1887

Chapter 1 : Bacterial Diversity in Polar Habitats

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Diversity in Polar Habitats, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap01-2.gif

Abstract:

This chapter talks about the development of culture-independent, molecular methods that have revolutionized the field and the understanding of molecular ecology. Through the use of these techniques, it is now apparent that the earlier culture-based studies were not a representative reflection of the dominant microorganisms in many psychrophilic habitats. Cyanobacteria present in Dry Valleys mineral soils are considered to be the major primary producers and contribute significantly to microbial diversity. Lithic communities are classified by the specific environmental niche they reside in, and hypoliths, chasmoliths, and cryptoendoliths are further discussed in this chapter. The majority of bacteria isolated from permafrost are aerobic and include a number of coryneforms, endospore formers, sulfate reducers, nitrifying and denitrifying bacteria, and cellulose degraders. The microbial mat bacterial diversity of 10 Dry Valleys lakes was assessed by culturing techniques (heterotrophic growth conditions and fatty acid analysis). Microbial mats from Markham and Ward Hunt Ice Shelves showed species homogeneity in the vertical profile, which has not been seen previously in Antarctic mats, possibly due to differences in mat thickness. The stratified Antarctic mats from the McMurdo Ice Shelf were up to 8 cm thick in places, while the Arctic mats in this study were approximately 2 cm. Using metagenomic methods researchers can assess the diversity of culturable and uncultured organisms, including rare taxa.

Citation: Kirby B, Easton S, Tuffin I, Cowan D. 2012. Bacterial Diversity in Polar Habitats, p 3-31. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch1

Key Concept Ranking

Microbial Ecology
0.57882345
Restriction Fragment Length Polymorphism
0.4562981
Denaturing Gradient Gel Electrophoresis
0.4562981
Restriction Fragment Length Polymorphism
0.4562981
Denaturing Gradient Gel Electrophoresis
0.4562981
Microbial Communities in Environment
0.4281756
0.57882345
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817183.chap1
1. Adams, B. J.,, R. D. Bardgett,, E. Ayres,, D. H. Wall,, J. Aislabie,, S. Bamforth,, R. Bargagli,, C. Cary,, P. Cavacini,, L. Connell,, P. Convey,, J. W. Fell,, F. Frati,, I. D. Hogg,, K. K. Newsham,, A. O’Donnell,, N. Russell,, R. D. Seppelt,, and M. I. Stevens. 2006. Diversity and distribution of Victoria Land biota. Soil Biol. Biochem. 38: 3003 3018.
2. Aislabie, J. M.,, P. A. Broady,, and D. J. Saul. 2006a. Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86° 30' S, 147° W), Antarctica. Antarct. Sci. 18: 313 321.
3. Aislabie, J. M.,, K. Chour,, D. J. Saul,, S. Miyauchi,, J. Ayton,, R. F. Paetzold,, and M. R. Balks. 2006b. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38: 3041 3056.
4. Aislabie, J. M.,, S. Jordan,, and G. M. Barker. 2008. Relationship between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144: 9 20.
5. Allan, R. N.,, L. Lebbe,, J. Heyrman,, P. De Vos,, C. J. Buchanan,, and N. A. Logan. 2005. Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int. J. Syst. Evol. Microbiol. 55: 1039 1050.
6. Anisimov, O. A.,, D. G. Vaughan,, T. V. Callaghan,, C. Furgal,, H. Marchant,, T. D. Prowse,, H. Vilhjálmsson,, and J. E. Walsh. 2007. Polar regions (Arctic and Antarctic), p. 653 685. In IPCC, Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.
7. Antoniades, D.,, J. Veillette,, M. J. Martineau,, C. Belzile,, J. Tomkins,, R. Pienitz,, S. Lamoureux,, and W. F. Vincent. 2009. Bacterial dominance of phototrophic communities in a High Arctic lake and its implications for paleoclimate analysis. Polar Sci. 3: 147 161.
8. Babalola, O. O.,, B. M. Kirby,, M. Le Roes-Hill,, A. Cook,, S. C. Cary,, S. G. Burton,, and D. A. Cowan. 2009. Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ. Microbiol. 11: 566 576.
9. Bahr, M.,, J. E. Hobbie,, and M. L. Sogin. 1996. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat. Microb. Ecol. 11: 271 277.
