1887

Chapter 11 : Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves)

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap11-2.gif

Abstract:

This chapter focuses on glaciers and ice sheets, sea ice, and ice shelves of the polar regions, i.e., those latitudes above the Arctic and Antarctic Circles where glaciers and ice sheets cover a significant proportion of the land mass and where large expanses of the surface waters of the Arctic and Southern Oceans undergo an annual cycle of freezing and melting. This chapter further introduces sea ice as a microbial habitat and summarizes from some of the aforementioned reviews what is known to date about the abundance, activity, diversity, and ecology of prokaryotic sea-ice microorganisms. It provides a brief outline of the role of microorganisms in biogeochemical cycling of elements in sea ice. The majority of bacteria isolated from sea ice are pigmented and highly cold adapted, with some able to form gas vesicles. Possible cold-adaptation strategies revealed by whole-genome sequence analysis also include the production of cryoprotective osmolytes and exopolymers. Polar ice shelves are thick masses of ice floating on the ocean. They are formed through glacial ice and ice sheets pushing onto the sea or long-term accumulations of sea ice. Analysis of ice-shelf heterotrophic bacteria and microbial eukaryotes suggests phylogenetic affiliation with taxa from diverse environments and climatic zones ranging from Antarctica and other cryosphere habitats to temperate ecozones. Microbial investigations on polar glaciers, ice sheets, and ice shelves are still largely in their infancy, with sea-ice research being somewhat more established.

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11

Key Concept Ranking

Microbial Ecology
0.52944785
Dissimilatory Nitrate Reduction to Ammonia
0.43485525
Restriction Fragment Length Polymorphism
0.41286388
0.52944785
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cryoconite holes, John Evans Glacier, Nunavut, Canadian High Arctic. (a) Cryoconite with frozen lid. (b) Partially open cryoconite. (c) Open cryoconite. (d) Transition zone from individual cryoconite holes to broader zones of debris-covered surficial ice. (Photo credit: M. Skidmore.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Subglacial stream sampling, John Evans Glacier, Nunavut, Canadian High Arctic. (Photo credit: M. Skidmore.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Taylor Glacier, Antarctica. (a) Debris-rich basal ice outcrops on northern margin. (b) Tunnel to access debris-rich ice. (c) Cutting a vertical profile into the debris-rich ice in the ice tunnel. (Photo credits: panels a and b, M. Skidmore; panel c, B. Christner.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(Left) Scanning electron microscopy image of the brine channels system in columnar sea ice made visible by filling the system with epoxy resin under a vacuum. (Right) In situ microscopic images of (a) ice crystals and brine pockets and (b) detail of a brine pocket in panel a that harbors bacteria stained with the blue DNA stain 4′,6-diamidino-2-phenylindole in panel c. (Left image from Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; reprinted from Mock and Junge [2007] with permission of the publisher. Right images adapted from with permission of the publisher.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Vertical gradients of temperature, salt content, brine volume, and irradiance (Io) through sea ice. These general patterns may vary due to changes in temperature. (Adapted from with permission of the publisher.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Network of supraglacial lakes and ponds on the McMurdo Ice Shelf near Bratina Island, Antarctica. (Photo credit: A. Jungblut.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Highly pigmented cyanobacteria-dominated microbial mats from a supraglacial pond on the McMurdo Ice Shelf, Antarctica. (Photo credit: A. Jungblut.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817183.chap11
1. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
2. Anesio, A. M.,, A. J. Hodson,, A. Fritz,, R. Psenner,, and B. Sattler. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol. 15:955960.
3. Anesio, A. M.,, B. Mindl,, J. Laybourn-Parry,, A. J. Hodson, and B. Sattler. 2007. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 112:G04S31.
4. Arrigo, K. R.,, T. Mock,, and M. P. Lizotte,. 2010. Primary producers and sea ice, p. 283375. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
5. Arrigo, K. R.,, D. H. Robinson,, R. B. Dunbar,, A. R. Leventer,, and M. P. Lizotte. 2003. Physical control of chlorophyll a, POC, and PON distributions in the pack ice of the Ross Sea, Antarctica. J. Geophys. Res. 108:3316.
