Chapter 4 : Microbe-Metal Interactions on Seafloor Basalts

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Microbe-Metal Interactions on Seafloor Basalts, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap04-2.gif


This chapter considers mineral-microbe interactions at and below the ocean floor, the epilithic and endolithic microorganisms harbored in rock habitats in the dark ocean, and metal and redox cycling at rock and mineral surfaces. It discusses empirical studies on materials retrieved from the seafloor and subseafloor. The chapter talks about new research frontiers using novel in situ microbial observatories for time-series experiments in these environments. Laboratory and field studies have also indicated that alteration of rocks and minerals in the deep sea is connected to carbon fixation, and thereby dark ocean primary production. The chapter reviews recent insights into dark ocean mineral-mineral microbe interactions, principally as associated with potentially largest endolithic surface on Earth: seafloor and subseafloor basalt. Experimental lines of research on alteration and weathering of the igneous ocean crust conducted in recent years both at and below the seafloor are discussed. The chapter offers insights into new means for directly assessing the role of microbes in metal cycling and rock alteration. The ability to oxidize Fe(II) is shared across multiple proteobacterial lineages, including representatives from α-,ү- and ε-proteobacteria, possibly indicating horizontal gene transfer of this ability, or perhaps hinting at the possibility that iron oxidation is an ancestral trait within the . The recently developed new strategies for conducting time-series studies and conducting active experimentation at and below the seafloor can offer powerful means for studying these remote systems, and offer broad and extensive research results in scientific advancement.

Citation: Sylvan J, Turner A, Edwards K. 2011. Microbe-Metal Interactions on Seafloor Basalts, p 65-76. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch4

