1887

Chapter 8 : Polar Microorganisms and Biotechnology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Polar Microorganisms and Biotechnology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap08-2.gif

Abstract:

The various organisms thriving in extreme environments on Earth, psychrophiles (cold-loving organisms) are the most abundant in terms of biomass, diversity, and distribution. The chapter presents an overview of the biotechnological uses of psychrophiles and of their biomolecules using selected examples. Site-specific mutants of psychrophiles are a useful tool to study cold adaptation and expression of cold-active enzymes at low temperature. At the industrial level, the best-known representative of polar microorganisms is certainly the yeast Candida antarctica, as its species name unambiguously refers to the sampling origin. Antarcticine-NF3 is a glycoprotein with antifreeze properties produced by the bacterium Pseudoalteromonas antarctica, which has been patented by Spanish researchers. It was found that Antarcticine is effective for scar treatment and re-epithelialization of wounds. Most studies on hydrocarbon bioremediation in polar regions have focused on the treatment of petroleum hydrocarbons, since increased petroleum exploration increases the risk of accidental oil release. Polar plants and animals have also found diverse applications and are worth citing in the context of the present survey. Recent developments based on cold-adapted organisms and their biomolecules have clearly demonstrated the huge potential of psychrophiles.

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Temperature dependence of growth (expressed by the generation time) of and of representative psychrophilic gram-negative bacteria (data from various Antarctic isolates of ), displaying high growth rates at low temperatures for the latter.

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Temperature dependence of the activity of psychrophilic (○) and mesophilic (●) enzymes recorded at various temperatures illustrates the main properties of cold-adapted enzymes: cold activity and heat lability (data for cellulases from the Antarctic bacterium and from the mesophile ). (Adapted from with permission of the publisher.)

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817183.chap8
1. Aislabie, J.,, and J. M. Foght,. 2008. Hydrocarbon-degrading bacteria in contaminated soils, p. 6983. In D. M. Filler,, I. Snape,, and D. L. Barnes (ed.), Bioremediation of Petroleum Hydrocarbons in Cold Regions. Cambridge University Press, Cambridge, Cambridge, United Kingdom.
2. Aislabie, J.,, D. J. Saul,, and J. M. Foght. 2006. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171179.
3. Allen, D.,, A. L. Huston,, L. E. Weels,, and J. W. Deming,. 2002. Biotechnological use of psychrophiles, p. 117. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology. John Wiley and Sons, New York, NY.
4. Atlas, R. M., 2010. Microbial bioremediation in polar environments: current status and future directions, p. 255275. In A. K. Bej,, J. Aislabie,, and R. M. Atlas (ed.), Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
5. Babu, J.,, P. W. Ramteke,, and G. Thomas. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26:457470.
6. Bakermans, C.,, R. E. Sloup,, D. G. Zarka,, J. M. Tiedje,, and M. F. Thomashow. 2009. Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4. Extremophiles 13:2130.
7. Barnes, D. L.,, and E. Chuvilin,. 2009. Migration of petroleum in permafrost-affected regions, p. 263278. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
8. Bej, A. K.,, J. Aislabie,, and R. M. Atlas (ed.). 2010. Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
9. Biondi, N.,, M. R. Tredici,, A. Taton,, A. Wilmotte,, D. A. Hodgson,, D. Losi,, and F. Marinelli. 2008. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J. Appl. Microbiol. 105:105115.
10. Brakstad, O. G., 2008. Natural and stimulated biodegradation of petroleum in permafrost-affected regions, p. 389407. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
11. Cavicchioli, R.,, K. S. Siddiqui,, D. Andrews,, and K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13:253261.
12. Chevalier, P.,, D. Proulx,, P. Lessard,, W. F. Vincent,, and J. de la Noue. 2000. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12:105112.
13. Collins, T.,, D. De Vos,, A. Hoyoux,, S. N. Savvides,, C. Gerday,, J. Van Beeumen,, and G. Feller. 2005. Study of the active site residues of a glycoside hydrolase family 8 xylanase. J. Mol. Biol. 354:425435.
14. Collins, T.,, A. Hoyoux,, A. Dutron,, J. Georis,, B. Genot,, T. Dauvrin,, F. Arnaut,, C. Gerday,, and G. Feller. 2006. Use of glycoside hydrolase family 8 xylanases in baking. J. Cereal Sci. 43:7984.
15. Collins, T.,, M. A. Meuwis,, C. Gerday,, and G. Feller. 2003. Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328:419428.
16. Collins, T.,, M. A. Meuwis,, I. Stals,, M. Claeyssens,, G. Feller,, and C. Gerday. 2002. A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem. 277:3513335139.
17. Cusano, A. M.,, E. Parrilli,, A. Duilio,, G. Sannia,, G. Marino,, and M. L. Tutino. 2006. Secretion of psychrophilic α-amylase deletion mutants in Pseudoalteromonas haloplanktis TAC125. FEMS Microbiol. Lett. 258:6771.
18. D'Amico, S.,, T. Collins,, J. C. Marx,, G. Feller,, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7:385389.
19. D'Amico, S.,, C. Gerday,, and G. Feller. 2001. Structural determinants of cold adaptation and stability in a large protein. J. Biol. Chem. 276:2579125796.
20. D'Amico, S.,, C. Gerday,, and G. Feller. 2003a. Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted α-amylase. J. Mol. Biol. 332:981988.
21. D'Amico, S.,, J.-C. Marx,, C. Gerday,, and G. Feller. 2003b. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278:78917896.
22. Davail, S.,, G. Feller,, E. Narinx,, and C. Gerday. 1994. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. J. Biol. Chem. 269:1744817453.
23. De Vos, D.,, T. Collins,, W. Nerinckx,, S. N. Savvides,, M. Claeyssens,, C. Gerday,, G. Feller,, and J. Van Beeumen. 2006. Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the β-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45:47974807.
24. Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5:301309.
25. Feller, G.,, and C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1:200208.
26. Ferrer, M.,, T. N. Chernikova,, M. M. Yakimov,, P. N. Golyshin,, and K. N. Timmis. 2003. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21:12661267.
27. Filler, D. M.,, C. M. Reynolds,, I. Snape,, A. J. Daugulis,, D. L. Barnes,, and P. J. Williams. 2006. Advances in engineered remediation methods for use in the Arctic and Antarctica. Polar Rec. 42:111120.