10. Baker, J., 1970. Yeasts, moulds and bacteria from an acid peat on Signy Island, p. 717 722. In M. Holdgate (ed.), Antarctic Ecology, 2nd ed. Academic Press, New York, NY.
11. Bargagli, R.,, M. L. Skotnicki,, L. Marri,, M. Pepi,, A. Mackenzie,, and C. Agnorelli. 2004. New record of moss and thermophilic bacteria species and physico-chemical properties of geothermal soils on the northwest slope of Mt. Melbourne (Antarctica). Polar Biol. 27: 423 431.
12. Barrett, J. E.,, R. A. Virginia,, A. N. Parsons,, and D. H. Wall. 2006. Soil carbon turnover in the McMurdo Dry Valleys, Antarctica. Soil Biol. Biochem. 38: 3065 3082.
13. Bentley, D. 2006. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16: 545 552.
14. Bentley, D. R.,, S. Balasubramanian,, H. P. Swerdlow,, G. P. Smith,, J. Milton,, C. G. Brown,, K. P. Hall,, D. J. Evers,, C. L. Barnes,, and H. R. Bignell. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53 59.
15. Biondi, N.,, M. R. Tredici,, A. Taton,, A. Wilmotte,, D. A. Hodgson,, D. Losi,, and F. Marinelli. 2007. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J. Appl. Microbiol. 105: 105 115.
16. Bottos, E. M.,, W. F. Vincent,, C. W. Greer,, and L. G. Whyte. 2008. Prokaryotic diversity of arctic ice shelf microbial mats. Environ. Microbiol. 10: 950 966.
17. Bowman, J. P.,, J. Cavanagh,, J. J. Austin,, and K. Sanderson. 1996. Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol. 46: 841 848.
18. Bowman, J. P.,, J. J. Gosink,, S. A. McCammon,, T. E. Lewis,, D. S. Nichols,, P. D. Nichols,, J. H. Skerratt,, J. T. Staley,, and T. A. McMeekin. 1998a. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov., and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. Bacteriol. 48: 1171 1180.
19. Bowman, J. P.,, S. A. McCammon,, J. L. Brown,, and T. A. McMeekin. 1998b. Glaciecola punicea gen. nov., sp. nov., and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int. J. Syst. Bacteriol. 48: 1213 1222.
20. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997a. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63: 3068 3078.
21. Bowman, J. P.,, S. A. McCammon,, J. L. Brown,, P. D. Nichols,, and T. A. McMeekin. 1997b. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int. J. Syst. Bacteriol. 14: 670 677.
22. Bowman, J. P.,, S. A. McCammon,, T. Lewis,, J. H. Skerratt,, J. L. Brown,, D. S. Nichols,, and T. A. McMeekin. 1998c. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144: 1601 1609.
23. Bowman, J. P.,, S. A. McCammon,, D. S. Nichols,, J. H. Skerratt,, S. M. Rea,, P. D. Nichols,, and T. A. McMeekin. 1997c. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47: 1040 1047.
24. Boyd, W.,, and J. Boyd. 1963. A bacteriological study of an arctic coastal lake. Ecology 44: 705 710.
25. Boyd, W.,, and J. Boyd. 1964. The presence of bacteria in permafrost of the Alaskan arctic. Can. J. Microbiol. 10: 917 919.
26. Brambilla, E.,, H. Hippe,, A. Hagelstein,, B. J. Tindall,, and E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5: 23 33.
27. Brierley, A. S.,, and D. N. Thomas. 2002. Ecology of Southern Ocean pack ice. Adv. Mar. Biol. 43: 171 276.
28. Brinkmeyer, R.,, F. O. Glöckner,, E. Helmke,, and R. Amann. 2004. Predominance of β-Proteobacteria in summer melt pools on Arctic pack ice. Limnol. Oceanogr. 49: 1013 1021.
29. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69: 6610 6619.
30. Broady, P. 1981. The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Br. Phycol. J. 16: 231 240.
31. Broady, P.,, D. Given,, L. Greenfield,, and K. Thompson. 1987. The biota and environment of fumaroles on Mount Melbourne, Northern Victoria Land. Polar Biol. 7: 97 113.
32. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35: 267 275.
33. Buckeridge, K. M.,, and P. Grogan. 2008. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl. Soil Ecol. 39: 210 222.