Key Concept Ranking

Microbial Ecology
Horizontal Gene Transfer
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alt, J. C.,, G. J. Davidson,, D. A. H. Teagle, and, J. A. Karson. 2003. Isotopic composition of gypsum in the Macquarie Island ophiolite: implications for the sulfur cycle and the subsurface biosphere in oceanic crust. Geology 31:549552.
2. Bach, W.,, and K. J. Edwards. 2003. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67:38713887.
3. Bach, W.,, K. J. Edwards,, J. M. Hayes,, J. Huber,, S. Sievert, and, M. Sogin. 2006. Energy in the dark: fuel for life in the deep ocean and beyond. EOS Trans. AGU 7:73, 78.
4. Bailey, B.,, A. Templeton,, H. Staudigel, and, B. M. Tebo. 2009. Utilization of substrate components during basaltic glass colonization by Pseudomonas and Shewanella isolates. Geomicrobiol. J. 26:648656.
5. Banerjee, N. R.,, A. Simonetti,, H. Furnes,, K. Muehlenbachs,, H. Staudigel,, L. Heaman, and, M. J. Van Kranendonk. 2007. Direct dating of Archean microbial ichnofossils. Geology 35:487490.
6. Biddle, J. F.,, S. Fitz-Gibbon,, S. C. Schuster,, J. E. Brenchley, and, C. H. House. 2008. Metagenomic signatures of the Peru Margin subseafloor biopshere show a genetically distinct environment. Proc. Natl. Acad. Sci. USA 105:1058310588.
7. Biddle, J. F.,, J. S. Lipp,, M. A. Lever,, K. G. Lloyd,, K. B. Sorensen,, R. T. Anderson,, H. F. Fredricks,, M. Elvert,, T. J. Kelly,, D. P. Schrag,, M. Sogin,, J. E. Brenchley,, A. Teske,, C. H. House, and, K.-U. Hinrichs. 2006. Heterotrophic archaea dominate sedimentary subsurface ecosystems of Peru. Proc. Natl. Acad. Sci. USA 103:38463851.
8. Brady, P. V.,, and S. R. Gislason. 1997. Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta 61:965973.
9. Cogné, J.-P.,, and E. Humler. 2004. Temporal variation of oceanic spreading and crustal production rates during the last 180 My. Earth Planet. Sci. Lett. 227:427439.
10. Cowen, J. P.,, S. J. Giovannoni,, F. Kenig,, H. P. Johnson,, D. Butterfield,, M. S. Rappe,, M. Hutnak, and, P. Lam. 2003. Fluids from aging ocean crust that support microbial life. Science 299:120123.
11. Daughney, C. J.,, J. P. Rioux,, D. Fortin, and, T. Pichler. 2004. Laboratory investigation of the role of bacteria in the weathering of basalt near deep sea hydrothermal vents. Geomicrobiol. J. 21:2131.
12. Davis, E. E.,, K. Becker,, T. L. Pettigrew,, B. Carson, and, R. Macdonald. 1992a. CORK: a hydrological sea and downhole observatory for deep-ocean boreholes. Proc. ODP Init. Rep. 139:4353.
13. Davis, E. E.,, D. S. Chapman,, M. J. Mottl,, W. J. Bentkowski,, K. Dadey,, C. B. Forster,, R. Harris,, S. Nagihara,, K. Rohr,, C. G. Wheat, and, M. Whiticar. 1992b. FlankFlux: an experiment to study the nature of hydrothermal circulation in young oceanic crust. Can. J. Earth Sci. 29:925952.
14. Edmond, J. M.,, C. Measures,, R. E. McDuff,, L. H. Chan, and, C. B. Grant. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46:118.
15. Edwards, K. J.,, W. Bach, and, T. M. McCollom. 2005. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol. 13:449456.
16. Edwards, K. J.,, W. Bach,, T. M. McCollom, and, D. R. Rogers. 2004. Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol. J. 21:393404.
17. Edwards, K. J.,, T. M. McCollom,, H. Konishi, and, P. R. Buseck. 2003a. Seafloor bioalteration of sulfide minerals: results from in-situ incubation studies. Geochim. Cosmochim. Acta 67:28432856.
18. Edwards, K. J.,, D. R. Rogers,, C. O. Wirsen, and, T. M. McCollom. 2003b. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha-and, gamma-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69:29062913.
19. Edwards, K. J.,, and A. D. Rutenburg. 2001. Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem. Geol. 180:1932.
20. Ehrhardt, C. J.,, R. M. Haymon,, M. G. Lamontagne, and, P. A. Holden. 2007. Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise. Environ. Microbiol. 9:900912.
21. Einen, J.,, I. H. Thorseth, and, L. Ovreas. 2008. Enumeration of Archaea and Bacteria in sea-floor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol. Lett. 282:182187.
22. Emerson, D.,, J. A. Rentz,, T. G. Liburn,, R. E. Davis,, H. Aldrich,, C. Chan, and, C. L. Moyer. 2007. A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2:e677.
23. Fisher, A. T. 1998. Permeability within basaltic oceanic crust. Rev. Geophys. 36:143182.
24. Fisher, A. T.,, and K. Becker. 2000. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403:7174.
25. Fisher, A. T.,, C. G. Wheat,, K. Becker,, E. E. Davis,, H. W. Jannasch,, D. Schroeder,, R. Dixon,, T. L. Pettigrew,, R. Meldrum,, R. Macdonald,, M. Nielsen,, M. R. Fisk,, J. P. Cowen,, W. Bach, and, K. J. Edwards. 2005. Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeological and related experiments, IODP expedition 301, eastern flank of Juan de Fuca Ridge. In A. T. Fisher (ed.), Proc. IODP. doi:10.2204/iodp.proc.2301.2005. Integrated Ocean Drilling Program, College Station, TX.
26. Fisk, M. R.,, S. J. Giovannoni, and, I. H. Thoreth. 1998. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978980.
27. Giovannoni, S. J.,, M. R. Fisk,, T. D. Mullins, and, H. Furnes. 1996. Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces. Proc. Ocean Drilling Program, Scientific Results 148:207214.