6. Bakermans, C.,, and M. L. Skidmore. 2011. Microbial metabolism in ice and brine at -5°C. Environ. Microbiol. 13:22692278.
7. Benn, D. I.,, and D. J. A. Evans. 2010. Glaciers and Glaciation. Hodder Education, London, United Kingdom.
8. Bhatia, M. P.,, S. B. Das,, K. Longnecker,, M. A. Charette,, and E. B. Kujawinski. 2010. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 74:37683784.
9. Bhatia, M.,, M. Sharp,, and J. Foght. 2006. Distinct bacterial communities exist beneath a high Arctic polythermal glacier. Appl. Environ. Microbiol. 72:58385845.
10. Bonilla, S.,, and W. F. Vincent. 2005. Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41:11201130.
11. Boon, S.,, M. Sharp,, and P. Nienow. 2003. Impact of an extreme melt event on the runoff and hydrology of a high Arctic glacier. Hydrol. Processes 17:10511072.
12. Bottos, E. M.,, W. F. Vincent,, C. W. Greer,, and L. G. Whyte. 2008. Prokaryotic diversity of arctic ice shelf microbial mats. Environ. Microbiol. 10:950966.
13. Bowman, J. P.,, J. J. Gosink,, S. A. McCammon,, T. E. Lewis,, D. S. Nichols,, P. D. Nichols,, J. H. Skerratt,, J. T. Staley,, and T. A. McMeekin. 1998. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov., and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. Bacteriol. 48:11711180.
14. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:30683078.
15. Boyd, E. S.,, R. K. Lange,, A. Mitchell,, J. R. Havig,, T. L. Hamilton,, M. J. Lafrenière,, E. L. Shock,, J. W. Peters,, and M. Skidmore. 2011. Diversity, abundance, and potential activity of nitrifying and nitrate reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77:47784787.
16. Boyd, E. S.,, M. Skidmore,, C. Bakermans,, A. Mitchell,, and J. W. Peters. 2010. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2:685692.
17. Brinkmeyer, R.,, F. O. Glöckner,, E. Helmke,, and R. Amann. 2004. Predominance of β-Proteobacteria in summer melt pools on Arctic pack ice. Limnol. Oceanogr. 49:10131021.
18. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:66106619.
19. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35:267275.
20. Caron, D. A.,, and R. J. Gast,. 2010. Heterotrophic protists associated with sea ice, p. 327356. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
21. Cheng, S. M.,, and J. M. Foght. 2007. Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol. Ecol. 59:318330.
22. Christner, B. C.,, B. H. Kvitko II,, and J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177183.
23. Christner, B. C.,, G. Royston-Bishop,, C. M. Foreman,, B. R. Arnold,, M. Tranter,, K. A. Welch,, W. B. Lyons,, A. I. Tsapin,, M. Studinger,, and J. C. Priscu. 2006. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51:24852501.
24. Christner, B. C.,, M. L. Skidmore,, J. C. Priscu,, M. Tranter,, and C. M. Foreman,. 2008. Bacteria in subglacial environments, p. 5171. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
25. Collins, R. E. 2009. Microbial evolution in sea ice: communities to genes. Ph.D. thesis. University of Washington, Seattle, WA.
26. Collins, R. E.,, G. Rocap,, and J. W. Deming. 2010. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ. Microbiol. 12:18281841.
27. Cota, G. F.,, S. T. Kottmeier,, D. H. Robinson,, W. O. Smith Jr., and C. W. Sullivan. 1990. Bacterioplankton in the marginal ice zone of the Weddell Sea: biomass, production and metabolic activities during austral autumn. Deep Sea Res. 37:11451167.
28. Deming, J. W., 2010. Sea ice bacteria and viruses, p. 247282. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
29. Dieckmann, G. S.,, and H. H. Heller,. 2010. Importance of sea ice: an overview, p. 122. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
30. Dieckmann, G. S.,, M. Spindler,, M. A. Lange,, S. F. Ackley,, and H. Eicken. 1991. Antarctic sea ice: a habitat for the foraminifer Neogloboquadrina pachyderma. J. Foramin. Res. 21:184191.
