1887

Chapter 13 : Climate Change, Ozone Depletion, and Life at the Poles

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Climate Change, Ozone Depletion, and Life at the Poles, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap13-2.gif

Abstract:

In light of increasing interest in the functioning of extremophilic environments and growing concerns over global warming, this chapter attempts to address some of the factors that influence life in cold polar habitats. The cryobiosphere is especially sensitive to changes in climate and itself plays an important role in gas fluxes and environmental shifts at the poles and, by extension, on the earth as a whole. This sensitivity and its consequent global impact make an understanding of polar bioclimatic interactions critical to predicting future climate change trends. During the 2001 season Warner and Miller collected data on RecA antigen concentrations in marine bacterioplankton near Palmer Station. Although the data were scattered, a direct correlation between an increased ratio of midday-to-evening induction and the extent of the stratospheric ozone depletion was observed. This chapter addresses the mechanisms by which microbes repair UV damage in their most fundamental molecule, the DNA that encodes the proteins and molecules that mediate all their life functions. Many of the hypotheses regarding the effect of global warming at the poles have focused on the high concentration of carbon trapped in the permafrost and the concept that its release will result in massive increases in microbial activity that will produce positive feedback, further exaggerating climate change. Microbial nitrous oxide production appears to be enhanced at higher water-activity concentrations and atmospheric release of nitrogen species with a biological origin from snow has been shown to occur even under conditions of low or absent light without ice-/snowmelt.

Citation: Vrionis H, Whyte L, Warner K, Miller R. 2012. Climate Change, Ozone Depletion, and Life at the Poles, p 265-289. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch13

Key Concept Ranking

Microbial Communities in Environment
0.5106532
Carbon monoxide
0.5092593
Biogeochemical Cycle
0.46863514
0.5106532
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Relative concentrations of RecA antigen in marine bacterioplankton in the Gulf of Mexico and Antarctica. The midday (*) and evening (#) peaks are indicated. The 17:00 (evening) reading was normalized to one for comparative purposes (Warner and Miller, unpublished data).

Citation: Vrionis H, Whyte L, Warner K, Miller R. 2012. Climate Change, Ozone Depletion, and Life at the Poles, p 265-289. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ratio (RO) of noonday-to-evening RecA induction peaks (see Fig. 1 ) as a function of date. There is a direct correlation of this ratio with the extent of stratospheric ozone (see Color Plate 10). As the hole becomes smaller, this ratio becomes smaller (Warner and Miller, unpublished data).

Citation: Vrionis H, Whyte L, Warner K, Miller R. 2012. Climate Change, Ozone Depletion, and Life at the Poles, p 265-289. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817183.chap13
1. Adushkin, V. V.,, and V. P. Kudryavstev. 2010. Global methane flux into the atmosphere and its seasonal variations. Earth Environ. Sci. 46: 350 357.
2. Allison, S. D.,, M. D. Wallenstein,, and M. A. Bradford. 2010. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3: 336 340.
3. Amoroso, A.,, F. Domine,, G. Esposito,, S. Morin,, J. Savarino,, M. Nardino,, M. Montagnoli,, J. M. Bonneville,, J. C. Clement,, A. Ianniello,, and H. J. Beine. 2010. Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ. Sci. Technol. 44: 714 719.
4. Antoniades, D.,, J. Veillette,, M. J. Martineau,, C. Belzile,, J. Tomkins,, R. Pienitz,, S. Lamoreux,, and W. F. Vincent. 2009. Bacterial dominance of phototrophic communities in a High Arctic lake and its implications for paleoclimate analysis. Polar Sci. 3: 147 161.
5. Ausatin, J.,, N. Bulchart,, and K. Shine. 1992. Possibility of an Arctic ozone hole in a doubled CO 2 climate. Nature 360: 221 225.
6. Bakermans, C., 2009. Limits for microbial life at sub-zero temperatures, p. 17 28. In C. Tarnocai (ed.), Arctic Permafrost Soils. Springer, Berlin, Germany.
