Chapter 1 : Bacterial Diversity in Polar Habitats

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bacterial Diversity in Polar Habitats, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap01-2.gif


This chapter talks about the development of culture-independent, molecular methods that have revolutionized the field and the understanding of molecular ecology. Through the use of these techniques, it is now apparent that the earlier culture-based studies were not a representative reflection of the dominant microorganisms in many psychrophilic habitats. Cyanobacteria present in Dry Valleys mineral soils are considered to be the major primary producers and contribute significantly to microbial diversity. Lithic communities are classified by the specific environmental niche they reside in, and hypoliths, chasmoliths, and cryptoendoliths are further discussed in this chapter. The majority of bacteria isolated from permafrost are aerobic and include a number of coryneforms, endospore formers, sulfate reducers, nitrifying and denitrifying bacteria, and cellulose degraders. The microbial mat bacterial diversity of 10 Dry Valleys lakes was assessed by culturing techniques (heterotrophic growth conditions and fatty acid analysis). Microbial mats from Markham and Ward Hunt Ice Shelves showed species homogeneity in the vertical profile, which has not been seen previously in Antarctic mats, possibly due to differences in mat thickness. The stratified Antarctic mats from the McMurdo Ice Shelf were up to 8 cm thick in places, while the Arctic mats in this study were approximately 2 cm. Using metagenomic methods researchers can assess the diversity of culturable and uncultured organisms, including rare taxa.

Citation: Kirby B, Easton S, Tuffin I, Cowan D. 2012. Bacterial Diversity in Polar Habitats, p 3-31. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch1

Key Concept Ranking

Microbial Ecology
Restriction Fragment Length Polymorphism
Denaturing Gradient Gel Electrophoresis
Restriction Fragment Length Polymorphism
Denaturing Gradient Gel Electrophoresis
Microbial Communities in Environment
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adams, B. J.,, R. D. Bardgett,, E. Ayres,, D. H. Wall,, J. Aislabie,, S. Bamforth,, R. Bargagli,, C. Cary,, P. Cavacini,, L. Connell,, P. Convey,, J. W. Fell,, F. Frati,, I. D. Hogg,, K. K. Newsham,, A. O’Donnell,, N. Russell,, R. D. Seppelt,, and M. I. Stevens. 2006. Diversity and distribution of Victoria Land biota. Soil Biol. Biochem. 38:30033018.
2. Aislabie, J. M.,, P. A. Broady,, and D. J. Saul. 2006a. Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86° 30' S, 147° W), Antarctica. Antarct. Sci. 18:313321.
3. Aislabie, J. M.,, K. Chour,, D. J. Saul,, S. Miyauchi,, J. Ayton,, R. F. Paetzold,, and M. R. Balks. 2006b. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38:30413056.
4. Aislabie, J. M.,, S. Jordan,, and G. M. Barker. 2008. Relationship between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:920.
5. Allan, R. N.,, L. Lebbe,, J. Heyrman,, P. De Vos,, C. J. Buchanan,, and N. A. Logan. 2005. Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int. J. Syst. Evol. Microbiol. 55:10391050.
6. Anisimov, O. A.,, D. G. Vaughan,, T. V. Callaghan,, C. Furgal,, H. Marchant,, T. D. Prowse,, H. Vilhjálmsson,, and J. E. Walsh. 2007. Polar regions (Arctic and Antarctic), p. 653685. In IPCC, Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.
7. Antoniades, D.,, J. Veillette,, M. J. Martineau,, C. Belzile,, J. Tomkins,, R. Pienitz,, S. Lamoureux,, and W. F. Vincent. 2009. Bacterial dominance of phototrophic communities in a High Arctic lake and its implications for paleoclimate analysis. Polar Sci. 3:147161.
8. Babalola, O. O.,, B. M. Kirby,, M. Le Roes-Hill,, A. Cook,, S. C. Cary,, S. G. Burton,, and D. A. Cowan. 2009. Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ. Microbiol. 11:566576.
9. Bahr, M.,, J. E. Hobbie,, and M. L. Sogin. 1996. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat. Microb. Ecol. 11:271277.