34. Callaghan, T. V.,, S. Jonasson,, H. Nichols,, R. B. Heywood,, and P. A. Wookey. 2010. Arctic terrestrial ecosystems and environmental change. Philos. Trans. Phys. Sci. Eng. 352: 259 276.
35. Cameron, R.,, J. King,, and C. David,. 1970. Microbiology, ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica, p. 702 716. In M. Holdgate (ed.), Antarctic Ecology, 2nd ed. Academic Press, New York, NY.
36. Cameron, R.,, G. Lacy,, F. Morelli,, and J. Marsh. 1971. Farthest south soil microbial and ecological investigations. Antarct. J. 6: 105 106.
37. Cameron, R.,, F. Morelli,, and R. Johnson. 1972. Bacterial species in soil and air of the Antarctic continent. Antarct. J. 7: 187 189.
38. Cao, M.,, S. Marshall,, and K. Gregson. 1996. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J. Geophys. Res. 101: 14399 14414.
39. Carpenter, E. J.,, S. Lin,, and D. C. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66: 4514 4517.
40. Cary, S. C.,, I. R. McDonald,, J. E. Barrett,, and D. A. Cowan. 2010. On the rocks: microbial ecology of Antarctic cold desert soils. Nat. Rev. Microbiol. 8: 129 138.
41. Cavalieri, D. J.,, P. Gloersen,, C. L. Parkinson,, J. C. Comiso,, and H. J. Zwally. 1997. Observed hemispheric asymmetry in global sea ice changes. Science 278: 1104 1106.
42. Christner, B. C.,, B. H. Kvitko II,, and J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177 183.
43. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3: 570 577.
44. Christner, B.,, G. Royston-Bishop,, C. F. Foreman,, B. R. Arnold,, M. Tranter,, K. A. Welch,, W. B. Lyons,, A. I. Tsapin,, M. Studinger,, and J. C. Priscu. 2006. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51: 2485 2501.
45. Cockell, C.,, P. Rettberg,, G. Horneck,, K. Scherer,, and M. D. Stokes. 2003. Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Photochem. Photobiol. 26: 62 69.
46. Cockell, C. S.,, and M. D. Stokes. 2004a. Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arct. Antarct. Alp. Res. 38: 335 342.
47. Cockell, C. S.,, and M. D. Stokes. 2004b. Ecology: widespread colonization by polar hypoliths. Nature 431: 414.
48. Cowan, D. A.,, and L. Ah Tow. 2004. Endangered Antarctic environments. Annu. Rev. Microbiol. 58: 649 690.
49. Cowan, D. A.,, N. J. Russell,, A. Mamais,, and D. M. Sheppard. 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6: 431 436.
50. Crump, B. C.,, G. W. Kling,, M. Bahr,, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69: 2253 2268.
51. Davey, M.,, and K. Clarke. 1991. The spatial distribution of microalgae in Antarctic fellfield soils. Antarct. Sci. 3: 257 263.
52. de La Torre, J. R.,, B. M. Goebel,, E. I. Friedmann,, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69: 3858 3867.
53. Dobson, S. J.,, R. R. Colwell,, T. A. McMeekin,, and P. D. Franzmann. 1993. Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol. 43: 77 83.
54. Doran, P. T.,, C. P. McKay,, G. D. Clow,, G. L. Dana,, A. G. Fountain,, T. Nylen,, and W. B. Lyons. 2002a. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000. J. Geophys. Res. 107: 4772.
55. Doran, P. T.,, J. C. Priscu,, W. B. Lyons,, J. E. Walsh,, A. G. Fountain,, D. M. McKnight,, D. L. Moorhead,, R. A. Virginia,, D. H. Wall,, G. D. Clow,, C. H. Fritsen,, C. P. McKay,, and A. N. Parsons. 2002b. Antarctic climate cooling and terrestrial ecosystem response. Nature 415: 517 520.
56. Ernst, A.,, S. Becker,, U. I. Wollenzien,, and C. Postius. 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149: 217 228.
57. Fox, G. E.,, J. D. Wisotzkey,, and P. Jurtshuk, Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42: 166 170.
58. Friedmann, E. I. (ed.). 1993. Antarctic Microbiology. Wiley-Liss, New York, NY.
59. Friedmann, E. I., 1994. Permafrost as microbial habitat, p. 21 26. In D. Gilichinsky (ed.), Viable Microorganisms in Permafrost. Russian Academy of Sciences, Pushchino, Russia.
