1887

Chapter 2 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap02-2.gif

Abstract:

Modern molecular PCR-based methods, typically targeting the 16S rRNA gene, have now revolutionized the field of environmental microbiology and have allowed culture-independent surveys of natural in situ microbial communities. These new approaches have unearthed a wide diversity and ubiquitous presence of Archaea in nonextreme environments such as soils, sediments, and oceans. The archaeal domain is split into two major phyla, the and . In spite of the extreme environmental conditions in the polar regions, through the application of culture-independent 16S rRNA gene-based surveys, have been found to inhabit a wide range of polar environments. This chapter reviews the current literature describing archaeal presence and diversity in polar and subpolar habitats. Marine and terrestrial ecosystems are discussed individually for Antarctic and Arctic ecosystems, with final sections discussing comparative studies of archaeal communities between polar regions, the potential response and contribution of to future climate change models, highlights of recent findings, and future research needs. The first wide-ranging PCR-based survey of archaeal 16S rRNA genes in terrestrial Antarctic sites has recently been reported. 16S rRNA gene clone library-based methods were used to analyze archaeal communities from , , , , and . FISH-based studies have shown that are typically minor components of pelagic microbial communities in Arctic water bodies. The majority of microbes in any given environment are typically recalcitrant to laboratory cultivation, and as such only a handful of have been isolated from polar environments.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.4371224
Environmental Microbiology
0.40507776
0.4371224
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817183.chap2
1. Aislabie, J.,, and J. P. Bowman,. 2010. Archaeal diversity in Antarctic ecosystems, p. 3160. In A. K. Bej,, J. Aislabie,, and R. M. Atlas (ed.), Polar Microbiology: the Ecology, Biodiversity and BioremediationPotential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
2. Alonso-Sáez, L.,, O. Sánchez,, J. M. Gasol,, V. Balagué,, and C. Pedrós-Alio. 2008. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ. Microbiol. 10:24442454.
3. Ayton, J.,, J. Aislabie,, G. M. Barker,, D. Saul,, and S. Turner. 2010. Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ. Microbiol. 12:689703.
4. Bano, N.,, S. Ruffin,, B. Ransom,, and J. T. Hollibaugh. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70:781789.
5. Bottos, E. M.,, W. F. Vincent,, C. W. Greer,, and L. G. Whyte. 2008. Prokaryotic diversity of arctic ice shelf microbial mats. Environ. Microbiol. 10:950966.
6. Bowman, J. P.,, S. M. Rea,, S. A. McCammon,, and T. A. McMeekin. 2000a. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ. Microbiol. 2:227237.
7. Bowman, J. P.,, S. A. McCammon,, S. M. Rea,, and T. A. McMeekin. 2000b. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183:8188.
8. Bowman, J. P.,, and R. D. McCuaig. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol. 69:24632483.
9. Bowman, J. P.,, S. A. McCammon,, J. A. Gibson,, L. Robertson,, and P. D. Nichols. 2003. Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl. Environ. Microbiol. 69:24482462.
10. Brambilla, E.,, H. Hippe,, A. Hagelstein,, B. J. Tindall,, and E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:2333.
11. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:66106619.
12. Brochier-Armanet, C.,, B. Boussau,, S. Gribaldo,, and P. Forterre. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6:245252.
13. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35:267275.
14. Casanueva, A.,, N. Galada,, G. C. Baker,, W. D. Grant,, S. Heaphy,, B. Jones,, M. Yanhe,, A. Ventosa,, J. Blamey,, and D. A. Cowan. 2008. Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12:651656.
15. Cavicchioli, R. 2006. Cold-adapted archaea. Nat. Rev. Microbiol. 4:331343.
16. Chaban, B.,, S. Y. Ng,, and K. F. Jarrell. 2006. Archaeal habitats—from the extreme to the ordinary. Can. J. Microbiol. 52:73116.
17. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3:570577.
18. Christner, B. C.,, B. H. Kvitko II,, and J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177183.
19. Church, M. J.,, E. F. DeLong,, H. W. Ducklow,, M. B. Karner,, C. M. Preston,, and D. M. Karl. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol. Oceanogr. 48:18931902.
20. Collins, R. E.,, G. Rocap,, and J. W. Deming. 2010. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ. Microbiol. 12:18281841.
21. Coolen, M. J. L.,, E. C. Hopmans,, W. I. C. Rijpstra,, G. Muyzer,, S. Schouten,, J. K. Volkman,, and J. S. Sinninghe Damsté. 2004. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org. Geochem. 35:11511167.
22. de La Torre, J. R.,, B. M. Goebel,, E. I. Friedmann,, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69:38583867.
23. DeLong, E. F. 1998. Everything in moderation: archaea as ‘non-extremophiles.’ Curr. Opin. Genet. Dev. 8:649654.
24. DeLong, E. F.,, K. Y. Wu,, B. B. Prézelin,, and R. V. M. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695697.
25. Elkins, J. G.,, M. Podar,, D. E. Graham,, K. S. Makarova,, Y. Wolf,, L. Randau,, B. P. Hedlund,, C. Brochier-Armanet,, V. Kunin,, I. Anderson,, A. Lapidus,, E. Goltsman,, K. Barry,, K. V. Koonin,, P. Hugenholtz,, N. Kyrpides,, G. Wanner,, P. Richardson,, M. Keller,, and K. O. Stetter. 2008. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl. Acad. Sci USA 105:81028107.
26. Forterre, P.,, S. Gribaldo,, and C. Brochier-Armanet. 2009. Happy together: genomic insights into the unique Nanoarchaeum/Ignicoccus association. J. Biol. 8:7.
27. Franzmann, P. D.,, Y. Liu,, D. L. Balkwill,, H. C. Aldrich,, E. Conway de Macario,, and D. R. Boone. 1997. Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol. 47:10681072.
28. Franzmann, P. D.,, N. Springer,, W. Ludwig,, E. Conway de Macario,, and M. Rhode. 1992. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst. Appl. Microbiol. 15:573581.
29. Franzmann, P. D.,, E. Stackebrandt,, K. Sanderson,, J. K. Volkman,, D. E. Cameron,, P. L. Stevenson,, T. A. McMeekin,, and H. R. Burton. 1988. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 11:2027.
30. Galand, P. E.,, C. Lovejoy,, A. K. Hamilton,, R. G. Ingram,, E. Pedneault,, and E. C. Carmack. 2009a. Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ. Microbiol. 11:971980.
31. Galand, P. E.,, C. Lovejoy,, and W. F. Vincent. 2006. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat. Microb. Ecol. 44:115126.
32. Galand, P. E.,, C. Lovejoy,, J. Pouliot,, and W. F. Vincent. 2008a. Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J. Mar. Syst. 74:774782.
33. Galand, P. E.,, E. O. Casamayor,, D. L. Kirchman,, and C. Lovejoy. 2009b. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 106:2242722432.
34. Galand, P. E.,, C. Lovejoy,, J. Pouliot,, M. E. Garneau,, and W. F. Vincent. 2008b. Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnol. Oceanogr. 52:813823.
35. Galand, P. E.,, E. O. Casamayor,, D. L. Kirchman,, M. Potvin,, and C. Lovejoy. 2009c. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 3:860869.
36. Ganzert, L.,, G. Jurgens,, U. Münster,, and D. Wagner. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59:476488.
37. García-Martínez, J.,, and F. Rodríguez-Valera. 2000. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol. Ecol. 9:935948.
38. Gibson, J. A. E. 1999. The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarct. Sci. 11:175192.
39. Gilichinsky, D.,, E. Rivkina,, V. Shcherbakova,, K. Laurinavichuis,, and J. Tiedje. 2003. Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331341.
40. Gillan, D. C.,, and B. Danis. 2007. The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54:16821690.
41. Glatz, R. E.,, P. W. Lepp,, B. B. Ward,, and C. A. Francis. 2006. Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology 4:5367.
42. Glissman, K.,, K. J. Chin,, P. Casper,, and R. Conrad. 2004. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb. Ecol. 48:389399.
43. Gribaldo, S.,, and C. Brochier-Armanet. 2006. The origin and evolution of Archaea: a state of the art. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:10071022.
44. Grosskopf, R.,, S. Stubner,, and W. Liesack. 1998. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64:49834989.
45. Høj, L.,, R. A. Olsen,, and V. L. Torsvik. 2005. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol. Ecol. 53:89101.
46. Høj, L.,, R. A. Olsen,, and V. L. Torsvik. 2008. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J. 2:3748.
47. Høj, L.,, M. Rusten,, L. E. Haugen,, R. A. Olsen,, and V. L. Torsvik. 2006. Effects of water regime on archaeal community composition in Arctic soils. Environ. Microbiol. 8:984996.
48. Huber, H.,, M. J. Hohn,, R. Rachel,, T. Fuchs,, V. C. Wimmer,, and K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:6367.
49. Huse, S. M.,, J. A. Huber,, H. G. Morrison,, M. L. Sogin,, and D. M. Welch. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8:R143.
50. Ishii, S.,, K. Tago,, and K. Senoo. 2010. Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl. Microbiol. Biotechnol. 86:12811292.
51. Junge, K.,, H. Eicken,, and J. W. Deming. 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70:550557.
52. Kalanetra, K. M.,, N. Bano,, and J. T. Hollibaugh. 2009. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ. Microbiol. 11:24342445.
53. Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317323.
54. Karr, E. A.,, J. M. Ng,, S. M. Belchik,, W. M. Sattley,, M. T. Madigan,, and L. A. Achenbach. 2006. Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl. Environ. Microbiol. 72:16631666.
55. Kellogg, C. T. E.,, and J. W. Deming. 2009. Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat. Microb. Ecol. 57:118.
56. Kirchman, D. L.,, H. Elifantz,, A. I. Dittel,, R. R. Malmstrom,, and M. T. Cottrell. 2007. Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol. Oceanogr. 52:495507.
57. Kobabe, S.,, D. Wagner,, and E. M. Pfeiffer. 2004. Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol. Ecol. 50:1323.
58. Könneke, M.,, A. E. Bernhard,, J. R. de la Torre,, C. B. Walker,, J. B. Waterbury,, and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543546.
59. Krivushin, K. V.,, V. A. Shcherbakova,, L. E. Petrovskaya,, and E. M. Rivkina. 2010. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 60:455459.
60. Kunin, V.,, A. Engelbrektson,, H. Ochman,, and P. Hugenholtz. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12:118123.
61. Kurosawa, N.,, S. Sato,, Y. Kawarabayasi,, S. Imura,, and T. Naganuma. 2010. Archaeal and bacterial community structures in the anoxic sediment of Antarctic meromictic lake Nurume-Ike. Polar Sci. 4:421429.
62. López-García, P.,, D. Moreira,, A. López-López,, and F. Rodríguez-Valera. 2001a. A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ. Microbiol. 3:7278.
63. López-García, P.,, A. López-López,, D. Moreira,, and F. Rodríguez-Valera. 2001b. Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol. Ecol. 36:193202.
64. Lysnes, K.,, I. H. Thorseth,, B. O. Steinsbu,, L. Øvreås,, T. Torsvik,, and R. B. Pedersen. 2004. Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol. Ecol. 50:213230.
65. Massana, R.,, L. T. Taylor,, A. E. Murray,, K. Y. Wu,, W. H. Jeffrey,, and E. F. DeLong. 1998. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol. Oceanogr. 43:607617.
66. Metje, M.,, and P. Frenzel. 2007. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ. Microbiol. 9:954964.
67. Morozova, D.,, and D. Wagner. 2007. Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS Microbiol. Ecol. 61:1625.
68. Morozova, D.,, D. Möhlmann,, and D. Wagner. 2007. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig. Life Evol. Biosph. 37:189200.
69. Murray, A. E.,, C. M. Preston,, R. Massana,, L. T. Taylor,, A. Blakis,, K. Wu,, and E. F. DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64:25852595.
70. Murray, A. E.,, K. Y. Wu,, C. L. Moyer,, D. M. Karl,, and E. F. DeLong. 1999. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquat. Microb. Ecol. 18:263273.
71. Niederberger, T. D.,, N. N. Perreault,, J. R. Lawrence,, J. L. Nadeau,, R. E. Mielke,, C. W. Greer,, D. T. Andersen,, and L. G. Whyte. 2009. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic. Environ. Microbiol. 11:616629.
72. Niederberger, T. D.,, N. N. Perreault,, S. Tille,, B. S. Lollar,, G. Lacrampe-Couloume,, D. Andersen,, C. W. Greer,, W. Pollard,, and L. G. Whyte. 2010. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J. 4:13261339.
73. Ochsenreiter, T.,, D. Selezi,, A. Quaiser,, L. Bonch-Osmolovskaya,, and C. Schleper. 2003. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5:787797.
74. Perreault, N. N.,, D. T. Andersen,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2007. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic. Appl. Environ. Microbiol. 73:15321543.
75. Pointing, S. B.,, Y. Chan,, D. C. Lacap,, M. C. Lau,, J. A. Jurgens,, and R. L. Farrell. 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. USA 106:1996419969.
76. Pouliot, J.,, P. E. Galand,, C. Lovejoy,, and W. F. Vincent. 2009. Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environ. Microbiol. 11:687699.
77. Powell, S. M.,, J. P. Bowman,, I. Snape,, and J. S. Stark. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol. Ecol. 45:135145.
78. Preston, C. M.,, K. Y. Wu,, T. F. Molinski,, and E. F. DeLong. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93:62416246.
79. Purdy, K. J.,, D. B. Nedwell,, and T. M. Embley. 2003. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl. Environ. Microbiol. 69:31813191.
80. Ravenschlag, K.,, K. Sahm,, and R. Amann. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl. Environ. Microbiol. 67:387395.
81. Rivkina, E.,, V. Shcherbakova,, K. Laurinavichius,, L. Petrovskaya,, K. Krivushin,, G. Kraev,, S. Pecheritsina,, and D. Gilichinsky. 2007. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 61:115.
82. Rivkina, E. M.,, K. S. Laurinavichus,, D. A. Gilichinsky,, and V. A. Shcherbakova. 2002. Methane generation in permafrost sediments. Dokl. Biol. Sci. 383:179181.
83. Schleper, C.,, G. Jurgens,, and M. Jonuscheit. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3:479488.
84. Shcherbakova, V.,, E. Rivkina,, S. Pecheritsyna,, K. Laurinavichius,, N. Suzina,, and D. Gilichinsky. 2010. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int. J. Syst. Evol. Microbiol. 61:144147.
85. Simankova, M. V.,, O. R. Kotsyurbenko,, T. Lueders,, A. N. Nozhevnikova,, B. Wagner,, R. Conrad,, and M. W. Friedrich. 2003. Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst. Appl. Microbiol. 26:312318.
86. Singh, N.,, M. M. Kendall,, Y. Liu,, and D. R. Boone. 2005. Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int. J. Syst. Evol. Microbiol. 55:25312538.
87. Sjöling, S.,, and D. A. Cowan. 2003. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7:275282.
88. Soo, R. M.,, S. A. Wood,, J. J. Grzymski,, I. R. McDonald,, and S. C. Cary. 2009. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Environ. Microbiol. 11:715728.
89. Steven, B.,, G. Briggs,, C. P. McKay,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2007. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59:513523.
90. Steven, B.,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2008. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10:33883403.
91. Teske, A.,, and K. B. Sorensen. 2007. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2:318.
92. Tian, F.,, Y. Yu,, B. Chen,, H. Li,, Y. F. Yao,, and X. K. Guo. 2009. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol. 32:93103.
93. Topping, J. N.,, J. L. Heywood,, P. Ward,, and M. V. Zubkov. 2006. Bacterioplankton composition in the Scotia Sea, Antarctica, during the austral summer of 2003. Aquat. Microb. Ecol. 45:229235.
94. Turner, J.,, and J. Overland. 2009. Contrasting climate change in the two polar regions. Polar Res. 28:146164.
95. van Vliet, A. H. 2010. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol. Lett. 302:17.
96. Wagner, D.,, and S. Liebner,. 2010. Methanogenesis in Arctic permafrost habitats, p. 655663. In K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Germany.
97. Wagner, D.,, A. Lipski,, A. Embacher,, and A. Gattinger. 2005. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ. Microbiol. 7:15821592.
98. Webster, N. S.,, A. P. Negri,, M. M. Munro,, and C. N. Battershill. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6:288300.
99. Wells, L. E.,, M. Cordray,, S. Bowerman,, L. A. Miller,, W. F. Vincent,, and J. W. Deming. 2006. Archaea in particle-rich waters of the Beaufort Shelf and Franklin Bay, Canadian Arctic: clues to an allochthonous origin? Limnol. Oceanogr. 51:4759.
100. Wells, L. E.,, and J. W. Deming. 2003. Abundance of Bacteria, the Cytophaga-Flavobacterium cluster and Archaea in cold oligotrophic waters and nepheloid layers of the Northwest Passage, Canadian Archipelago. Aquat. Microb. Ecol. 31:1931.
101. Wilhelm, R. C.,, T. D. Niederberger,, C. Greer,, and L. G. Whyte. 2011. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57:303315.
102. Woese, C. R.,, and G. E. Fox. 1997. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:50885090.
103. Woese, C. R.,, O. Kandler,, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:45764579.
104. Yergeau, E.,, H. Hogues,, L. G. Whyte,, and C. W. Greer. 2010. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4:12061214.
105. Yergeau, E.,, S. Kang,, Z. He,, J. Zhou,, and G. A. Kowalchuk. 2007. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J. 1:163179.
106. Yergeau, E.,, S. A. Schoondermark-Stolk,, E. L. Brodie,, S. Dejean,, T. Z. DeSantis,, O. Goncalves,, Y. M. Piceno,, G. L. Andersen,, and G. A. Kowalchuk. 2009. Environmental microarray analyses of Antarctic soil microbial communities. ISME J. 3:340351.

