L. H. Harrison,, G. M. Lyon,, B. A. Arthington-Skaggs,, S. A. Mirza,, M. Phelan,, J. Morgan,, W. Lee-Yang,, M. A. Ciblak,, L. E. Benjamin,, L. T. Sanza,, S. Huie,, S. F. Yeo,, M. E. Brandt, and, D. W. Warnock. 2004. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol. 42: 15191527.
48. Hawser, S. 1996. Comparisons of the susceptibilities of planktonic and adherent Candida albicans to antifungal agents: a modified XTT tetrazolium assay using synchronised C. albicans cells. J. Med. Vet. Mycol. 34: 149152.
49. Hawser, S. P.,, G. S. Baillie, and, L. J. Douglas. 1998. Production of extracellular matrix by Candida albicans biofilms. J. Med. Microbiol. 47: 253256.
50. Hazelwood, L. A.,, J. M. Daran,, A. J. van Maris,, J. T. Pronk, and, J. R. Dickinson. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74: 22592266.
51. Hiller, E.,, S. Heine,, H. Brunner, and, S. Rupp. 2007. Candida albicans Sun41p, a putative glycosidase, is involved in morphogenesis, cell wall biogenesis, and biofilm formation. Eukaryot. Cell 6: 20562065.
52. Hornby, J. M.,, E. C. Jensen,, A. D. Lisec,, J. J. Tasto,, B. Jahnke,, R. Shoemaker,, P. Dussault, and, K. W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67: 29822992.
53. Hornby, J. M.,, B. W. Kebaara, and, K. W. Nickerson. 2003. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob. Agents Chemother. 47: 23662369.
54. Hoyer, L. L. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9: 176180.
55. Hoyer, L. L.,, T. L. Payne,, M. Bell,, A. M. Myers, and, S. Scherer. 1998. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33: 451459.
56. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289: 307310.
57. Imamura, Y.,, J. Chandra,, P. K. Mukherjee,, A. A. Lattif,, L. B. Szczotka-Flynn,, E. Pearlman,, J. H. Lass,, K. O’Donnell, and, M. A. Ghannoum. 2008. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob. Agents Chemother. 52: 171182.
58. Jabra-Rizk, M. A.,, T. F. Meiller,, C. E. James, and, M. E. Shirtliff. 2006. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother. 50: 14631469.
59. Keller, L., and, M. G. Surette. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4: 249258.
60. Kelly, M. T.,, D. M. MacCallum,, S. D. Clancy,, F. C. Odds,, A. J. Brown, and, G. Butler. 2004. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53: 969983.
61. Keren, I.,, N. Kaldalu,, A. Spoering,, Y. Wang, and, K. Lewis. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230: 1318.
62. Kim, M. J.,, M. Kil,, J. H. Jung, and, J. Kim. 2008. Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans. J. Microbiol. Biotechnol. 18: 242247.
63. Kim, W. I.,, W. B. Lee,, K. Song, and, J. Kim. 2000. Identification of a putative DEAD-box RNA helicase and a zinc-finger protein in Candida albicans by functional complementation of the S. cerevisiae rok1 mutation. Yeast 16: 401409.
64. Klotz, S. A.,, N. K. Gaur,, R. De Armond,, D. Sheppard,, N. Khardori,, J. E. Edwards, Jr.,, P. N. Lipke, and, M. El-Azizi. 2007. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med. Mycol. 45: 363370.
65. Klotz, S. A.,, M. L. Pendrak, and, R. C. Hein. 2001. Antibodies to α5β1 and αvβ3 integrins react with Candida albicans alcohol dehydrogenase. Microbiology 147: 31593164.
66. Kojic, E. M., and, R. O. Darouiche. 2004. Candida infections of medical devices. Clin. Microbiol. Rev. 17: 255267.
67. Kruppa, M.,, B. P. Krom,, N. Chauhan,, A. V. Bambach,, R. L. Cihlar, and, R. A. Calderone. 2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3: 10621065.
68. Kulkarni, R. D.,, H. S. Kelkar, and, R. A. Dean. 2003. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem. Sci. 28: 118121.
69. Kumamoto, C. A. 2005. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl. Acad. Sci. USA 102: 55765581.
70. Kumamoto, C. A. 2002. Candida biofilms. Curr. Opin. Microbiol. 5: 608611.
71. Kumamoto, C. A., and, M. D. Vinces. 2005. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59: 113133.
72. Kuroda, M.,, S. Nagasaki,, R. Ito, and, T. Ohta. 2007. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. FEMS Microbiol. Lett. 273: 2834.