31. Edwards, A.,, A. M. Anesio,, S. M. Rassner,, B. Sattler,, B. Hubbard,, W. T. Perkins,, M. Young,, and G. W. Griffith. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J. 5:150160.
32. Eicken, H. 1992. The role of sea ice in structuring Antarctic ecosystems. Polar Biol. 12:313.
33. Fernández-Valiente, E.,, A. Quesada,, C. Howard-Williams,, and I. Hawes. 2001. N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb. Ecol. 42:338349.
34. Foreman, C. M.,, B. Sattler,, J. A. Mikucki,, D. L. Porazinska,, and J. C. Priscu. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. 112:G04S32.
35. Fountain, A. G.,, and M. Tranter. 2008. Introduction to special section on Microcosms in Ice: the Biogeochemistry of Cryoconite Holes. J. Geophys. Res. 113:G02S91.
36. Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399:541548.
37. Garneau, M. E.,, W. F. Vincent,, R. Terrado,, and C. Lovejoy. 2009. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. J. Mar. Sys. 75:185197.
38. Gerdel, R. W.,, and F. Drouet. 1960. The cryoconite of the Thule area, Greenland. Trans. Am. Microsc. Soc. 79:256272.
39. Gleitz, M.,, M. R. Loeff,, D. N. Thomas,, G. S. Dieckmann,, and F. J. Miller. 1995. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar. Chem. 51:8191.
40. Gleitz, M.,, and D. N. Thomas. 1993. Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J. Exp. Mar. Biol. Ecol. 173:211230.
41. Golden, K. M.,, S. F. Ackley,, and V. I. Lytle. 1998. The percolation phase transition in sea ice. Science 282:22382241.
42. Gosink, J. J.,, R. L. Irgens,, and J. T. Staley. 1993. Vertical distribution of bacteria in arctic sea ice. FEMS Microbiol. Lett. 102:8590.
43. Gosink, J. J.,, and J. T. Staley. 1995. Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol. 61:34863489.
44. Gosselin, M.,, L. Legendre,, J.-C. Therriault,, and S. Demers. 1990. Light and nutrient limitation of sea-ice microalgae (Hudson Bay, Canadian Arctic). J. Phycol. 26:220232.
45. Grossi, S. M.,, S. T. Kottmeier,, and C. W. Sullivan. 1984. Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria. Microb. Ecol. 10:231242.
46. Günther, S.,, and G. S. Dieckmann. 1999. Seasonal development of algal biomass in snow-covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica. Antarct. Sci. 11:305315.
47. Hawes, I.,, C. Howard-Williams,, and A. G. Fountain,. 2008. Ice-based freshwater ecosystems, p. 103115. In W. F. Vincent, and J. Laybourn-Perry (ed.), Polar Lakes and Rivers. Oxford University Press, Oxford, United Kingdom.
48. Hawes, I.,, C. Howard-Williams,, and R. D. Pridmore. 1993. Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch. Hydrobiol. 127:271287.
49. Hawes, I.,, R. Smith,, C. Howard-Williams,, and A.-M. Schwarz. 1999. Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarct. Sci. 11:198208.
50. Helmke, E.,, and H. Weyland. 2004. Psychrophilic versus psychrotolerant bacteria—occurrence and significance in polar and temperate marine habitats. Cell. Mol. Biol. 50:553561.
51. Hodgson, D. A.,, W. Vyverman,, E. Verleyen,, K. Sabbe,, P. Leavitt,, A. Taton,, A. Squier,, and B. Keely. 2004. Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat. Microb. Ecol. 37:247263.
52. Hodson, A.,, A. M. Anesio,, F. Ng,, R. Watson,, J. Quirk,, T. Irvine-Fynn,, A. Dye,, C. Clark,, P. McCloy,, J. Kohler,, and B. Sattler. 2007. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res. 112:G04S36.
53. Hodson, A.,, C. Boggild,, E. Hanna,, P. Huybrechts,, H. Langford,, K. Cameron,, and A. Houldsworth. 2010. The cryoconite ecosystem on the Greenland ice sheet. Ann. Glaciol. 51:123129.
54. Horner, R.,, and G. C. Schrader. 1982. Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485503.
55. Howard-Williams, C.,, R. Pridmore,, M. Downes,, and W. Vincent. 1989. Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct. Sci. 1:125131.