Tables

Generic image for table
TABLE 1

isolated from polar environments

Isolates marked with a star are not validly named and characterized according to the . 1992. ASM Press.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 2

Concentrations of in natural polar environments

Counts are represented as averages and include variations due to various sample types analyzed per study.

Units: ml for water samples; ml/g for sediment and soils samples; 16S rRNA gene copies for qPCR-based studies.

ND, not determined.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3a

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3b

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3c

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3d

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3e

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3f

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3g

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 3h

16S rRNA gene-based community surveys of in natural polar environments

Sequences from these studies are included in the phylogenetic analysis shown in Color Plate 4. Sequences from DGGE-based studies and some recent studies (designated by # in the “Reference” column) are not included in Color Plate 4.

Numbers in parentheses refer to locations indicated on map in Color Plate 5. were not detected at sites marked with a star.

ND, not defined in the original study.

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2
Generic image for table
TABLE 4

Oligonucleotides utilized to target in 16S rRNA gene PCR-based culture-independent studies of polar environments

Numbering associated with oligonucleotide names refers to the complementary nucleotide position on the target 16S rRNA gene.

The mismatch, i.e., gap with the oligonucleotide sequence represented by the dash, may represent an error within the original publication ( ).

Citation: Niederberger T, McDonald I, Cary S. 2012. , p 32-61. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error