7. Battista, J. 1997. Against all odds: the survival strategies of Deinococcus. Ann. Rev. Microbiol. 51: 203 224.
8. Berggren, M.,, H. Laudon,, A. Jonsson,, and M. Jansson. 2010. Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microb. Ecol. 4: 894 903.
9. Bonilla, S.,, M. Rautio,, and W. F. Vincent. 2009. Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biol. 32: 1293 1303.
10. Booth, M. G.,, L. Hutchinson,, M. Brumsted,, P. Aas,, R. B. Coffin,, R. C. Downer Jr.,, C. A. Kelley,, M. M. Lyons,, J. D. Pakulski,, S. L. Holder Sandvik,, W. H. Jeffrey,, and R. V. Miller. 2001a. Quantification of recA gene expression as an indicator of repair potential in marine bacterioplankton communities of Antarctica. Aquat. Microb. Ecol. 24: 51 59.
11. Booth, M. G.,, W. H. Jeffrey,, and R. V. Miller. 2001b. RecA expression in response to solar UVR in marine bacterium Vibrio natriegens. Microb. Ecol. 42: 531 539.
12. Breezee, J.,, N. Cady,, and J. T. Staley. 2004. Subfreezing growth of the sea ice bacterium “ Psychromonas ingrahamii.” Microb. Ecol. 47: 300 304.
13. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69: 6610 6619.
14. Brune, W. H.,, J. G. Anderson,, D. W. Toohey,, D. W. Fahey,, S. R. Kawa,, R. L. Jones,, D. S. McKenna,, and L. R. Poole. 1991. The potential for ozone depletion in the Arctic polar stratosphere. Science 252: 1260 1266.
15. Cai, W. J.,, L. Chen,, B. Chen,, Z. Gao,, S. H. Lee,, J. Chen,, D. Pierrot,, K. Sullivan,, Y. Wang,, X. Hu,, W. J. Huang,, Y. Zhang,, S. Xu,, A. Murata,, J. M. Grebmeier,, E. P. Jones,, and H. Zhang. 2010. Decrease in the carbon dioxide uptake capacity in ice-free Arctic Ocean Basin. Science 329: 556 559.
16. Callaghan, T. V.,, L. O. Björn,, Y. Chernov,, T. Chapin,, T. R. Christensen,, B. Huntley,, R. A. Ims,, M. Johansson,, D. Jolly,, S. Jonasson,, N. Matveyeva,, N. Panikov,, W. Oechel,, and G. Shaver. 2004. Past changes in Arctic terrestrial ecosystems, climate and UV radiation. Ambio 33: 398 403.
17. Canadell, J. G.,, C. Le Quere,, M. R. Raupach,, C. B. Field,, E. T. Buitenhuis,, P. Ciais,, T. J. Conway,, N. P. Gillett,, R. A. Houghton,, and G. Marland. 2007. Contributions to accelerating atmospheric CO 2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104: 18866 18870.
18. Chang, W.,, M. Dyen,, L. Spagnuolo,, P. Simon,, L. G. Whyte,, and S. Ghoshal. 2010. Biodegradation of semi- and non-volatile hydrocarbons in aged, contaminated soils from a sub-Arctic site: laboratory pilot-scale experiments at site temperatures. Chemosphere 80: 319 326.
19. Christensen, T. R.,, I. C. Prentice,, J. Kaplan,, A. Haxeltine,, and S. Sitch. 1996. Methane flux from northern wetlands and tundra—an ecosystem source modelling approach. Tellus B Chem. Phys. Meteorol. 48: 652 661.
20. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3: 570 577.
21. Chrost, R. J.,, and M. A. Faust. 1999. Consequences of solar radiation on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America). Aquat. Microb. Ecol. 20: 39 48.
22. Clarke, S.,, R. E. Mielke,, A. Neal,, P. Holden,, and J. L. Nadeau. 2010. Bacterial and mineral elements in Arctic biofilm: a correlative study using fluorescence and electron microscopy. Microsc. Microanal. 16: 153 165.