28. He, Z. L.,, T. J. Gentry,, C. W. Schadt,, L. Y. Wu,, J. Liebich,, S. C. Chong,, Z. J. Huang,, W. M. Wu,, B. H. Gu,, P. Jardine,, C. Criddle, and, J. Zhou. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological, and environmental processes. ISME J. 1:6777.
29. Huber, J. A.,, H. P. Johnson,, D. A. Butterfield, and, J. A. Baross. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8:8899.
30. Jercinovic, M. J.,, and R. C. Ewing. 1992. Corrosion of geological and archaeological glasses, p. 330–371. In D. E. Clark and, B. K. Zoitos (ed.), Corrosion of Glass, Ceramics, and Ceramic Superconductors. Noyes Publications, Park Ridge, NJ.
31. Johnson, H. P.,, and M. J. Priuis. 2003. Fluxes of fluid and heat from the oceanic crustal resevoir. Earth Planet. Sci. Lett. 216:565574.
32. Kato, S.,, K. Yanagawa,, M. Sunamura,, Y. Takano,, J. Ishibashi,, T. Kakegawa,, M. Utsumi,, T. Yamanaka,, T. Toki,, T. Noguchi,, K. Kobayashi,, A. Moroi,, H. Kimura,, Y. Kawarabayasi,, K. Marumo,, T. Urabe, and, A. Yamagishi. 2009. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environ. Microbiol. 11:32103222.
33. Kaye, J. Z.,, and J. A. Baross. 2000. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol. Ecol. 32:249260.
34. Lipp, J. S.,, Y. Morono,, H. Inagaki, and, K.-U. Hinrichs. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991994.
35. Lysnes, K.,, I. H. Thorseth,, B. O. Steinsbu,, L. Ovreas,, T. Torsvik, and, R. B. Pedersen. 2004. Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol. Ecol. 50:213230.
36. Mason, O. U.,, C. A. Di Meo-Savoie,, J. D. Van Nostrand,, J. Z. Zhou,, M. R. Fisk, and, S. J. Giovannoni. 2009. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 3:231242.
37. Mason, O. U.,, U. Stingl,, L. J. Wilhelm,, M. M. Moeseneder,, C. A. Di Meo-Savoie,, M. R. Fisk, and, S. J. Giovannoni. 2007. The phylogeny of endolithic microbes associated with marine basalts. Environ. Microbiol. 9:25392550.
38. Orcutt, B.,, C. G. Wheat, and, K. J. Edwards. 2010. Subseafloor ocean crust microbial observatories: development of FLOCS (FLow-through Osmo Colonization System) and evaluation of borehole construction materials. Geomicrobiol. J. 27:143157.
39. Rassa, A. C.,, S. M. McAllister,, S. A. Safran, and, C. L. Moyer. 2009. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii. Geomicrobiol. J. 26:623638.
40. Rathsack, K.,, E. Stackebrandt,, J. Reitner, and, G. Schumann. 2009. Microorganisms isolated from deep sea low-temperature influenced oceanic crust basalts and sediment samples collected along the Mid-Atlantic Ridge. Geomicrobiol. J. 26:264274.
41. Rentz, J. A.,, C. Kraiya,, G. W. Luther, and, D. Emerson. 2007. Control of ferrous iron oxidation within circumneutral microbial iron mats by cellular activity and autocatalysis. Environ. Sci. Technol. 41:60846089.
42. Rogers, D. R.,, C. M. Santelli, and, K. J. Edwards. 2003. Geomicrobiology of deep-sea deposits: estimating community diversity from low-temperature seafloor rocks and minerals. Geobiology 1:109117.
43. Rogers, J. R.,, and P. C. Bennett. 2004. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem. Geol. 203:91108.
44. Rouxel, O.,, S. H. Ono,, J. Alt,, D. Rumble, and, J. Ludden. 2008. Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet. Sci. Lett. 268:110123.
45. Santelli, C. M.,, V. P. Edgcomb,, W. Bach, and, K. J. Edwards. 2009. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ. Microbiol. 11:8698.
46. Santelli, C. M.,, B. N. Orcutt,, E. Banning,, W. Bach,, C. L. Moyer,, M. L. Sogin,, H. Staudigel, and, K. J. Edwards. 2008. Abundance and diversity of microbial life in ocean crust. Nature 453:653656.
47. Schippers, A.,, L. N. Neretin,, J. Kallmeyer,, T. G. Ferdelman,, B. A. Cragg,, R. J. Parkes, and, B. B. Jorgensen. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861865.
48. Staudigel, H.,, H. Furnes,, N. McLoughlin,, N. R. Banerjee,, L. B. Connel, and, A. Templeton. 2008. 3.5 billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth-Sci. Rev. 89:156176.
49. Staudigel, H.,, and S. R. Hart. 1983. Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget. Geochim. Cosmochim. Acta 47:337350.
50. Stroncik, N. A.,, and H. U. Schmincke. 2001. Evolution of palagonite: crystallization, chemical changes, and element budget. Geochem. Geophy. Geosys. 2:2000GC000102.
51. Stroncik, N. A.,, and H. U. Schmincke. 2002. Palagonite—a review. Int. J. Earth Sci. 91:680697.
52. Sudek, L. A.,, A. S. Templeton,, B. M. Tebo, and, H. Staudigel. 2009. Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu’u Seamount, American Samoa. Geomicrobiol. J. 26:581596.
53. Taunton, A. E.,, S. A. Welch, and, J. F. Banfield. 2000. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation. Chem. Geol. 169:371382.
54. Templeton, A. S.,, H. Staudigel, and, B. M. Tebo. 2005. Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol. J. 22:127139.
55. Thorseth, I. H.,, H. Furnes, and, O. Tumyr. 1991. A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanisms of the glass-palagonite transformation. Geochim. Cosmochim. Acta 55:731749.
56. Thorseth, I. H.,, T. Torsvik,, V. Torsvik,, F. L. Daae,, R. B. Pedersen, and the Keldysh-98 Scientific Party. 2001. Diversity of life in ocean floor basalt. Earth Planet. Sci. Lett. 194:3137.
57. Toner, B. M.,, S. C. Fakra,, S. J. Manganini,, C. M. Santelli,, M. A. Marcus,, J. W. Moffett,, O. