1887

Chapter 1 : Geochemical Reactivity of Bacterial Surfaces: a Tribute to T. J. Beveridge

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Geochemical Reactivity of Bacterial Surfaces: a Tribute to T. J. Beveridge, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap01-2.gif

Abstract:

“Nature never jests,” this attitude is best reflected in Dr. Terry Beveridge’s pioneering studies on the molecular basis of bacterial cell wall reactivity, sorption of metals, as well as mineral precipitation and dissolution reactions. The essential link between these areas of research is the fundamental view that design and construction impart functionality. This chapter explores some of the early works on bacterial cell envelopes that paved the way for Terry and his studies on the geochemical reactivity of bacterial cell surfaces. Terry recognized that the enhanced electron contrast provided by heavy metals in thin sections and whole mounts of bacteria had something to do with how the metals interacted with the macromolecular constituents of the cells. Furthermore, it was clear from his Ph.D. work that certain metals like Ca2 were important for the maintenance of bacterial cell envelope structure and integrity. The phosphate groups of lipopolysaccharide were identified as major sites for metal binding by using 31P-nuclear magnetic resonance and paramagnetic metal cation probes. The chapter highlights the importance of recognizing that all bacteria are obligated to grow from the inside out, and necessarily shed older cell wall fragments (and sometimes bacteriophage) into their surroundings. This means that new metal binding sites will be generated as bacterial cells grow, so absorbed as well as precipitated metals will slough off and be removed from the cell. In this sense, metal binding and precipitation by bacteria will be a continual source of particulate metals in natural systems.

Citation: Ferris F. 2011. Geochemical Reactivity of Bacterial Surfaces: a Tribute to T. J. Beveridge, p 1-9. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch1

Key Concept Ranking

Transmission Electron Microscopy
0.5228416
Cell Wall Components
0.4812519
Bacterial Cell Wall
0.4725877
Transmission Electron Microscope
0.47031438
Atomic Force Microscopy
0.46342778
Scanning Electron Microscope
0.4598028
0.5228416
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Negative stain of a regularly structured surface array (S-layer) on an unidentified bacterium isolated from Green Dragon Spring in Yellowstone National Park, Wyoming (bar = 250 nm). (B) Thin section showing an S-layer on a bacterium in a microbial mat from Terrace Spring in Yellowstone National Park, Wyoming (bar = 250 nm). 10.1128/9781555817190.ch1f1

Citation: Ferris F. 2011. Geochemical Reactivity of Bacterial Surfaces: a Tribute to T. J. Beveridge, p 1-9. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Unstained thin-section electron micrographs of cyanobacteria undergoing silicification in an Icelandic hot spring (bar = 2.0 μm) (A), and iron-silicate mineral precipitates accreting on the surface of a bacterial cell in sediment from Moose Lake, Ontario, Canada (B). The lake is impacted by acid mine drainage (bar = 1.0 μm). 10.1128/9781555817190.ch1.f2