56. Huston, A. L. 2003. Bacterial adaptation to the cold: in situ activities of extracellular enzymes in the North Water polynya and characterization of a cold-active aminopeptidase from Colwellia psychrerythraea strain 34H. Ph.D. thesis. University of Washington, Seattle, WA.
57. Huston, A. L.,, B. B. Krieger-Brockett,, and J. W. Deming. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2:383388.
58. Huston, A. L.,, B. Methe,, and J. W. Deming. 2004. Purification, characterization and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70:33213328.
59. IPCC. 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.
60. Jungblut, A. D.,, M. A. Allen,, B. P. Burns,, and B. A. Neilan. 2009. Lipid biomarker analysis of cyanobacterial dominated microbial mats in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Organ. Geochem. 40:258269.
61. Jungblut, A. D.,, I. Hawes,, D. Mountfort,, B. Hitzfeld,, D. R. Dietrich,, B. P. Burns,, and B. A. Neilan. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7:519529.
62. Jungblut, A. D.,, C. Lovejoy,, and W. F. Vincent. 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4:191202.
63. Jungblut, A. D.,, D. R. Mueller,, and W. F. Vincent,. Arctic ice shelf ecosystems. In L. Copland, and D. R. Mueller (ed.), Arctic Ice Shelves and Ice Islands, in press. Springer, Berlin, Germany.
64. Junge, K.,, B. C. Christner,, and J. T. Staley,. 2011. Diversity of psychrophilic bacteria from sea ice—and glacial ice communities, p. 793815. In K. Horikoshi,, G. Antranikian,, A. T. Bull,, F. T. Robb,, and K. O. Stetter (ed.), Extremophiles Handbook. Springer, Berlin, Germany.
65. Junge, K.,, H. Eicken,, and J. W. Deming. 2003. Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl. Environ. Microbiol. 69:42824284.
66. Junge, K.,, H. Eicken,, and J. W. Deming. 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70:550557.
67. Junge, K.,, H. Eicken,, B. D. Swanson,, and J. W. Deming. 2006. Bacterial incorporation of leucine into protein down to -20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417429.
68. Junge, K.,, F. Imhoff,, T. Staley,, and J. W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43:315328.
69. Junge, K.,, C. Krembs,, J. Deming,, A. Stierle,, and H. Eicken. 2001. A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann. Glaciol. 33:304310.
70. Kellogg, C. T. E.,, and J. W. Deming. 2009. Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat. Microb. Ecol. 57:118.
71. Kennedy, H.,, D. N. Thomas,, G. Kattner,, C. Haas,, and G. S. Dieckmann. 2002. Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition. Mar. Ecol. Prog. Ser. 238:113.
72. Kirchman, D. L.,, X. A. G. Morán,, and H. Ducklow. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7:451459.
73. Krembs, C.,, J. W. Deming,, and H. Eicken. 2011. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc. Natl. Acad. Sci. USA 108:36533658.
74. Lannuzel, D.,, V. Schoemann,, J. de Jong,, B. Pasquer,, P. van der Merwe,, F. Masson,, J.-L. Tison,, and A. Bowie. 2010. Distribution of dissolved iron in Antarctic sea ice: spatial, seasonal, and inter-annual variability. J. Geophys. Res. 115:G03022.
75. Lanoil, B.,, M. Skidmore,, J. C. Priscu,, S. Han,, W. Foo,, S. W. Vogel,, S. Tulaczyk,, and H. Engelhardt. 2009. Bacteria beneath the West Antarctic Ice Sheet. Environ. Microbiol. 11:609615.
76. Legendre, L. 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J. Plankton Res. 12:681699.
77. Legendre, L.,, S. F. Ackley,, G. S. Dieckmann,, B. Gulliksen,, R. Horner,, T. Hoshiai,, I. A. Melnikov,, W. S. Reeburgh,, M. Spindler,, and C. W. Sullivan. 1992. Ecology of sea ice biota. Polar Biol. 12:429444.
78. Loveland-Curtze, J.,, V. Miteva,, and J. Brenchley. 2010. Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14:6169.
79. Measures, C. I. 1999. The role of entrained sediments in sea ice in the distribution of aluminum and iron in the surface waters of the Arctic Ocean. Mar. Chem. 68:5970.
80. Meese, D. A. 1989. The Chemical and Structural Properties of Sea Ice in the Southern Beaufort Sea. CRREL Report 89-25. Cold Regions Research and Engineering Lab, Hanover, NH.
81. Methe, B. A.,, K. E. Nelson,, J. W. Deming,, B. Momen,, E. Melamud,, X. Zhang,, J. Moult,, R. Madupu,, W. C. Nelson,, R. J. Dodson,, L. M. Brinkac,, S. C. Daugherty,, A. S. Durkin,, R. T. DeBoy,, J. F. Kolonay,, S. A. Sullivan,, L. Zhou,, T. M. Davidsen,, M. Wu,, A. L. Huston,, M. Lewis,, B. Weaver,, J. F. Weidman,, H. Khouri,, T. R. Utterback,, T. V. Feldblyum,, and C. M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102:1091310918.
82. Mikucki, J. A.,, A. Pearson,, D. T. Johnston,, A. V. Turchyn,, J. Farquhar,, D. P. Schrag,, A. D. Anbar,, J. C. Priscu,, and P. A. Lee. 2009. A contemporary microbially maintained subglacial ferrous “ocean.” Science 324:397400.
83. Miteva, V., 2008. Bacteria in snow and glacier ice, p. 3150. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
84. Miteva, V. I.,, and J. E. Brenchley. 2005. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl. Environ. Microbiol. 71:78067818.
85. Miteva, V. I.,, P. P. Sheridan,, and J. E. Brenchley. 2004. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl. Environ. Microbiol. 70:202213.
86. Miteva, V.,, C. Teacher,, T. Sowers,, and J. Brenchley. 2009. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11:640656.
87. Mock, T.,, and K. Junge,. 2007. Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles, p. 343364. In J. Seckbach (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, The Netherlands.
88. Mock, T.,, and D. N. Thomas. 2005. Recent advances in sea-ice microbiology. Environ. Microbiol. 7:605619.
89. Mountfort, D. O.,, H. F. Kaspar,, M. Downes,, and R. A. Asher. 1999. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 65:54935499.
90. Mountfort, D. O.,, F. A. Rainey,, J. Burghardt,, H. F. Kaspar,, and E. Stackebrandt. 1997. Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated form low-salinity pond sediment of the McMurdo Ice Shelf, Antarctica. Arch. Microbiol. 167:5460.
91. Mountfort, D. O.,, F. A. Rainey,, J. Burghardt,, H. F. Kaspar,, and E. Stackebrandt. 1998. Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica. Arch. Microbiol. 169:231238.
92. Mueller, D. R.,, and W. F. Vincent. 2006. Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrol. Processes 20:857876.
93. Mueller, D. R.,, W. F. Vincent,, S. Bonilla,, and I. Laurion. 2005. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 53:7387.
94. Mueller, D. R.,, W. F. Vincent,, and M. O. Jeffries. 2006. Environmental gradients, fragmented habitats, and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arctic Antarctic Alpine Res. 38:593607.
95. Mueller, D. R.,, W. F. Vincent,, W. H. Pollard,, and C. H. Fritsen. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123:171195.
96. Nadeau, T. L.,, E. C. Milbrandt,, and R. W. Castenholz. 2001. Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J. Phycol. 37:650654.
97. Oerlemans, J. 2001. Glaciers and Climate Change. Swets & Zeitlinger, Lisse, The Netherlands.
98. Papadimitriou, S.,, D. N. Thomas,, H. Kennedy,, C. Haas,, H. Kuosa,, A. Krell,, and G. S. Dieckmann. 2007. Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnol. Oceanogr. 52:18091823.
99. Petrich, C.,, and H. Eicken,. 2010. Growth, structure and properties of sea ice, p. 2378. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
100. Priscu, J. C.,, M. T. Downes,, L. R. Priscu,, A. C. Palmisano,, and C. W. Sullivan. 1990. Dynamics of ammonium oxidizer activity and nitrous-oxide (N2O) within and beneath Antarctic sea ice. Mar. Ecol. Prog. Ser. 62:3746.