10. Baker, J., 1970. Yeasts, moulds and bacteria from an acid peat on Signy Island, p. 717722. In M. Holdgate (ed.), Antarctic Ecology, 2nd ed. Academic Press, New York, NY.
11. Bargagli, R.,, M. L. Skotnicki,, L. Marri,, M. Pepi,, A. Mackenzie,, and C. Agnorelli. 2004. New record of moss and thermophilic bacteria species and physico-chemical properties of geothermal soils on the northwest slope of Mt. Melbourne (Antarctica). Polar Biol. 27:423431.
12. Barrett, J. E.,, R. A. Virginia,, A. N. Parsons,, and D. H. Wall. 2006. Soil carbon turnover in the McMurdo Dry Valleys, Antarctica. Soil Biol. Biochem. 38:30653082.
13. Bentley, D. 2006. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16:545552.
14. Bentley, D. R.,, S. Balasubramanian,, H. P. Swerdlow,, G. P. Smith,, J. Milton,, C. G. Brown,, K. P. Hall,, D. J. Evers,, C. L. Barnes,, and H. R. Bignell. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:5359.
15. Biondi, N.,, M. R. Tredici,, A. Taton,, A. Wilmotte,, D. A. Hodgson,, D. Losi,, and F. Marinelli. 2007. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J. Appl. Microbiol. 105:105115.
16. Bottos, E. M.,, W. F. Vincent,, C. W. Greer,, and L. G. Whyte. 2008. Prokaryotic diversity of arctic ice shelf microbial mats. Environ. Microbiol. 10:950966.
17. Bowman, J. P.,, J. Cavanagh,, J. J. Austin,, and K. Sanderson. 1996. Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol. 46:841848.
18. Bowman, J. P.,, J. J. Gosink,, S. A. McCammon,, T. E. Lewis,, D. S. Nichols,, P. D. Nichols,, J. H. Skerratt,, J. T. Staley,, and T. A. McMeekin. 1998a. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov., and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. Bacteriol. 48:11711180.
19. Bowman, J. P.,, S. A. McCammon,, J. L. Brown,, and T. A. McMeekin. 1998b. Glaciecola punicea gen. nov., sp. nov., and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int. J. Syst. Bacteriol. 48:12131222.
20. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997a. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:30683078.
21. Bowman, J. P.,, S. A. McCammon,, J. L. Brown,, P. D. Nichols,, and T. A. McMeekin. 1997b. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int. J. Syst. Bacteriol. 14:670677.
22. Bowman, J. P.,, S. A. McCammon,, T. Lewis,, J. H. Skerratt,, J. L. Brown,, D. S. Nichols,, and T. A. McMeekin. 1998c. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:16011609.
23. Bowman, J. P.,, S. A. McCammon,, D. S. Nichols,, J. H. Skerratt,, S. M. Rea,, P. D. Nichols,, and T. A. McMeekin. 1997c. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47:10401047.
24. Boyd, W.,, and J. Boyd. 1963. A bacteriological study of an arctic coastal lake. Ecology 44:705710.
25. Boyd, W.,, and J. Boyd. 1964. The presence of bacteria in permafrost of the Alaskan arctic. Can. J. Microbiol. 10:917919.
26. Brambilla, E.,, H. Hippe,, A. Hagelstein,, B. J. Tindall,, and E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:2333.
27. Brierley, A. S.,, and D. N. Thomas. 2002. Ecology of Southern Ocean pack ice. Adv. Mar. Biol. 43:171276.
28. Brinkmeyer, R.,, F. O. Glöckner,, E. Helmke,, and R. Amann. 2004. Predominance of β-Proteobacteria in summer melt pools on Arctic pack ice. Limnol. Oceanogr. 49:10131021.
29. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:66106619.
30. Broady, P. 1981. The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Br. Phycol. J. 16:231240.
31. Broady, P.,, D. Given,, L. Greenfield,, and K. Thompson. 1987. The biota and environment of fumaroles on Mount Melbourne, Northern Victoria Land. Polar Biol. 7:97113.
32. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35:267275.
33. Buckeridge, K. M.,, and P. Grogan. 2008. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl. Soil Ecol. 39:210222.