23. Cord-Ruwisch, R.,, H.-J. Seitz,, and R. Conrad. 1988. The capacty of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the termnial electron acceptor. Arch. Microbiol. 149: 350 357.
24. Cota, G. F.,, L. R. Pomeroy,, W. G. Harrison,, E. P. Jones,, F. Peters,, W. M. J. Sheldon,, and T. R. Weingartner. 1996. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar. Ecol. Prog. Ser. 135: 247 258.
25. Cowan, D. A.,, and L. Ah Tow. 2004. Endangered Antarctic environments. Annu. Rev. Microbiol. 58: 649 690.
26. Daly, M. J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat. Rev. Microbiol. 7: 237 245.
27. De Fabo, E. 2005. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health. Int. J. Circumpolar Health 64: 509 522.
28. Diaz, B.,, and D. Schulze-Makuch. 2006. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible martian life. Astrobiology 6: 332 347.
29. Doran, P. T.,, J. C. Priscu,, W. B. Lyons,, J. E. Walsh,, A. G. Fountain,, D. M. McKnight,, D. L. Moorhead,, R. A. Virginia,, D. H. Wall,, G. D. Clow,, C. H. Fritsen,, C. P. McKay,, and A. N. Parsons. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature 415: 517 520.
30. Dutta, K.,, E. A. G. Schuur,, J. C. Neff,, and S. A. Zimov. 2006. Potential carbon release from permafrost soils of northeastern Siberia. Glob. Change Biol. 12: 2336 2351.
31. Dyda, R. Y.,, M. T. Suzuki,, M. Y. Yoshinga,, and H. R. Harvey. 2009. The response of microbial communities to diverse organic matter sources in the Arctic Ocean. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 56: 1249 1263.
32. Elasri, M. O.,, and R. V. Miller. 1998. A Pseudomonas aeruginosa biosensor responds to exposure to ultraviolet radiation. Appl. Microbiol. Biotechnol. 50: 455 458.
33. Elasri, M. O.,, and R. V. Miller. 1999. Study of the response of a biofilm bacterial community to UV radiation. Appl. Environ. Microbiol. 65: 2025 2031.
34. Elasri, M. O.,, T. Reid,, S. Hutchins,, and R. V. Miller. 2000. Response of a Pseudomonas aeruginosa biofilm community to DNA damagng chemotherapeutic agents. FEMS Microbiol. Ecol. 33: 21 25.
35. Friedlingstein, P.,, P. Cox,, R. Betts,, L. Bopp,, W. von Bloh,, V. Brovkin,, P. Cadule,, S. Doney,, M. Eby,, I. Fung,, G. Bala,, J. John,, C. Jones,, F. Joos,, T. Kato,, M. Kawamiya,, W. Knorr,, K. Lindsay,, H. D. Matthews,, T. Raddatzh,, P. Ranyer,, C. Reick,, E. Roeckner,, K. G. Schnitzler,, R. Schnur,, K. Strassman,, A. J. Wearver,, C. Yoshikawa,, and N. Zeng. 2006. Climate carbon cycle feedback analysis: results from the C4MIP Model Intercomparison. J. Climate 19: 3337 3353.
36. Fung, I.,, J. John,, J. Lerner,, E. Matthews,, M. Prather,, L. P. Steele,, and P. J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96: 13033 13065.
37. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pecheritsina,, R. Fattakhova,, and J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53: 117 128.
38. Gobell, C.,, B. Sundby,, R. W. Macdonald,, and J. N. Smith. 2001. Recent changes in organic carbon flux to Arctic Ocean seep basins: evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys. Res. Lett. 28: 1743 1746.
39. Hodgson, D. A.,, W. Vyverman,, E. Verleyen,, K. Sabbe,, P. Leavitt,, A. Taton,, A. Squier,, and B. Keely. 2004. Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat. Microb. Ecol. 37: 247 263.
40. Hodson, A. J.,, P. Mumford,, and D. Lister. 2004. Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrol. Processes 18: 2409 2422.
41. Holzinger, A.,, C. Lütz,, U. Karsten,, and C. Wiencke. 2004. The effect of ultraviolet radiation on ultrastructure and photosynthesis in the red microalgae Palmaria palmate and Odonthalia dentata from Arctic waters. Plant Biol. 6: 568 577.
42. Illeris, L.,, A. Michelsen,, and S. Jonasson. 2003. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a High Arctic semi desert. Biogeochemistry 65: 15 29.
43. International Arctic Science Committee. 2010. Effects of climate change on landscape and regional processes and feedbacks to the climate system in the Arctic. In C. J. Cleveland (ed.), Encyclopedia of Earth. Environmental Information Coalition, National Council for Science and the Environment, Washington, DC.
44. Jagger, J. 1985. Solar-UV Actions in Living Cells. Praeger Publishers, New York, NY.
45. Jeffrey, W. H.,, P. Aas,, M. M. Lyons,, R. B. Coffin,, R. J. Pledger,, and D. L. Mitchell. 1996a. Ambient solar radiation-induced photodamage in marine bacterioplankton. Photochem. Photobiol. 64: 419 427.
46. Jeffrey, W. H.,, R. V. Miller,, and D. L. Mitchell. 1997. Detection of ultraviolet radiation induced DNA damage in microbial communities of the Gerlache Strait. Antarct. J. 32: 85 87.
47. Jeffrey, W. H.,, R. J. Pledger,, P. Aas,, S. Hager,, R. B. Coffin,, R. Von Haven,, and D. L. Mitchell. 1996b. Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar. Ecol. Prog. Ser. 137: 283 291.
48. Jokela, K.,, K. Leszczynski,, and R. Visuri. 2008. Effects of Arctic ozone depletion and snow on UV exposure in Finland. Photochem. Photobiol. 58: 559 566.
49. Jones, H.,, C. S. Cockell,, C. Goodson,, N. Price,, A. Simpson,, and B. Thomas. 2009. Experiments on mixotrophic protists and catastrophic darkness. Astrobiology 9: 563 571.
50. Jørgensen, B. B. 1982. Mineralization of organic-matter in the sea bed—the role of sulfate reduction. Nature 296: 643 645.
51. Judd, K. E.,, and G. W. Kling. 2002. Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry 60: 213 234.
52. Kiehl, J. T.,, and B. P. Briegleb. 1993. The relative roles of sulphate aerosols and greenhouse gases in climate forcing. Science 260: 311 314.
53. Kirchman, D. L.,, V. Hill,, M. T. Cottrell,, R. Gradinger,, R. R. Malmstrom,, and A. Parker. 2009a. Standing stocks, production and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 56: 1237 1248.
54. Kirchman, D. L.,, X. A. G. Morán,, and H. Ducklow. 2009b. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7: 451 459.
55. Knoblauch, C.,, K. Sahm,, and B. B. Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631 1643.
56. Kokjohn, T. A.,, and R. V. Miller. 1988. Characterization of the Pseudomonas aeruginosa recA gene: the Les - phenotypye. J. Bacteriol. 170: 578 582.
57. Kuhn, M., 2009. The climate of snow and ice as boundary condition for microbial life, p. 3 15. In C. Tarnocai (ed.), Arctic Permafrost Soils. Springer, Berlin, Germany.
58. Laybourn-Parry, J. 2009. No place too cold. Science 324: 1521 1522.
59. Leavitt, P. R.,, B. F. Cumming,, J. P. Smol,, M. Reasoner,, R. Pienitz,, and D. A. Hodgson. 2003a. Climate control of UV radiation impacts on lakes. Limnol. Oceanogr. 48: 2062 2069.
60. Leavitt, P. R.,, D. A. Hodgson,, and R. Pienitz,. 2003b. Past UVR environments and impacts in lakes, p. 509 545. In E. W. Helbling, and H. Zagarese (ed.), UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry Publishers, Cambridge, United Kingdom.
61. Leavitt, P. R.,, R. D. Vinebrooke,, D. B. Donald,, J. P. Smol,, and D. W. Schinder. 1997. Past ultraviolet environments in lakes derived from fossil pigments. Nature 388: 457 459.
62. Legrand, M.,, and D. Wagenbach. 1999. Impact of Cerro Hudson and Pinatubo volcanic eruptions on the Antarctic air and snow chemistry. J. Geophys. Res. 104: 1581 1596.
63. Lein, A. Y.,, A. S. Savvichev,, I. I. Rusanov,, G. A. Pavlova,, N. A. Belyaev,, K. Craine,, N. V. Pimenov,, and M. V. Ivanov. 2010. Biogeochemical processes in the Chukchi Sea. Earth Environ. Sci. 42: 221 239.
64. Le Mer, J.,, and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Sci. 37: 25 50.
65. Lovley, D.,, and E. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683 689.
66. Luyssaert, S.,, I. Inglima,, M. Jung,, A. D. Richardson,, M. Reichstein,, D. Papale,, S. L. Piao,, E. D. Schulze,, L. Wingate,, G. Matteucci,, L. Aragao,, M. Aubinet,, C. Beers,, C. Bernhofer,, K. G. Black,, D. Bonal,, J. M. Bonnefond,, J. Chambers,, P. Ciais,, B. Cook,, K. J. Davis,, A. H. Dolma,, B. Gielen,, M. Goulden,, J. Grace,, A. Granier,, A. Grelle,, T. Griffis,, T. Grunwald,, G. Guidolotti,, P. Hanson,, R. Harding,, D. Y. Hollinger,, L. R. Hutyra,, P. Kolar,, B. Kruijt,, W. Kutsch,, F. Lagergren,, T. Laurila,, J. Mateus,, M. Migliavacca,, L. Misson,, L. Montagnani,, J. Moncrieff,, E. Moors,, J. W. Munger,, E. Nikinmaa,, S. V. Ollinger,, G. Pita,, C. Rebmann,, O. Roupsard,, N. Saigusa,, M. J. Sanz,, G. Seufert,, C. Sierra,, M. L. Smith,, J. Tang,, R. Valentini,, T. Vesala,, and I. A. Janssens. 2007. Carbon dioxide balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13: 2509 2537.
67. Lyons, M. M.,, P. Aas,, J. D. Pakulski,, L. Van Waasbergen,, R. V. Miller,, D. L. Mitchell,, and W. H. Jeffrey. 1998. DNA damage induced by ultraviolet radiation in coral-reef communities. Mar. Biol. 130: 537 543.
68. Madronich, S.,, L. O. Björn,, M. Ilyas,, and M. M. Caldwell,. 1991. Changes in biologically active ultraviolet radiation reaching the earth's surface, p. 1 13. In J. C. van der Leun,, M. Tevini,, and R. C. Worrest (ed.), UNEP Environmental Effects Panel Report—1991 Update. United Nations Environmental Programme, Nairobi, Kenya..
69. Mancinelli, R. 1986. Alpine tundra soil bacterial responses to increased soil loading rates of acid precipitation, nitrate, and sulphate, Front Range, Colorado, U.S.A. Arct. Alp. Res. 18: 269 275.
70. Mazzera, D. M.,, D. H. Lowenthal,, J. C. Chow,, and J. G. Watson. 2001. Sources of PM10 and sulphate aerosol at McMurdo station, Antarctica. Chemosphere 45: 347 356.
71. McInerney, M. J.,, J. R. Sieber,, and R. P. Gunsalus. 2009. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20: 623 632.
72. McMinn, A.,, C. Ashworth,, and K. G. Ryan. 2000. In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquat. Microb. Ecol. 2: 177 185.
73. Mehta, T.,, M. V. Coppi,, S. E. Childers,, and D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 8634 8641.
74. Meltofte, H.,, T. R. Christensen,, B. Elberling,, M. C. Forchhammer,, and M. Rasch (ed.). 2008. High-Arctic Ecosystem Dynamics in a Changing Climate. Elsevier, New York, NY.
75. Mikucki, J. A.,, A. Pearson,, D. T. Johnston,, A. V. Turchyn,, J. Farquhar,, D. P. Schrag,, A. D. Anbar,, J. C. Priscu,, and P. A. Lee. 2009. A contemporary microbially maintained subglacial ferrous “ocean.” Science 324: 397 400.
76. Miller, R. V., 2000. recA: the gene and its protein product, p. 43 54. In S. Luria (ed.), Encyclopedia of Microbiology, 2nd ed., vol. 4. Academic Press, San Diego, CA.
77. Miller, R. V.,, W. Jeffrey,, D. Mitchell,, and M. Elasri. 1999. Bacterial responses to ultraviolet light. ASM News 65: 535 541.
78. Miller, R. V.,, and T. A. Kokjohn. 1990. General microbiology of recA: environmental and evolutionary significance. Ann. Rev. Microbiol. 44: 365 394.
79. Mindl, B.,, A. M. Anesio,, K. Meirer,, A. J. Hodson,, J. Laybourn-Parry,, R. Sommaruga,, and B. Sattler. 2007. Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacier. FEMS Microbiol. Ecol. 59: 307 317.
80. Montserrat Sala, M.,, R. Terrado,, C. Lovejoy,, F. Unrein,, and C. Pedrós-Alió. 2008. Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean. Environ. Microbiol. 10: 942 949.
81. Moorhead, D. L.,, C. F. Wolf,, and R. A. Wharton Jr. 1997. Impact of light regimes on productivity patterns of benthic microbial mats in an Antarctic lake: a modeling study. Limnol. Oceanogr. 42: 1561 1569.
82. Myers, C. R.,, and K. H. Nealson. 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172: 6232 6238.
83. Niederberger, T. D.,, N. N. Perreault,, J. R. Lawrence,, J. L. Nadeau,, R. E. Mielke,, C. W. Greer,, D. T. Andersen,, and L. G. Whyte. 2009. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic. Environ. Microbiol. 11: 616 629.
84. Ørbaek, J. B.,, I. Svenoe,, and D. O. Hessen,. 2002. Spectral properties and UV attenuation in Arctic freshwater systems, p. 57 72. In D. O. Hessen (ed.), UV Radiation and Arctic Ecosystems. Springer, Berlin, Germany.
85. Ovadnevaite, J.,, D. Ceburnis,, K. Plauskaite-Sukiene,, R. Modini,, R. Dupuy,, I. Rimselyte,, M. Ramonet,, K. Kvietkus,, Z. Ristovski,, H. Berresheim,, and C. D. O’Dowd. 2009. Volcanic sulphate and Arctic dust plumes over the North Atlantic Ocean. Atmos. Environ. 43: 4968 4974.
86. Pienitz, R.,, and W. F. Vincent. 2000. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404: 484 487.
87. Rich, J.,, M. Gosselin,, E. Sherr,, E. Sherr,, and D. L. Kirchman. 1997. High bacterial production, uptake and concentrations of dissolved organic matter in the central Arctic Ocean. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 44: 1645 1662.
88. Schoeberl, M. R.,, and D. L. Hartmann. 1991. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251: 46 52.
89. Schuur, E. A. G.,, J. G. Vogel,, K. G. Crummer,, H. Lee,, J. O. Sickman,, and T. E. Osterkamp. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459: 556 559.
90. Scully, N. M.,, W. F. Vincent,, D. R. S. Lean,, and W. J. Cooper. 1997. Implications of ozone depletion for surface-water photochemistry: sensitivity of clear lakes. Aquat. Sci. 59: 260 274.
91. Shiah, F. K.,, and H. W. Ducklow. 1995. Multiscale variability in bacterioplankton abundance, production, and specific growth rate in a termperate salt-marsh tidal creek. Limnol. Oceanogr. 40: 55 66.
92. Shiklomanov, I. A. 1998. World Water Resources: a New Appraisal and Assessment for the 21st Century. UNESCO, Paris, France.
93. Sigman, D. M.,, A. M. de Boer,, and G. H. Haug,. 2007. Antarctic stratification, atmospheric water vapor, and Heinrich events: a hypothesis for Late Pleistocene deglaciations, p. 335 349. In A. Schmittner,, J. Chiang,, and S. Hemmings (ed.), Ocean Circulation: Mechanisms and Impacts. AGU Press, Washington, DC.