Citation: Ferris F. 2011. Geochemical Reactivity of Bacterial Surfaces: a Tribute to T. J. Beveridge, p 1-9. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817190.ch01
1. Beveridge, T. J.,, and S. F. Koval. 1981. Binding of metals to cell envelopes of Escherichia coli K-12. Appl. Environ. Microbiol. 42:325335.
2. Beveridge, T. J.,, J. D. Meloche,, W. S. Fyfe, and, R. G. E. Murray. 1983. Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphate, sulfide, and organic condensates in artificial sediments. Appl. Environ. Microbiol. 45:10941108.
3. Beveridge, T. J.,, and R. G. E. Murray. 1976a. Reassembly in vitro of superficial cell-wall components of Spirillum putridiconchylium. J. Ultrastruct. Res. 55:105118.
4. Beveridge, T. J.,, and R. G. E. Murray. 1976b. Uptake and retention of metals by cell walls of Bacillus subtilis. J. Bacteriol. 127:15021518.
5. Beveridge, T. J.,, and R. G. E. Murray. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141:876887.
6. Buckmire, R.,, and R. G. E. Murray. 1976. Substructure and in vitro assembly of outer structured layer of Spirillum serpens. J. Bacteriol. 125:290299.
7. Cox, J. S.,, D. S. Smith,, L. A. Warren, and, F. G. Ferris. 1999. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ. Sci. Technol. 33:45144521.
8. Ferris, F. G.,, and T. J. Beveridge. 1985. Binding of a paramagnetic metal cation to Escherichia coli K-12 outer membrane vesicles. FEMS Microbiol. Lett. 24:4346.
9. Ferris, F. G.,, and T. J. Beveridge. 1986. Site specificity of metallic ion binding in Escherichia coli lipopolysaccharide. Can. J. Microbiol. 32:5255.
10. Ferris, F. G.,, T. J. Beveridge, and, W. S. Fyfe. 1986. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature 320:609611.
11. Ferris, F. G.,, C. M. Fratton,, J. P Gerits,, S. Schultze-Lam, and, B. Sherwood Lollar. 1995. Microbial precipitation of a strontium carbonate phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada. Geomicrobiol. J. 13:5767.
12. Ferris, F. G.,, W. S. Fyfe, and, T. J. Beveridge. 1987a. Bacteria as nucleation sites for authigenic minerals in a metal contaminated lake sediment. Chem. Geol. 63:225232.
13. Ferris, F. G.,, W. S. Fyfe, and, T. J. Beveridge. 1987b. Manganese-oxide deposition in a hot spring microbial mat. Geomicrobiol. J. 5:3342.
14. Ferris, F. G.,, W. S. Fyfe, and, T. J. Beveridge. 1988. Metallic ion binding by Bacillus subtilis:implications for the fossilization of microorganisms. Geology 16:149152.
15. Ferris, F. G.,, R. O. Hallberg,, B. Lyven, and, K. Pedersen. 2000. Retention of strontium, cesium, lead, and uranium by bacterial iron oxides from a subterranean environment. Appl. Geochem. 15:10351042.
16. Ferris, F. G.,, K. O. Konhauser,, B. Lyven, and, K. Pedersen. 1999. Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiol. J. 16:181192.
17. Ferris, F. G.,, and E. Magalhaes. 2008. Interfacial energetics of bacterial silicification. Geomicrobiol. J. 25:333337.
18. Ferris, F. G.,, S. Schultze,, T. C. Witten,, W. S. Fyfe, and, T. J. Beveridge. 1989a. Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl. Environ. Microbiol. 55:12491257.
19. Ferris, F. G.,, K. Tazaki, and, W. S. Fyfe. 1989b. Iron oxides in acid mine drainage environments and their association with bacteria. Chem. Geol. 74:321330.
20. Ferris, F. G.,, J. B. Thompson, and, T. J. Beveridge. 1997. Modern freshwater stromatolites and thrombolites from Kelly Lake, British Columbia. PALIOS 12:213219.
21. Ferris, F. G.,, R. G. Wiese, and, W. S. Fyfe. 1994. Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global carbon dioxide budget. Geomicrobiol. J. 12:113.
22. Holt, S. C.,, and T. J. Beveridge. 1982. Electron microscopy: its development and application to microbiology. Can. J. Microbiol. 28:153.
23. Kellenberger, E.,, and A. Ryter. 1958. Cell wall and cytoplasmic membrane of Escherichia coli. J. Biophys. Biochem. Cytol. 4:323326.
24. Kyle, J. E.,, H. S. C. Eydal,, F. G. Ferris, and, K. Pedersen. 2008a. Viruses in granitic groundwater from 69 to 450 m depth of the Aspo hard rock laboratory, Sweden. ISME J. 2:571574.
25. Kyle, J. E.,, K. Pedersen, and, F. G. Ferris. 2008b. Virus mineralization at low pH in the Rio Tinto, Spain. Geomicrobiol. J. 25:338345.
26. Lim, D. S. S.,, B. E. Laval,, G. Slater,, D. Antoniades,, A. Forrest,, W. Pike,, R. Pieters,, M. Saffari,, D. Reid,, D. Andersen, and, C. P. McKay. 2009. Limnology of Pavilion Lake B.C.—Characterization of a microbialite forming environment. Fundam. Appl. Limnol. 173:329351S.
27. Martinez, R. E.,, and F. G. Ferris. 2001. Chemical equilibrium modeling techniques for the analysis of high resolution bacterial metal sorption data. J. Colloid Interface Sci. 243:7380.
28. Martinez, R. E.,, K. Pedersen, and, F. G. Ferris. 2004. Cadmium complexation by bacteriogenic iron oxides from a subterranean environment. J. Colloid Interface Sci. 275:8289.
29. Murray, R. G. E. 1988. A structured life. Annu. Rev. Microbiol. 42:134.
30. Phoenix, V. R.,, A. A. Korenevsky,, F. G. Ferris,, Y. A. Gorby, and, T. J. Beveridge. 2007. Influence of lipopolysaccharide on the surface proton-binding behavior of Shewanella spp. Curr. Microbiol. 55:152157.
31. Robinow, C. F.,, and R. G. E. Murray. 1953. The differentiation of cell wall, cytoplasmic membrane and cytoplasm of Gram positive bacteria by selective staining. Exp. Cell Res. 4:390407.
32. Schultze-Lam, S.,, F. G. Ferris,, K. O. Konhauser, and, R. G. Wiese. 1995. In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can. J. Earth Sci. 32:20212026.
33. Small, T. D.,, L. A. Warren,, E. E. Roden, and, F. G. Ferris. 1999. Sorption of strontium by bacteria, Fe(III) oxide and bacteria-Fe(III) oxide composites. Environ. Sci. Technol. 33:44654470.
34. Smith, D. S.,, and F. G. Ferris. 2001. Computational and experimental approaches to studying metal interactions with microbial biofilms. Methods Enzymol. 337:225242.
35. Smith, D. S.,, and F. G. Ferris. 2003. Specific surface chemical interactions between hydrous ferric oxide and iron reducing bacteria determined using pK spectra. J. Colloid Interface Sci. 266:6067.
36. Sokolov, I.,, D. S. Smith,, G. S. Henderson,, Y. A. Gorby, and, F. G. Ferris. 2001. Cell surface electrochemical heterogeneity of the Fe(III)- reducing bacteria Shewanella putrefaciens. Environ. Sci. Technol. 35:341347.
37. Thompson, J. B.,, and F. G. Ferris. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995998.
38. Thompson, J. B.,, F. G. Ferris, and, D. Smith. 1990. Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. PALIOS 5:5275.
39. Warren, L. A.,, and F. G. Ferris. 1998. Continuum between sorption and precipitation of Fe(III) on bacterial cell surfaces. Environ. Sci. Technol. 32:23312337.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error