101. Priscu, J.,, S. Tulaczyk,, M. Studinger,, M. C. Kennicutt II,, B. Christner,, and C. M. Foreman,. 2008. Antarctic subglacial water: origin, evolution, and ecology, p. 119135. In W. F. Vincent, and J. Laybourn-Perry (ed.), Polar Lakes and Rivers. Oxford University Press, Oxford, United Kingdom.
102. Raymond, J. A.,, B. C. Christner,, and S. C. Schuster. 2008. A bacterial ice-binding protein from the Vostok ice core. Extremophiles 12:713717.
103. Riedel, A.,, C. Michel,, M. Gosselin,, and B. LeBlanc. 2008. Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J. Mar. Syst. 74:918932.
104. Ross, J. C.,, and W. F. Vincent. 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34:118125.
105. Rysgaard, S.,, and R. N. Glud. 2004. Anaerobic N2 production in Arctic sea ice. Limnol. Oceanogr. 49:8694.
106. Rysgaard, S.,, R. N. Glud,, M. K. Sejr,, M. E. Blicher,, and H. J. Stahl. 2008. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol. 31:527537.
107. Säwström, C.,, J. Laybourn-Parry,, W. Granéli,, and A. M. Anesio. 2007. Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol. 30:14071415.
108. Säwström, C.,, P. Mumford,, W. Marshall,, A. Hodson,, and J. Laybourn-Parry. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol. 25:591596.
109. Serreze, M. C.,, M. M. Holland,, and J. Stroeve. 2007. Perspectives on the Arctic's shrinking sea-ice cover. Science 315:15331536.
110. Sjöling, S.,, and D. A. Cowan. 2003. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7:275282.
111. Skidmore, M., 2011. Microbial communities in Antarctic subglacial aquatic environments, p. 6181. In M. J. Siegert,, M. C. Kennicutt II,, and R. A. Bindschadler (ed.), Antarctic Subglacial Aquatic Environments. AGU Press, Washington, DC.
112. Skidmore, M.,, S. P. Anderson,, M. Sharp,, J. Foght,, and B. D. Lanoil. 2005. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71:69866997.
113. Skidmore, M.,, C. Bakermans,, T. Brox,, B. Christner,, and S. Montross. 2009. Microbial respiration at sub-zero temperatures in laboratory ices. Geochim. Cosmochim. Acta 73:A1234.
114. Skidmore, M. L.,, J. M. Foght,, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Appl. Environ. Microbiol. 66:32143220.
115. Skidmore, M.,, M. Tranter,, S. Tulaczyk,, and B. Lanoil. 2010. Hydrochemistry of ice stream beds—evaporitic or microbial effects? Hydrol. Processes 24:517523.
116. Smith, R. E. H.,, M. Gosselin,, S. Kudoh,, B. Robineau,, and S. Taguchi. 1997. DOC and its relation to algae in bottom ice communities. J. Mar. Syst. 11:7180.
117. Smith, R. E. H.,, W. G. Harrison,, L. R. Harris,, and A. W. Herman. 1990. Vertical fine structure of particulate matter and nutrients in sea ice of the High Arctic. Can. J. Fish. Aquat. Sci. 47:13481355.
118. Staley, J. T.,, R. L. Irgens,, and R. P. Herwig. 1989. Gas vacuolate bacteria found in Antarctic sea ice with ice algae. Appl. Environ. Microbiol. 55:10331036.
119. Stibal, M.,, M. Tranter,, L. G. Benning,, and J. Rehak. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ. Microbiol. 10:21722178.
120. Stroeve, J.,, M. M. Holland,, W. Meier,, T. Scambos,, and M. Serreze. 2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34:L09501.
121. Sullivan, C. W.,, and A. C. Palmisano. 1984. Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl. Environ. Microbiol. 47:788795.
122. Tang, E. P. Y.,, R. F. Tremblay,, and W. F. Vincent. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperatures? J. Phycol. 33:171181.
123. Telling, J.,, A. Anesio,, J. Hawkings,, M. Tranter,, J. L. Wadham,, A. Hodson,, T. Irvine-Fynn,, and M. L. Yallop. 2010. Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann. Glaciol. 51:153162.