94. Singh, B. K.,, R. D. Bardgett,, P. Smith,, and D. S. Reay. 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8: 779 790.
95. Stams, A. J.,, and C. M. Plugge. 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7: 568 577.
96. Stein, R.,, and R. W. Macdonald,. 2004. Organic carbon budget: Arctic Ocean vs. Global Ocean, p. 315 322. In R. Stein, and R. W. Macdonald (ed.), The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin, Germany.
97. Steven, B.,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2008. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10: 3388 3403.
98. Stres, B.,, T. Danevcic,, L. Pal,, M. M. Fuka,, L. Resman,, S. Leskovec,, J. Hacin,, D. Stopar,, I. Mahne,, and I. Mandic-Mulec. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66: 110 122.
99. Tarnocai, C. 1980. Summer temperatures of cryosolic soils in the North-Central Keewatin, NWT. Can. J. Soil Sci. 60: 311 327.
100. Tarnocai, C., 2009. Arctic permafrost soils, p. 3 16. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
101. Thingstad, T. F.,, R. G. J. Bellerby,, G. Bratbak,, K. Y. Borsheim,, J. K. Egge,, M. Heldal,, A. Larsen,, C. Neill,, J. Nejstgaard,, S. Norland,, R. A. Sandaa,, E. F. Skjoldal,, T. Tanaka,, R. Thyrhaug,, and B. Topper. 2008. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455: 387 391.
102. Vincent, W. F.,, D. R. Mueller,, and S. Bonilla. 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48: 103 112.
103. Vincent, W. F.,, M. Rautio,, and R. Pienitz,. 2007. Climate control of biological UV exposure in polar and alpine aquatic ecosystems, p. 227 250. In J. B. Ørbæk,, R. Kallenborn,, I. Tombre,, E. N. Hegseth,, S. Falk-Petersen,, and A. H. Hoel (ed.), Arctic Alpine Ecosystems and People in a Changing Environment. Springer, Berlin, Germany.
104. Vincent, W. F.,, L. G. Whyte,, C. Lovejoy,, C. W. Greer,, I. Laurion,, C. A. Suttle,, J. Corbeil,, and D. R. Mueller. 2009. Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Sci. 3: 171 180.
105. Wagner, D.,, S. Kobabe,, and S. Leibner. 2009. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Canadian Journal of Microbiology 55: 73 83.
106. Wagner, D.,, A. Lipski,, A. Embacher,, and A. Gattinger. 2005. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ. Microbiol. 7: 1582 1592.
107. Walker, C.,, Z. He,, Z. K. Yang,, J. J. Ringbauer,, Q. He,, J. Zhou,, G. Voordouw,, J. D. Wall,, A. P. Arkin,, T. C. Hazen,, S. Stolyar,, and D. A. Stahl. 2009. The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J. Bacteriol. 191: 5793 57801.
108. Walker, G. 1984. Mutagenesis and induced responses in deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48: 60 93.
109. Walter, K. M.,, M. E. Edwards,, G. Grosse,, S. A. Zimov,, and F. S. Chapin III. 2007. Thermokarst lakes as a source of atmospheric CH 4 during the last deglaciation. Science 318: 633 635.
110. Wrona, F. J.,, T. D. Prowse,, J. D. Reist,, J. E. Hobbie,, L. M. Lévesque,, R. W. Macdonald,, and W. F. Vincent. 2006. Effects of ultraviolet radiation and contaminant-related stressors on Arctic freshwater ecosystems. Ambio 35: 388 401.
111. Yergeau, E.,, H. Hogues,, L. G. Whyte,, and C. W. Greer. 2010. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4: 1 9.
112. Zepp, R. G.,, T. V. Callaghan,, and D. J. Erickson III. 2003. Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochem. Photobiol. Sci. 2: 51 61.
113. Zhao, M.,, and S. W. Running. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329: 940 943.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error