28. Filler, D. M.,, I. Snape,, and D. L. Barnes (ed.). 2008. Bioremediation of Petroleum Hydrocarbons in Cold Regions. Cambridge University Press, Cambridge, United Kingdom.
29. Filler, D. M.,, D. R. van Stempvoort,, and M. B. Leigh,. 2009. Remediation of frozen ground contaminants with petroleum hydrocarbons: feasibility and limits, p. 279301. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
30. Fletcher, G. L.,, C. L. Hew,, and P. L. Davies. 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63:359390.
31. Gerday, C.,, M. Aittaleb,, M. Bentahier,, J. P. Chessa,, P. Claverie,, T. Collins,, S. D'Amico,, J. Dumont,, G. Garsoux,, D. Georlette,, A. Hoyoux,, T. Lonhienne,, M.-A. Meuwis,, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18:103107.
32. Gerday, C.,, and N. Glansdorff. 2007. Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC.
33. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pecheritsina,, R. Fattakhova,, and J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53:117128.
34. Gratia, E.,, F. Weekers,, R. Margesin,, S. D'Amico,, P. Thonart,, and G. Feller. 2009. Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763768.
35. Hoag, H. 2008. Polar biotech. Nat. Biotechnol. 26:1204.
36. Hoyoux, A.,, I. Jennes,, P. Dubois,, S. Genicot,, F. Dubail,, J. M. Francois,, E. Baise,, G. Feller,, and C. Gerday. 2001. Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 67:15291535.
37. Kobori, H.,, C. W. Sullivan,, and H. Shizuya. 1984. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end labelling of nucleic acids. Proc. Natl. Acad. Sci. USA 81:66916695.
38. Kolenc, R. J.,, W. E. Inniss,, B. R. Glick,, C. W. Robinson,, and C. I. Mayfield. 1988. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl. Environ. Microbiol. 54:638641.
39. Koutsioulis, D.,, E. Wang,, M. Tzanodaskalaki,, D. Nikiforaki,, A. Deli,, G. Feller,, P. Heikinheimo,, and V. Bouriotis. 2008. Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng. Des. Sel. 21:319327.
40. Krallish, I.,, S. Gonta,, L. Savenkova,, P. Bergauer,, and R. Margesin. 2006. Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora. Extremophiles 10:441449.
41. Leary, D. 2008. Bioprospecting in the Arctic. UNU-IAS report. United Nations University Institute of Advanced Studies, Yokohama, Japan.
42. Leigh Mascarelli, A. 2009. Geomicrobiology: low life. Nature 459:770773.
43. Leiros, I.,, E. Moe,, O. Lanes,, A. O. Smalås,, and N. P. Willassen. 2003. The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallogr. D Biol. Crystallogr. 59:13571365.
44. Lo Giudice, A.,, V. Bruni,, and L. Michaud,. 2010. Potential for microbial biodegradation of polychlorinated biphenyls in polar environments, p. 373391. In A. K. Bej,, J. Aislabie,, and R. M. Atlas (ed.), Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
45. Lohan, D.,, and S. Johnston. 2005. Bioprospecting in Antarctica. UNU-IAS report. United Nations University Institute of Advanced Studies, Yokohama, Japan.
46. Margesin, R., 2004. Bioremediation of petroleum hydrocarbon-polluted soils in extreme temperature environments, p. 215234. In A. Singh, and O. P. Ward (ed.), Applied Bioremediation and Phytoremediation. Springer, Berlin, Germany.
47. Margesin, R. 2007. Alpine microorganisms: useful tools for low-temperature bioremediation. J. Microbiol. 45:281285.
48. Margesin, R.,, and G. Feller. 2010. Biotechnological applications of psychrophiles. Environ. Technol. 31:835844.
49. Margesin, R.,, G. Feller,, C. Gerday,, and N. J. Russell,. 2002. Cold-adapted microorganisms: adaptation strategies and biotechnological potential, p. 871885. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology. John Wiley and Sons, New York, NY.
50. Margesin, R.,, P. A. Fonteyne,, and B. Redl. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156:6875.
51. Margesin, R.,, G. Neuner,, and K. B. Storey. 2007. Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94:7799.
52. Margesin, R.,, and F. Schinner (ed.). 1999a. Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Germany.
53. Margesin, R.,, and F. Schinner (ed.). 1999b. Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer, Berlin, Germany.
54. Margesin, R.,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.). 2008. Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
55. Marx, J.-C.,, T. Collins,, S. D'Amico,, G. Feller,, and C. Gerday. 2007. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. (NY) 9:293304.
56. Miteva, V.,, S. Lantz,, and J. Brenchley. 2008. Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients. Extremophiles 12:441449.
57. Miyake, R.,, J. Kawamoto,, Y. L. Wei,, M. Kitagawa,, I. Kato,, T. Kurihara,, and N. Esaki. 2007. Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl. Environ. Microbiol. 73:48494856.
58. Narinx, E.,, E. Baise,, and C. Gerday. 1997. Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng. 10:12711279.
59. Panicker, G.,, N. Mojib,, J. Aislabie,, and A. K. Bej. 2010. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 97:275287.
60. Papa, R.,, V. Rippa,, G. Sannia,, G. Marino,, and A. Duilio. 2007. An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J. Biotechnol. 127:199210.
61. Parente Duena, A.,, J. Garces Garces,, J. Guinea Sanchez,, J. M. Garcia Anton,, R. Casaroli Marano,, M. Reina Del Pozo,, and S. Vilaro Coma. April 2006. Use of a glycoprotein for the treatment and re-epithelialisation of wounds. U.S. patent 7, 022,668.
62. Parrilli, E.,, D. De Vizio,, C. Cirulli,, and M. L. Tutino. 2008. Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb. Cell Fact. 7:2.
63. Paudyn, K.,, A. Rutter,, R. K. Rowe,, and J. S. Poland. 2008. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg. Sci. Technol. 53:102114.
64. Rina, M.,, C. Pozidis,, K. Mavromatis,, M. Tzanodaskalaki,, M. Kokkinidis,, and V. Bouriotis. 2000. Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur. J. Biochem. 267:12301238.
65. Russell, N. J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61:121.
66. Siani, L.,, R. Papa,, A. Di Donato,, and G. Sannia. 2006. Recombinant expression of toluene o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. J. Biotechnol. 126:334341.
67. Siddiqui, K. S.,, and R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75:403433.
68. Smalås, A. O.,, H. K. Leiros,, V. Os,, and N. P. Willassen. 2000. Cold adapted enzymes. Biotechnol. Annu. Rev. 6:157.
69. Strocchi, M.,, M. Ferrer,, K. N. Timmis,, and P. N. Golyshin. 2006. Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones. Proteomics 6:193206.
70. Tehei, M.,, B. Franzetti,, D. Madern,, M. Ginzburg,, B. Z. Ginzburg,, M. T. Giudici-Orticoni,, M. Bruschi,, and G. Zaccai. 2004. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 5:6670.
71. Thomassin-Lacroix, E. J.,, M. Eriksson,, K. J. Reimer,, and W. W. Mohn. 2002. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl. Microbiol. Biotechnol. 59:551556.
72. Tutino, M. L.,, A. Duilio,, R. Parrilli,, E. Remaut,, G. Sannia,, and G. Marino. 2001. A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257264.
73. Van Petegem, F.,, T. Collins,, M. A. Meuwis,, C. Gerday,, G. Feller,, and J. Van Beeumen. 2003. The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investigation of the active site. J. Biol. Chem. 278:75317539.
74. Walworth, J. L.,, and S. Ferguson,. 2008. Landfarming, p. 170189. In D. M. Filler,, I. Snape,, and D. L. Barnes (ed.), Bioremediation of Petroleum Hydrocarbons in Cold Regions. Cambridge University Press, Cambridge, United Kingdom.
75. Walworth, J. L.,, A. Pond,, I. Snape,, J. Rayner,, S. Ferguson,, and P. Harvey. 2007. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg. Sci. Technol. 48:8491.
76. Wang, E.,, D. Koutsioulis,, H. K. Leiros,, O. A. Andersen,, V. Bouriotis,, E. Hough,, and P. Heikinheimo. 2007. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. J. Mol. Biol. 366:13181331.
77. Williams, N. 2004. Chill wind over Antarctic biodiversity. Curr. Biol. 14:R169R170.
78. Yergeau, E.,, M. Arbour,, R. Brousseau,, D. Juck,, J. R. Lawrence,, L. Masson,, L. G. Whyte,, and C. W. Greer. 2009. Microarray and real-time PCR analyses of the responses of high Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl. Environ. Microbiol. 75:62586267.
79. Zaitsev, G. M.,, J. S. Uotila,, and M. M. Häggblom. 2007. Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl. Microbiol. Biotechnol. 74:10921102.
80. Zilouei, H.,, A. Soares,, M. Murto,, B. Guieysse,, and B. Mattiasson. 2006. Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor. Appl. Microbiol. Biotechnol. 72:591599.
81. Zobell, C. E. 1946. Action of microorganisms on hydrocarbons. Bacteriol. Rev. 10:149.

Tables

Generic image for table
TABLE 1

Selected applications of cold-active biomolecules in biotechnology

Adapted from with permission of the publisher.

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error