73. Laffey, S. F., and, G. Butler. 2005. Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology 151: 10731081.
74. LaFleur, M. D.,, C. A. Kumamoto, and, K. Lewis. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50: 38393846.
75. Lal, P.,, D. Sharma,, P. Pruthi, and, V. Pruthi. 2010. Exopolysaccharide analysis of biofilm-forming Candida albicans. J. Appl. Microbiol. 109: 128136.
76. Lamarre, C.,, N. Deslauriers, and, Y. Bourbonnais. 2000. Expression cloning of the Candida albicans CSA1 gene encoding a mycelial surface antigen by sorting of Saccharomyces cerevisiae transformants with monoclonal antibody-coated magnetic beads. Mol. Microbiol. 35: 444453.
77. Lane, S.,, C. Birse,, S. Zhou,, R. Matson, and, H. Liu. 2001. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 276: 4898848996.
78. Lane, S.,, S. Zhou,, T. Pan,, Q. Dai, and, H. Liu. 2001. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via Tec1. Mol. Cell. Biol. 21: 64186428.
79. Levin, A. S.,, S. F. Costa,, N. S. Mussi,, M. Basso,, S. I. Sinto,, C. Machado,, D. C. Geiger,, M. C. Villares,, A. Z. Schreiber,, A. A. Barone, and, M. L. Branchini. 1998. Candida parapsilosis fungemia associated with implantable and semi-implantable central venous catheters and the hands of healthcare workers. Diagn. Microbiol. Infect. Dis. 30: 243249.
80. Levy, I.,, L. G. Rubin,, S. Vasishtha,, V. Tucci, and, S. K. Sood. 1998. Emergence of Candida parapsilosis as the predominant species causing candidemia in children. Clin. Infect. Dis. 26: 10861088.
81. Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 9991007.
82. Lewis, R. E.,, H. J. Lo,, I. I. Raad, and, D. P. Kontoyiannis. 2002. Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob. Agents Chemother. 46: 11531155.
83. Li, F., and, S. P. Palecek. 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154: 11931203.
84. Li, F., and, S. P. Palecek. 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell 2: 12661273.
85. Li, F.,, M. J. Svarovsky,, A. J. Karlsson,, J. P. Wagner,, K. Marchillo,, P. Oshel,, D. Andes, and, S. P. Palecek. 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 6: 931939.
86. Lochhead, P. A.,, G. Sibbet,, N. Morrice, and, V. Cleghon. 2005. Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121: 925936.
87. Lockhart, S. R.,, R. Zhao,, K. J. Daniels, and, D. R. Soll. 2003. Alpha-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot. Cell 2: 847855.
88. Magee, B. B., and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289: 310313.
89. Marrie, T. J., and, J. W. Costerton. 1984. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19: 687693.
90. Martins, M.,, M. Henriques,, J. Azeredo,, S. M. Rocha,, M. A. Coimbra, and, R. Oliveira. 2007. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot. Cell 6: 24292436.
91. Martins, M.,, P. Uppuluri,, D. P. Thomas,, I. A. Cleary,, M. Henriques,, J. L. Lopez-Ribot, and, R. Oliveira. 2010. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169: 323331.
92. Mateus, C.,, S. A. Crow, Jr., and, D. G. Ahearn. 2004. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob. Agents Chemother. 48: 33583366.
93. Miller, M. G., and, A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293302.
94. Morschhauser, J. 2002. The genetic basis of fluconazole resistance development in Candida albicans. Biochim. Biophys. Acta 1587: 240248.
95. Mosel, D. D.,, R. Dumitru,, J. M. Hornby,, A. L. Atkin, and, K. W. Nickerson. 2005. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl. Environ. Microbiol. 71: 49384940.
96. Mukherjee, P. K.,, J. Chandra,, D. M. Kuhn, and, M. A. Ghannoum. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71: 43334340.
97. Mukherjee, P. K.,, S. Mohamed,, J. Chandra,, D. Kuhn,, S. Liu,, O. S. Antar,, R. Munyon,, A. P. Mitchell,, D. Andes,, M. R. Chance,, M. Rouabhia, and, M. A. Ghannoum. 2006. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect. Immun. 74: 38043816.
98. Munro, C. A.,, D. A. Schofield,, G. W. Gooday, and, N. A. Gow. 1998. Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 144 (Pt. 2): 391401.
99. Murillo, L. A.,, G. Newport,, C. Y. Lan,, S. Habelitz,, J. Dungan, and, N. M. Agabian. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot. Cell 4: 15621573.
100. Nantel, A.,, D. Dignard,, C. Bachewich,, D. Harcus,, A. Marcil,, A. P. Bouin,, C. W. Sensen,, H. Hogues,, M. van het Hoog,, P. Gordon,, T. Rigby,, F. Benoit,, D. C. Tessier,, D. Y. Thomas, and, M. Whiteway. 2002. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 13: 34523465.
101. Nett, J.,, L. Lincoln,, K. Marchillo, and, D. Andes. 2007. Beta-1,3 glucan as a test for central venous catheter biofilm infection. J. Infect. Dis. 195: 17051712.
102. Nett, J.,, L. Lincoln,, K. Marchillo,, R. Massey,, K. Holoyda,, B. Hoff,, M. VanHandel, and, D. Andes. 2007. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51: 510520.
103. Nobile, C. J.,, D. R. Andes,, J. E. Nett,, F. J. Smith,, F. Yue,, Q. T. Phan,, J. E. Edwards,, S. G. Filler, and, A. P. Mitchell. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2: e63.
104. Nobile, C. J., and, A. P. Mitchell. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15: 11501155.
105. Nobile, C. J.,, J. E. Nett,, D. R. Andes, and, A. P. Mitchell. 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot. Cell 5: 16041610.
106. Nobile, C. J.,, J. E. Nett,, A. D. Hernday,, O. R. Ho-mann,, J.-S. Deneault,, A. Nantel,, D. R. Andes,, A. D. Johnson, and, A. P. Mitchell. 2009. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 7: 1000133.
107. Nobile, C. J.,, H. A. Schneider,, J. E. Nett,, D. C. Sheppard,, S. G. Filler,, D. R. Andes, and, A. P. Mitchell. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18: 10171024.
108. Norice, C. T.,, F. J. Smith,, Jr., N. Solis,, S. G. Filler, and, A. P. Mitchell. 2007. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot. Cell 6: 20462055.
109. O’Connor, L.,, S. Lahiff,, F. Casey,, M. Glennon,, M. Cormican, and, M. Maher. 2005. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol. Cell. Probes 19: 153162.
110. Oh, K. B.,, H. Miyazawa,, T. Naito, and, H. Matsuoka. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 46644668.
111. Otoo, H. N.,, K. G. Lee,, W. Qiu, and, P. N. Lipke. 2008. Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell 7: 776782.
112. Palanisamy, S. K.,, M. A. Ramirez,, M. Lorenz, and, S. A. Lee. 2010. Candida albicans PEP12 is required for biofilm integrity and in vivo virulence. Eukaryot. Cell 9: 266277.
113. Pappas, P. G.,, J. H. Rex,, J. D. Sobel,, S. G. Filler,, W. E. Dismukes,, T. J. Walsh, and, J. E. Edwards. 2004. Guidelines for treatment of candidiasis. Clin. Infect. Dis. 38: 161189.
114. Paramonova, E.,, B. P. Krom,, H. C. van der Mei,, H. J. Busscher, and, P. K. Sharma. 2009. Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology 155: 19972003.
115. Parsek, M. R., and, P. K. Singh. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677701.
116. Peltroche-Llacsahuanga, H.,, S. Goyard,, C. d’Enfert,, S. K. Prill, and, J. F. Ernst. 2006. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob. Agents Chemother. 50: 34883491.
117. Perez, A.,, B. Pedros,, A. Murgui,, M. Casanova,, J. L. Lopez-Ribot, and, J. P. Martinez. 2006. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res. 6: 10741084.
118. Pfaller, M. A., and, D. J. Diekema. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133163.
119. Ramage, G.,, S. Bachmann,, T. F. Patterson,, B. L. Wickes, and, J. L. Lopez-Ribot. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother. 49: 973980.
120. Ramage, G.,, E. Mowat,, B. Jones,, C. Williams, and, J. Lopez-Ribot. 2009. Our current understanding of fungal biofilms. Crit. Rev. Microbiol. 35: 340355.
121. Ramage, G.,, S. P. Saville,, B. L. Wickes, and, J. L. Lopez-Ribot. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol. 68: 54595463.
122. Ramage, G.,, K. VandeWalle,, J. L. Lopez-Ribot, and, B. L. Wickes. 2002. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 214: 95100.
123. Ramirez-Zavala, B.,, O. Reuss,, Y. N. Park,, K. Ohlsen, and, J. Morschhauser. 2008. Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog. 4: e1000089.
124. Richard, M. L.,, C. J. Nobile,, V. M. Bruno, and, A. P. Mitchell. 2005. Candida albicans biofilm-defective mutants. Eukaryot. Cell 4: 14931502.
125. Rogers, P. D., and, K. S. Barker. 2002. Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob. Agents Chemother. 46: 34123417.
126. Schweizer, A.,, S. Rupp,, B. N. Taylor,, M. Rollinghoff, and, K. Schroppel. 2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38: 435445.
127. Setiadi, E. R.,, T. Doedt,, F. Cottier,, C. Noffz, and, J. F. Ernst. 2006. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J. Mol. Biol. 361: 399411.
128. Shapiro, S.,, E. Giertsen, and, B. Guggenheim. 2002. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res. 36: 93100.
129. Sharkey, L. L.,, M. D. McNemar,, S. M. Saporito-Irwin,, P. S. Sypherd, and, W. A. Fonzi. 1999. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J. Bacteriol. 181: 52735279.
130. Sheppard, D. C.,, M. R. Yeaman,, W. H. Welch,, Q. T. Phan,, Y. Fu,, A. S. Ibrahim,, S. G. Filler,, M. Zhang,, A. J. Waring, and, J. E. Edwards, Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279: 3048030489.
131. Sohn, K.,, C. Urban,, H. Brunner, and, S. Rupp. 2003. EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47: 89102.
132. Soll, D. R. 2009. Why does Candida albicans switch? FEMS Yeast Res. 9: 973989.
133. Sonneborn, A.,, D. P. Bockmuhl, and, J. F. Ernst. 1999. Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect. Immun. 67: 55145517.
134. Sonneborn, A.,, B. Tebarth, and, J. F. Ernst. 1999. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect. Immun. 67: 46554660.
135. Staab, J. F.,, S. D. Bradway,, P. L. Fidel, and, P. Sund-strom. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 15351538.
136. Staab, J. F.,, C. A. Ferrer, and, P. Sundstrom. 1996. Developmental expression of a tandemly repeated, pro-line-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J. Biol. Chem. 271: 62986305.
137. Stichternoth, C., and, J. F. Ernst. 2009. Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl. Environ. Microbiol. 75: 36633672.
138. Stoldt, V. R.,, A. Sonneborn,, C. E. Leuker, and, J. F. Ernst. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morpho-genetic processes in fungi. EMBO J. 16: 19821991.
139. Sundstrom, P.,, J. E. Cutler, and, J. F. Staab. 2002. Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect. Immun. 70: 32813283.
140. Tripathi, G.,, C. Wiltshire,, S. Macaskill,, H. Tournu,, S. Budge, and, A. J. Brown. 2002. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J. 21: 54485456.
141. Uppuluri, P.,, J. Nett,, J. Heitman, and, D. Andes. 2008. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob. Agents Chemother. 52: 11271132.
142. Vinces, M. D.,, C. Haas, and, C. A. Kumamoto. 2006. Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efg1p and Czf1p. Eukaryot. Cell 5: 825835.
143. Vinces, M. D., and, C. A. Kumamoto. 2007. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology 153: 28772884.
144. Viudes, A.,, J. Peman,, E. Canton,, P. Ubeda,, J. L. Lopez-Ribot, and, M. Gobernado. 2002. Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur. J. Clin. Microbiol. Infect. Dis. 21: 767774.
145. Weissman, Z., and, D. Kornitzer. 2004. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol. Microbiol. 53: 12091220.
146. Wey, S. B.,, M. Mori,, M. A. Pfaller,, R. F. Woolson, and, R. P. Wenzel. 1988. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch. Intern. Med. 148: 26422645.
147. Wey, S. B.,, M. Mori,, M. A. Pfaller,, R. F. Woolson, and, R. P. Wenzel. 1989. Risk factors for hospital-acquired candidemia. A matched case-control study. Arch. Intern. Med. 149: 23492353.
148. Wilson, L. S.,, C. M. Reyes,, M. Stolpman,, J. Speckman,, K. Allen, and, J. Beney. 2002. The direct cost and incidence of systemic fungal infections. Value Health 5: 2634.
149. Xu, X. L.,, R. T. Lee,, H. M. Fang,, Y. M. Wang,, R. Li,, H. Zou,, Y. Zhu, and, Y. Wang. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4: 2839.
150. Zhao, R.,, K. J. Daniels,, S. R. Lockhart,, K. M. Yeater,, L. L. Hoyer, and, D. R. Soll. 2005. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Eukaryot. Cell 4: 11751190.
151. Zhao, X.,, K. J. Daniels,, S. H. Oh,, C. B. Green,, K. M. Yeater,, D. R. Soll, and, L. L. Hoyer. 2006. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152: 22872299.
152. Zhao, X.,, S. H. Oh,, K. M. Yeater, and, L. L. Hoyer. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151: 16191630.

Tables

Generic image for table
TABLE 1

Genes that govern biofilm formation

Citation: Finkel J, Mitchell A. 2012. Biofilm Formation in , p 299-315. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error