34. Callaghan, T. V.,, S. Jonasson,, H. Nichols,, R. B. Heywood,, and P. A. Wookey. 2010. Arctic terrestrial ecosystems and environmental change. Philos. Trans. Phys. Sci. Eng. 352:259276.
35. Cameron, R.,, J. King,, and C. David,. 1970. Microbiology, ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica, p. 702716. In M. Holdgate (ed.), Antarctic Ecology, 2nd ed. Academic Press, New York, NY.
36. Cameron, R.,, G. Lacy,, F. Morelli,, and J. Marsh. 1971. Farthest south soil microbial and ecological investigations. Antarct. J. 6:105106.
37. Cameron, R.,, F. Morelli,, and R. Johnson. 1972. Bacterial species in soil and air of the Antarctic continent. Antarct. J. 7:187189.
38. Cao, M.,, S. Marshall,, and K. Gregson. 1996. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J. Geophys. Res. 101:1439914414.
39. Carpenter, E. J.,, S. Lin,, and D. C. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66:45144517.
40. Cary, S. C.,, I. R. McDonald,, J. E. Barrett,, and D. A. Cowan. 2010. On the rocks: microbial ecology of Antarctic cold desert soils. Nat. Rev. Microbiol. 8:129138.
41. Cavalieri, D. J.,, P. Gloersen,, C. L. Parkinson,, J. C. Comiso,, and H. J. Zwally. 1997. Observed hemispheric asymmetry in global sea ice changes. Science 278:11041106.
42. Christner, B. C.,, B. H. Kvitko II,, and J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177183.
43. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3:570577.
44. Christner, B.,, G. Royston-Bishop,, C. F. Foreman,, B. R. Arnold,, M. Tranter,, K. A. Welch,, W. B. Lyons,, A. I. Tsapin,, M. Studinger,, and J. C. Priscu. 2006. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51:24852501.
45. Cockell, C.,, P. Rettberg,, G. Horneck,, K. Scherer,, and M. D. Stokes. 2003. Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Photochem. Photobiol. 26:6269.
46. Cockell, C. S.,, and M. D. Stokes. 2004a. Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arct. Antarct. Alp. Res. 38:335342.
47. Cockell, C. S.,, and M. D. Stokes. 2004b. Ecology: widespread colonization by polar hypoliths. Nature 431:414.
48. Cowan, D. A.,, and L. Ah Tow. 2004. Endangered Antarctic environments. Annu. Rev. Microbiol. 58:649690.
49. Cowan, D. A.,, N. J. Russell,, A. Mamais,, and D. M. Sheppard. 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431436.
50. Crump, B. C.,, G. W. Kling,, M. Bahr,, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69:22532268.
51. Davey, M.,, and K. Clarke. 1991. The spatial distribution of microalgae in Antarctic fellfield soils. Antarct. Sci. 3:257263.
52. de La Torre, J. R.,, B. M. Goebel,, E. I. Friedmann,, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69:38583867.
53. Dobson, S. J.,, R. R. Colwell,, T. A. McMeekin,, and P. D. Franzmann. 1993. Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol. 43:7783.
54. Doran, P. T.,, C. P. McKay,, G. D. Clow,, G. L. Dana,, A. G. Fountain,, T. Nylen,, and W. B. Lyons. 2002a. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000. J. Geophys. Res. 107:4772.
55. Doran, P. T.,, J. C. Priscu,, W. B. Lyons,, J. E. Walsh,, A. G. Fountain,, D. M. McKnight,, D. L. Moorhead,, R. A. Virginia,, D. H. Wall,, G. D. Clow,, C. H. Fritsen,, C. P. McKay,, and A. N. Parsons. 2002b. Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517520.
56. Ernst, A.,, S. Becker,, U. I. Wollenzien,, and C. Postius. 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149:217228.
57. Fox, G. E.,, J. D. Wisotzkey,, and P. Jurtshuk, Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166170.
58. Friedmann, E. I. (ed.). 1993. Antarctic Microbiology. Wiley-Liss, New York, NY.
59. Friedmann, E. I., 1994. Permafrost as microbial habitat, p. 2126. In D. Gilichinsky (ed.), Viable Microorganisms in Permafrost. Russian Academy of Sciences, Pushchino, Russia.