124. Thomas, D. N.,, and G. S. Dieckmann (ed). Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
125. Thomas, D. N.,, G. Kattner,, R. Engbrodt,, V. Gianelli,, H. Kennedy,, C. Haas,, and G. S. Dieckmann. 2001. Dissolved organic matter in Antarctic sea ice. Ann. Geol. 33:297303.
126. Thomas, D. N.,, S. Papadimitriou,, and C. Michel,. 2010. Biogeochemistry of sea ice, p. 425467. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
127. Tranter, M.,, M. Skidmore,, and J. Wadham. 2005. Hydrological controls on microbial communities in subglacial environments. Hydrol. Processes 19:995998.
128. Vancoppenolle, M.,, H. Goosse,, A. de Montety,, T. Fichefet,, B. Tremblay,, and J.-L. Tison. 2010. Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica. J. Geophys. Res. 115:C02005.
129. Varin, T.,, C. Lovejoy,, A. D. Jungblut,, W. F. Vincent,, and J. Corbeil. 2010. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 55:19011911.
130. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, United Kingdom.
131. Vincent, W. F. 2010. Microbial ecosystem responses to rapid climate change in the Arctic. ISME J. 4:10871090.
132. Vincent, W. F.,, R. W. Castenholz,, M. T. Downes,, and C. Howard-Williams. 1993. Antarctic cyanobacteria: light, nutrients, and photosynthesis on the microbial mat environments. J. Phycol. 29:745755.
133. Vincent, W. F.,, J. A. E. Gibson,, R. Pienitz,, V. Villeneuve,, P. A. Broady,, P. B. Hamilton,, and C. Howard-Williams. 2000. Ice shelf microbial ecosystems in the High Arctic and implications for life on Snowball Earth. Naturwissenschaften 87:137141.
134. Vincent, W. F.,, and C. Howard-Williams. 1989. Microbial communities in southern Victoria Land streams (Antarctica) II. The effects of low temperature. Hydrobiology 172:3949.
135. Vincent, W. F.,, D. R. Mueller,, and S. Bonilla. 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48:103112.
136. von Quillfeldt, C. H.,, W. G. Ambrose Jr.,, and L. M. Clough. 2003. High number of diatoms species in first-year ice from the Chukchi Sea. Polar Biol. 26:806818.
137. Wadham, J. L.,, S. Bottrell,, M. Tranter,, and R. Raiswell. 2004. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219:341355.
138. Wadham, J. L.,, M. Tranter,, A. J. Hodson,, R. Hodgkins,, S. Bottrell,, R. Cooper,, and R. Raiswell. 2010a. Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: implications for subice sheet biogeochemistry. J. Geophys. Res. 115:F04017.
139. Wadham, J. L.,, M. Tranter,, M. Skidmore,, A. J. Hodson,, J. Priscu,, W. B. Lyons,, M. Sharp,, P. Wynn,, and M. Jackson. 2010b. Biogeochemical weathering under ice: size matters. Glob. Biogeochem. Cycles 24:GB3025.
140. Wells, L. E.,, and J. W. Deming. 2006. Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat. Microb. Ecol. 45:1529.
141. Wharton, R. A.,, C. P. McKay,, G. M. Simmons,, and B. C. Parker. 1985. Cryoconite holes on glaciers. Bioscience 35:499503.
142. Wharton, R. A.,, W. C. Vinyard,, B. C. Parker,, G. M. Simmons,, and K. G. Seaburg. 1981. Algae in cryoconite holes on Canada Glacier in southern Victoria Land, Antarctica. Phycologia 20:208211.
143. Wynn, P. M.,, A. J. Hodson,, T. H. E. Heaton,, and S. R. Chenery. 2007. Nitrate production beneath a High Arctic glacier, Svalbard. Chem. Geol. 244:88102.
144. Yde, J. C.,, K. W. Finster,, R. Raiswell,, J. P. Steffensen,, J. Heinemeier,, J. Olsen,, H. P. Gunnlaugsson,, and O. B. Nielsen. 2010. Basal ice microbiology at the margin of the Greenland ice sheet. Ann. Glaciol. 51:7179.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error