60. Friedmann, E. I.,, M. Hua,, and R. Ocampo-Friedmann. 1988. Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58: 251 259.
61. Friedmann, E. I.,, C. P. McKay,, and J. A. Nienow. 1987. The cryptoendolithic microbial environment in Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol. 7: 273 287.
62. Friedmann, E. I.,, and R. Ocampo. 1976. Cyptoendolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193: 1247 1249.
63. Ganzert, L.,, G. Jurgens,, U. Münster,, and D. Wagner. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59: 476 488.
64. Garcia, J. L.,, B. K. Patel,, and B. Ollivier. 2000. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6: 205 226.
65. Gentile, G.,, L. Giuliano,, G. D'Auria,, F. Smedile,, M. Azzaro,, M. De Domenico,, and M. M. Yakimov. 2006. Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ. Microbiol. 8: 2150 2161.
66. Gilichinsky, D.,, G. Khlebnikova,, D. Zvyagintsev,, D. Fedorov-Davydov,, and N. Kudryavtseva. 1989. Microbiology of sedimentary materials in the permafrost zone. Int. Geol. Rev. 31: 847 858.
67. Gordon, D. A.,, J. Priscu,, and S. Giovannoni. 2000. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39: 197 202.
68. Gosink, J. J.,, R. L. Irgens,, and J. T. Staley. 1993. Vertical distribution of bacteria in arctic sea ice. FEMS Microbiol. Lett. 102: 85 90.
69. Gosink, J. J.,, and J. T. Staley. 1995. Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol. 61: 3486 3489.
70. Grossmann, S. 1994. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb. Ecol. 28: 1 18.
71. Grzymski, J. J.,, B. J. Carter,, E. F. DeLong,, R. A. Feldman,, A. Ghadiri,, and A. E. Murray. 2006. Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl. Environ. Microbiol. 72: 1532 1541.
72. Gupta, P.,, G. S. Reddy,, D. Delille,, and S. Shivaji. 2004. Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int. J. Syst. Evol. Microbiol. 54: 2375 2378.
73. Harris, J. M.,, and B. J. Tibbles. 1997. Factors affecting bacterial productivity in soils on isolated inland nunataks in continental Antarctica. Microb. Ecol. 33: 106 123.
74. Helmke, E.,, and H. Weyland. 1995. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117: 269 287.
75. Hobbie, J. E.,, T. L. Corliss,, and B. J. Peterson. 1983. Seasonal patterns of bacterial abundance in an Arctic lake. Arct. Alp. Res. 15: 253 259.
76. Hogg, I. D.,, S. C. Cary,, P. Convey,, K. K. Newsham,, A. G. Donnell,, B. J. Adams,, J. Aislabie,, F. Frati,, M. I. Stevens,, and D. H. Wall. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38: 3035 3040.
77. Hughes, K. A.,, and B. Lawley. 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5: 555 565.
78. Huson, D. H.,, A. F. Auch,, J. Qi,, and S. C. Schuster. 2007. MEGAN analysis of metagenomic data. Genome Res. 17: 377 386.
79. Jefferies, R. L.,, N. A. Walker,, K. A. Edwards,, and J. Dainty. 2010. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol. Biochem. 42: 129 135.
80. Jungblut, A. D.,, I. Hawes,, D. Mountfort,, B. Hitzfeld,, D. R. Dietrich,, B. P. Burns,, and B. A. Neilan. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519 529.
81. Junge, K.,, H. Eicken,, and J. W. Deming,. 2004a. A microscopic approach to investigate bacteria under in situ conditions in Arctic lake ice: initial comparisons to sea ice, p. 381 388. In R. Norris, and F. Stootman (ed.), Life amongst the Stars. Bioastronomy 2002; 213 edition. IAU Symposium Astronomical Society of the Pacific, San Francisco, CA.
82. Junge, K.,, H. Eicken,, and J. W. Deming. 2004b. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70: 550 557.
83. Junge, K.,, F. Imhoff,, T. Staley,, and J. W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43: 315 328.
84. Karr, E. A.,, W. M. Sattley,, D. O. Jung,, M. T. Madigan,, and L. A. Achenbach. 2003. Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl. Environ. Microbiol. 69: 4910 4914.
85. Labbé, D.,, R. Margesin,, F. Schinner,, L. G. Whyte,, and C. W. Greer. 2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol. Ecol. 59: 466 475.
86. Lindström, E. S.,, M. P. Kamst-Van Agterveld,, and G. Zwart. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71: 8201 8206.
87. Logan, N. A.,, L. Lebbe,, B. Hoste,, J. Goris,, G. Forsyth,, M. Heyndrickx,, B. L. Murray,, N. Syme,, D. D. Wynn-Williams,, and P. De Vos. 2000. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int. J. Syst. Evol. Microbiol. 50: 1741 1753.
88. Löve, D. 1970. Subarctic and subalpine: where and what? Arct. Antarct. Alp. Res. 2: 63 73.
89. Ludley, K. E.,, and C. H. Robinson. 2008. “Decomposer” Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol. Biochem. 40: 11 29.
90. Männistö, M., and Häggblom, M. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland 109. Syst. Appl. Microbiol. 29: 229 243.
91. Männistö, M.,, H. Kontio,, M. Tiirola,, and M. Häggblom. 2008. Seasonal variation in active bacterial communities of Fennoscandian tundra soil. 3rd Int. Conf. Polar Alp. Microbiol., Alberta, Canada, 11 to 15 May 2008.
92. Margesin, R.,, P. A. Fonteyne,, and B. Redl. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156: 68 75.
93. Margesin, R.,, D. Labbé,, F. Schinner,, C. W. Greer,, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085 3092.
94. Margesin, R.,, P. Schumann,, C. Spröer,, and A. M. Gounot. 2004. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int. J. Syst. Evol. Microbiol. 54: 2067 2072.
95. McKay, C. P.,, and E. I. Friedmann. 1985. The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variation in nature. Polar Biol. 4: 19 25.
96. Mock, T.,, and D. N. Thomas. 2005. Recent advances in sea-ice microbiology. Environ. Microbiol. 7: 605 619.
97. Moeseneder, M. M.,, J. M. Arrieta,, and G. J. Herndl. 2005. A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiol. Ecol. 51: 341 352.
98. Mohn, W. W.,, and G. R. Stewart. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol. Biochem. 32: 1161 1172.
99. Mondino, L. J.,, M. Asao,, and M. T. Madigan. 2009. Cold-active halophilic bacteria from the ice-sealed Lake Vida, Antarctica. Arch. Microbiol. 191: 785 790.
100. Mosier, A. C.,, A. E. Murray,, and C. H. Fritsen. 2006. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol. Ecol. 59: 274 288.
101. Murray, A. E.,, C. M. Preston,, R. Massana,, L. T. Taylor,, A. Blakis,, K. Wu,, and E. F. DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64: 2585 2595.
102. Nemergut, D. R.,, E. K. Costello,, A. F. Meyer,, M. Y. Pescador,, M. N. Weintraub,, and S. K. Schmidt. 2005. Structure and function of alpine and arctic soil microbial communities. Res. Microbiol. 156: 775 784.
103. Newsham, K. K.,, D. A. Pearce,, and P. D. Bridge. 2010. Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol. Res. 165: 523 530.
104. Nicolaus, B.,, L. Lama,, E. Esposito,, M. Manca,, G. Di Prisco,, and A. Gambacorta. 1996. Bacillus thermoantarcticus” sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol. 16: 101 104.
105. Niederberger, T. D.,, I. R. McDonald,, A. L. Hacker,, R. M. Soo,, J. E. Barrett,, D. H. Wall,, and S. C. Cary. 2008. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10: 1713 1724.
106. Nienow, J. A.,, and E. I. Friedmann,. 1993. Terrestrial lithophytic (rock) communities, p. 343 412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
107. O’Brien, A.,, R. Sharp,, N. J. Russell,, and S. Roller. 2004. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol. Ecol. 48: 157 167.
108. Omelchenko, M.,, L. Vasilieva,, G. Zavarzin,, N. Saveliena,, A. Lysenko,, L. Mityushina,, V. Khmelenina,, and Y. Trotsenko. 1996. A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65: 339 343.
109. Omelon, C. R.,, W. H. Pollard,, and F. G. Ferris. 2007. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microb. Ecol. 54: 740 752.