60. Friedmann, E. I.,, M. Hua,, and R. Ocampo-Friedmann. 1988. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251259.
61. Friedmann, E. I.,, C. P. McKay,, and J. A. Nienow. 1987. The cryptoendolithic microbial environment in Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol. 7:273287.
62. Friedmann, E. I.,, and R. Ocampo. 1976. Cyptoendolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:12471249.
63. Ganzert, L.,, G. Jurgens,, U. Münster,, and D. Wagner. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59:476488.
64. Garcia, J. L.,, B. K. Patel,, and B. Ollivier. 2000. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205226.
65. Gentile, G.,, L. Giuliano,, G. D'Auria,, F. Smedile,, M. Azzaro,, M. De Domenico,, and M. M. Yakimov. 2006. Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ. Microbiol. 8:21502161.
66. Gilichinsky, D.,, G. Khlebnikova,, D. Zvyagintsev,, D. Fedorov-Davydov,, and N. Kudryavtseva. 1989. Microbiology of sedimentary materials in the permafrost zone. Int. Geol. Rev. 31:847858.
67. Gordon, D. A.,, J. Priscu,, and S. Giovannoni. 2000. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39:197202.
68. Gosink, J. J.,, R. L. Irgens,, and J. T. Staley. 1993. Vertical distribution of bacteria in arctic sea ice. FEMS Microbiol. Lett. 102:8590.
69. Gosink, J. J.,, and J. T. Staley. 1995. Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol. 61:34863489.
70. Grossmann, S. 1994. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb. Ecol. 28:118.
71. Grzymski, J. J.,, B. J. Carter,, E. F. DeLong,, R. A. Feldman,, A. Ghadiri,, and A. E. Murray. 2006. Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl. Environ. Microbiol. 72:15321541.
72. Gupta, P.,, G. S. Reddy,, D. Delille,, and S. Shivaji. 2004. Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int. J. Syst. Evol. Microbiol. 54:23752378.
73. Harris, J. M.,, and B. J. Tibbles. 1997. Factors affecting bacterial productivity in soils on isolated inland nunataks in continental Antarctica. Microb. Ecol. 33:106123.
74. Helmke, E.,, and H. Weyland. 1995. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117:269287.
75. Hobbie, J. E.,, T. L. Corliss,, and B. J. Peterson. 1983. Seasonal patterns of bacterial abundance in an Arctic lake. Arct. Alp. Res. 15:253259.
76. Hogg, I. D.,, S. C. Cary,, P. Convey,, K. K. Newsham,, A. G. Donnell,, B. J. Adams,, J. Aislabie,, F. Frati,, M. I. Stevens,, and D. H. Wall. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38:30353040.
77. Hughes, K. A.,, and B. Lawley. 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5:555565.
78. Huson, D. H.,, A. F. Auch,, J. Qi,, and S. C. Schuster. 2007. MEGAN analysis of metagenomic data. Genome Res. 17:377386.
79. Jefferies, R. L.,, N. A. Walker,, K. A. Edwards,, and J. Dainty. 2010. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol. Biochem. 42:129135.
80. Jungblut, A. D.,, I. Hawes,, D. Mountfort,, B. Hitzfeld,, D. R. Dietrich,, B. P. Burns,, and B. A. Neilan. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7:519529.
81. Junge, K.,, H. Eicken,, and J. W. Deming,. 2004a. A microscopic approach to investigate bacteria under in situ conditions in Arctic lake ice: initial comparisons to sea ice, p. 381388. In R. Norris, and F. Stootman (ed.), Life amongst the Stars. Bioastronomy 2002; 213 edition. IAU Symposium Astronomical Society of the Pacific, San Francisco, CA.
82. Junge, K.,, H. Eicken,, and J. W. Deming. 2004b. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70:550557.
83. Junge, K.,, F. Imhoff,, T. Staley,, and J. W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43:315328.
84. Karr, E. A.,, W. M. Sattley,, D. O. Jung,, M. T. Madigan,, and L. A. Achenbach. 2003. Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl. Environ. Microbiol. 69:49104914.
85. Labbé, D.,, R. Margesin,, F. Schinner,, L. G. Whyte,, and C. W. Greer. 2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol. Ecol. 59:466475.
86. Lindström, E. S.,, M. P. Kamst-Van Agterveld,, and G. Zwart. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71:82018206.
87. Logan, N. A.,, L. Lebbe,, B. Hoste,, J. Goris,, G. Forsyth,, M. Heyndrickx,, B. L. Murray,, N. Syme,, D. D. Wynn-Williams,, and P. De Vos. 2000. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int. J. Syst. Evol. Microbiol. 50:17411753.
88. Löve, D. 1970. Subarctic and subalpine: where and what? Arct. Antarct. Alp. Res. 2:6373.
89. Ludley, K. E.,, and C. H. Robinson. 2008. “Decomposer” Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol. Biochem. 40:1129.
90. Männistö, M., and Häggblom, M. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland 109. Syst. Appl. Microbiol. 29:229243.
91. Männistö, M.,, H. Kontio,, M. Tiirola,, and M. Häggblom. 2008. Seasonal variation in active bacterial communities of Fennoscandian tundra soil. 3rd Int. Conf. Polar Alp. Microbiol., Alberta, Canada, 11 to 15 May 2008.
92. Margesin, R.,, P. A. Fonteyne,, and B. Redl. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156:6875.
93. Margesin, R.,, D. Labbé,, F. Schinner,, C. W. Greer,, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69:30853092.
94. Margesin, R.,, P. Schumann,, C. Spröer,, and A. M. Gounot. 2004. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int. J. Syst. Evol. Microbiol. 54:20672072.
95. McKay, C. P.,, and E. I. Friedmann. 1985. The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variation in nature. Polar Biol. 4:1925.
96. Mock, T.,, and D. N. Thomas. 2005. Recent advances in sea-ice microbiology. Environ. Microbiol. 7:605619.
97. Moeseneder, M. M.,, J. M. Arrieta,, and G. J. Herndl. 2005. A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiol. Ecol. 51:341352.
98. Mohn, W. W.,, and G. R. Stewart. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol. Biochem. 32:11611172.
99. Mondino, L. J.,, M. Asao,, and M. T. Madigan. 2009. Cold-active halophilic bacteria from the ice-sealed Lake Vida, Antarctica. Arch. Microbiol. 191:785790.
100. Mosier, A. C.,, A. E. Murray,, and C. H. Fritsen. 2006. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol. Ecol. 59:274288.
101. Murray, A. E.,, C. M. Preston,, R. Massana,, L. T. Taylor,, A. Blakis,, K. Wu,, and E. F. DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64:25852595.
102. Nemergut, D. R.,, E. K. Costello,, A. F. Meyer,, M. Y. Pescador,, M. N. Weintraub,, and S. K. Schmidt. 2005. Structure and function of alpine and arctic soil microbial communities. Res. Microbiol. 156:775784.
103. Newsham, K. K.,, D. A. Pearce,, and P. D. Bridge. 2010. Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol. Res. 165:523530.
104. Nicolaus, B.,, L. Lama,, E. Esposito,, M. Manca,, G. Di Prisco,, and A. Gambacorta. 1996. Bacillus thermoantarcticus” sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol. 16:101104.
105. Niederberger, T. D.,, I. R. McDonald,, A. L. Hacker,, R. M. Soo,, J. E. Barrett,, D. H. Wall,, and S. C. Cary. 2008. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10:17131724.
106. Nienow, J. A.,, and E. I. Friedmann,. 1993. Terrestrial lithophytic (rock) communities, p. 343412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
107. O’Brien, A.,, R. Sharp,, N. J. Russell,, and S. Roller. 2004. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol. Ecol. 48:157167.
108. Omelchenko, M.,, L. Vasilieva,, G. Zavarzin,, N. Saveliena,, A. Lysenko,, L. Mityushina,, V. Khmelenina,, and Y. Trotsenko. 1996. A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65:339343.
109. Omelon, C. R.,, W. H. Pollard,, and F. G. Ferris. 2007. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microb. Ecol. 54:740752.
110. Pacheco-Oliver, M.,, I. R. McDonald,, D. Groleau,, J. C. Murrell,, and C. B. Miguez. 2002. Detection of methanotrophs with highly diverget pmoA genes from Arctic soils. FEMS Microbiol. Lett. 209:313319.
111. Pandev, V.,, R. C. Nutter,, and E. Prediger,. 2008. Applied Biosystems SOLiD™ System: ligation-based sequencing, p. 2942. In M. Janitz (ed.), Next Generation Genome Sequencing: Towards Personalized Medicine. Wiley-VCH Verlag, Weinheim, Germany.
112. Pointing, S. B.,, Y. Chan,, D. C. Lacap,, M. C. Lau,, J. A. Jurgens,, and R. L. Farrell. 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. USA 106:1996419969.
113. Poli, A.,, E. Esposito,, L. Lama,, P. Orlando,, G. Nicolaus,, F. de Appolonia,, A. Gambacorta,, and B. Nicolaus. 2006. Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst. Appl. Microbiol. 29:300307.
114. Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58:755805.
115. Prabahar, V.,, S. Dube,, G. S. Reddy,, and S. Shivaji. 2004. Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Int. J. Syst. Evol. Microbiol. 27:6671.
116. Price, P. B. 2006. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol. Ecol. 59:217231.
117. Schimel, J. P.,, and C. Mikan. 2005. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol. Biochem. 37:14111418.
118. Schinner, F.,, R. Margesin,, and T. Pümpel. 1992. Extracellular protease-producing psychrotrophic bacteria from high alpine habitats. Arct. Antarct. Alp. Res. 24:8892.
119. Shi, T.,, R. H. Reeves,, D. A. Gilichinsky,, and E. I. Friedmann. 1997. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Soil Sci. 33:169179.
120. Shiklomanov, I. A.,, A. I. Shiklomanov,, R. B. Lammers,, B. J. Peterson,, and C. J. Vörösmarty,. 2000. The dynamics of river water inflow to the Arctic Ocean, p. 281296. In E. L. Lewis,, E. P. Jones,, P. Lemke,, T. D. Prowse,, and P. Wadhams (ed.), The Freshwater Budget of the Arctic Ocean. Kluwer Academic Publishers, Dordrecht, The Netherlands.
121. Shivaji, S.,, N. S. Rao,, L. Saisree,, V. Sheth,, G. S. Reddy,, and P. M. Bhargava. 1989. Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl. Environ. Microbiol. 55:767770.
122. Shravage, B. V.,, K. M. Dayananda,, M. S. Patole,, and Y. S. Shouche. 2007. Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica. Microbiol. Res. 162:1525.
123. Siebert, J.,, P. Hirsch,, B. Hoffmann,, C. G. Gliesche,, K. Peissl,, and M. Jendrach. 1996. Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodivers. Conserv. 5:13371363.
124. Simankova, M. V.,, O. R. Kotsyurbenko,, E. Stackebrandt,, N. A. Kostrikina,, A. M. Lysenko,, G. A. Osipov,, and A. N. Nozhevnikova. 2000. Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch. Microbiol. 174:440447.
125. Smith, J. J.,, L. Ah Tow,, W. Stafford,, C. Cary,, and D. A. Cowan. 2006. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51:413421.
126. Smith, M. C.,, J. P. Bowman,, F. J. Scott,, and M. A. Line. 2000. Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 12:177184.
127. Staley, J. T.,, and J. J. Gosink. 1999. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53:189215.
128. Steven, B.,, G. Briggs,, C. P. McKay,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2007. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59:513523.
129. Suzuki, T.,, T. Nakayama,, T. Kurihara,, T. Nishino,, and N. Esaki. 2009. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 92:144148.
130. Taton, A.,, S. Grubisic,, P. Balthasart,, D. A. Hodgson,, J. Laybourn-Parry,, and A. Wilmotte. 2006. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol. Ecol. 57:272289.
131. Taton, A.,, S. Grubisic,, E. Brambilla,, R. De Wit,, and A. Wilmotte. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69:51575169.
132. Thomas, D. N. 2005. Photosynthetic microbes in freezing deserts. Trends Microbiol. 13:8788.
133. Tindall, B. J. 2004. Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb. Ecol. 47:271283.
134. Tourova, T. P.,, M. V. Omelchenko,, K. V. Fegeding,, and L. V. Vasilieva. 1999. The phylogenetic position of Methylobacter psychrophilus sp. nov. Microbiology 68:437444.
135. Van Trappen, S.,, J. Mergaert,, S. Van Eygen,, P. Dawyndt,, M. Cnockaert,, and J. Swings. 2002. Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst. Appl. Microbiol. 25:603610.
136. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, United Kingdom.
137. Vincent, W. F.,, M. T. Downes,, R. W. Castenholz,, and C. Howard-Williams. 1993. Community structure and pigment organisation of cyanobacterial-dominated microbial mats in Antarctica. Eur. J. Phycol. 28:213221.
138. Vincent, W. F.,, D. R. Mueller,, and S. Bonilla. 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48:103112.
139. Vishniac, H., 1993. The microbiology of Antarctic soils, p. 297342. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
140. Vorobyova, E.,, N. Minkovsky,, A. Mamukelashvili,, D. Zvyagintsev,, V. Soina,, L. Polanskaya,, and D. Gilichinsky,. 2001. Microorganisms and biomarkers in permafrost, p. 527541. In R. Paepe, and V. Melnikov (ed.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Kluwer Academic Publishers, Dordrecht, The Netherlands.
141. Wallenstein, M. D.,, S. McMahon,, and J. Schimel. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59:428435.
142. Walton, D. W. H., 1984. The terrestrial environment, p. 160. In R. M. Laws (ed.), Antarctic Ecology, vol. 1. Academic Press, London, United Kingdom.
143. Warren-Rhodes, K. A.,, K. L. Rhodes,, L. N. Boyle,, S. B. Pointing,, Y. Chen,, S. Liu,, P. Zhuo,, and C. P. McKay. 2007. Cyanobacterial ecology across environmental gradients and spatial scales in China's hot and cold deserts. FEMS Microbiol. Ecol. 61:470482.
144. Warren-Rhodes, K. A.,, K. L. Rhodes,, S. B. Pointing,, S. A. Ewing,, D. C. Lacap,, B. Gómez-Silva,, R. Amundson,, E. I. Friedmann,, and C. P. McKay. 2006. Hypolithic bacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52:389398.
145. Wartiainen, I.,, A. G. Hestens,, I. R. McDonald,, and M. M. Svenning. 2006. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (786 N). Int. J. Syst. Evol. Microbiol. 56:541547.
146. Wartiainen, I.,, A. G. Hestens,, and M. M. Svenning. 2003. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)—denaturing gel electrophoresis analysis of soil DNA and enrichment cultures. Can. J. Microbiol. 49:602612.
147. Wicklow, D. T.,, and B. Söderström (ed.). 1997. Environmental and Microbial Relationships. Springer, Berlin, Germany.
148. Williams, P. J.,, and M. W. Smith. 1989. The Frozen Earth: Fundamentals of Geocryology. Cambridge University Press, Cambridge, United Kingdom.
149. Yergeau, E.,, K. K. Newsham,, D. A. Pearce,, and G. A. Kowalchuk. 2007. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ. Microbiol. 9:26702682.
150. Yukimura, K.,, R. Nakai,, S. Kohshima,, J. Uetake,, H. Kanda,, and T. Naganuma. 2009. Spore-forming halophilic bacteria isolated from Arctic terrains: implications for long-range transportation of microorganisms. Polar Sci. 3:163169.
151. Zdanowski, M. K.,, M. J. Zmuda,, and I. Zwolska. 2005. Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol. Biochem. 37:581595.
152. Zvyagintsev, D. G. 1992. Microorganisms in permafrost, p. 229232. In Proceedings of the First International Conference on Cryopedology. Pushchino, Russia.


Generic image for table

Summary of the findings from key bacterial diversity studies for Antarctic habitats as determined by culture-based and metagenomic techniques

Citation: Kirby B, Easton S, Tuffin I, Cowan D. 2012. Bacterial Diversity in Polar Habitats, p 3-31. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error