110. Pacheco-Oliver, M.,, I. R. McDonald,, D. Groleau,, J. C. Murrell,, and C. B. Miguez. 2002. Detection of methanotrophs with highly diverget pmoA genes from Arctic soils. FEMS Microbiol. Lett. 209: 313 319.
111. Pandev, V.,, R. C. Nutter,, and E. Prediger,. 2008. Applied Biosystems SOLiD™ System: ligation-based sequencing, p. 29 42. In M. Janitz (ed.), Next Generation Genome Sequencing: Towards Personalized Medicine. Wiley-VCH Verlag, Weinheim, Germany.
112. Pointing, S. B.,, Y. Chan,, D. C. Lacap,, M. C. Lau,, J. A. Jurgens,, and R. L. Farrell. 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. USA 106: 19964 19969.
113. Poli, A.,, E. Esposito,, L. Lama,, P. Orlando,, G. Nicolaus,, F. de Appolonia,, A. Gambacorta,, and B. Nicolaus. 2006. Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst. Appl. Microbiol. 29: 300 307.
114. Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755 805.
115. Prabahar, V.,, S. Dube,, G. S. Reddy,, and S. Shivaji. 2004. Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica. Int. J. Syst. Evol. Microbiol. 27: 66 71.
116. Price, P. B. 2006. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol. Ecol. 59: 217 231.
117. Schimel, J. P.,, and C. Mikan. 2005. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol. Biochem. 37: 1411 1418.
118. Schinner, F.,, R. Margesin,, and T. Pümpel. 1992. Extracellular protease-producing psychrotrophic bacteria from high alpine habitats. Arct. Antarct. Alp. Res. 24: 88 92.
119. Shi, T.,, R. H. Reeves,, D. A. Gilichinsky,, and E. I. Friedmann. 1997. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Soil Sci. 33: 169 179.
120. Shiklomanov, I. A.,, A. I. Shiklomanov,, R. B. Lammers,, B. J. Peterson,, and C. J. Vörösmarty,. 2000. The dynamics of river water inflow to the Arctic Ocean, p. 281 296. In E. L. Lewis,, E. P. Jones,, P. Lemke,, T. D. Prowse,, and P. Wadhams (ed.), The Freshwater Budget of the Arctic Ocean. Kluwer Academic Publishers, Dordrecht, The Netherlands.
121. Shivaji, S.,, N. S. Rao,, L. Saisree,, V. Sheth,, G. S. Reddy,, and P. M. Bhargava. 1989. Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl. Environ. Microbiol. 55: 767 770.
122. Shravage, B. V.,, K. M. Dayananda,, M. S. Patole,, and Y. S. Shouche. 2007. Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica. Microbiol. Res. 162: 15 25.
123. Siebert, J.,, P. Hirsch,, B. Hoffmann,, C. G. Gliesche,, K. Peissl,, and M. Jendrach. 1996. Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodivers. Conserv. 5: 1337 1363.
124. Simankova, M. V.,, O. R. Kotsyurbenko,, E. Stackebrandt,, N. A. Kostrikina,, A. M. Lysenko,, G. A. Osipov,, and A. N. Nozhevnikova. 2000. Acetobacterium tundrae sp. nov., a new psychrophilic acetogenic bacterium from tundra soil. Arch. Microbiol. 174: 440 447.
125. Smith, J. J.,, L. Ah Tow,, W. Stafford,, C. Cary,, and D. A. Cowan. 2006. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51: 413 421.
126. Smith, M. C.,, J. P. Bowman,, F. J. Scott,, and M. A. Line. 2000. Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 12: 177 184.
127. Staley, J. T.,, and J. J. Gosink. 1999. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53: 189 215.
128. Steven, B.,, G. Briggs,, C. P. McKay,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2007. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59: 513 523.
129. Suzuki, T.,, T. Nakayama,, T. Kurihara,, T. Nishino,, and N. Esaki. 2009. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 92: 144 148.
130. Taton, A.,, S. Grubisic,, P. Balthasart,, D. A. Hodgson,, J. Laybourn-Parry,, and A. Wilmotte. 2006. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol. Ecol. 57: 272 289.
131. Taton, A.,, S. Grubisic,, E. Brambilla,, R. De Wit,, and A. Wilmotte. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69: 5157 5169.
132. Thomas, D. N. 2005. Photosynthetic microbes in freezing deserts. Trends Microbiol. 13: 87 88.
133. Tindall, B. J. 2004. Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb. Ecol. 47: 271 283.
134. Tourova, T. P.,, M. V. Omelchenko,, K. V. Fegeding,, and L. V. Vasilieva. 1999. The phylogenetic position of Methylobacter psychrophilus sp. nov. Microbiology 68: 437 444.
135. Van Trappen, S.,, J. Mergaert,, S. Van Eygen,, P. Dawyndt,, M. Cnockaert,, and J. Swings. 2002. Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst. Appl. Microbiol. 25: 603 610.
136. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, United Kingdom.
137. Vincent, W. F.,, M. T. Downes,, R. W. Castenholz,, and C. Howard-Williams. 1993. Community structure and pigment organisation of cyanobacterial-dominated microbial mats in Antarctica. Eur. J. Phycol. 28: 213 221.
138. Vincent, W. F.,, D. R. Mueller,, and S. Bonilla. 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48: 103 112.
139. Vishniac, H., 1993. The microbiology of Antarctic soils, p. 297 342. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
140. Vorobyova, E.,, N. Minkovsky,, A. Mamukelashvili,, D. Zvyagintsev,, V. Soina,, L. Polanskaya,, and D. Gilichinsky,. 2001. Microorganisms and biomarkers in permafrost, p. 527 541. In R. Paepe, and V. Melnikov (ed.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Kluwer Academic Publishers, Dordrecht, The Netherlands.
141. Wallenstein, M. D.,, S. McMahon,, and J. Schimel. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59: 428 435.
142. Walton, D. W. H., 1984. The terrestrial environment, p. 1 60. In R. M. Laws (ed.), Antarctic Ecology, vol. 1. Academic Press, London, United Kingdom.
143. Warren-Rhodes, K. A.,, K. L. Rhodes,, L. N. Boyle,, S. B. Pointing,, Y. Chen,, S. Liu,, P. Zhuo,, and C. P. McKay. 2007. Cyanobacterial ecology across environmental gradients and spatial scales in China's hot and cold deserts. FEMS Microbiol. Ecol. 61: 470 482.
144. Warren-Rhodes, K. A.,, K. L. Rhodes,, S. B. Pointing,, S. A. Ewing,, D. C. Lacap,, B. Gómez-Silva,, R. Amundson,, E. I. Friedmann,, and C. P. McKay. 2006. Hypolithic bacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52: 389 398.
145. Wartiainen, I.,, A. G. Hestens,, I. R. McDonald,, and M. M. Svenning. 2006. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (786 N). Int. J. Syst. Evol. Microbiol. 56: 541 547.
146. Wartiainen, I.,, A. G. Hestens,, and M. M. Svenning. 2003. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)—denaturing gel electrophoresis analysis of soil DNA and enrichment cultures. Can. J. Microbiol. 49: 602 612.
147. Wicklow, D. T.,, and B. Söderström (ed.). 1997. Environmental and Microbial Relationships. Springer, Berlin, Germany.
148. Williams, P. J.,, and M. W. Smith. 1989. The Frozen Earth: Fundamentals of Geocryology. Cambridge University Press, Cambridge, United Kingdom.
149. Yergeau, E.,, K. K. Newsham,, D. A. Pearce,, and G. A. Kowalchuk. 2007. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ. Microbiol. 9: 2670 2682.
150. Yukimura, K.,, R. Nakai,, S. Kohshima,, J. Uetake,, H. Kanda,, and T. Naganuma. 2009. Spore-forming halophilic bacteria isolated from Arctic terrains: implications for long-range transportation of microorganisms. Polar Sci. 3: 163 169.
151. Zdanowski, M. K.,, M. J. Zmuda,, and I. Zwolska. 2005. Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol. Biochem. 37: 581 595.
152. Zvyagintsev, D. G. 1992. Microorganisms in permafrost, p. 229 232. In Proceedings of the First International Conference on Cryopedology. Pushchino, Russia.

Tables

Generic image for table
TABLE 1

Summary of the findings from key bacterial diversity studies for Antarctic habitats as determined by culture-based and metagenomic techniques

Citation: Kirby B, Easton S, Tuffin I, Cowan D. 2012. Bacterial Diversity in Polar Habitats, p 3-31. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error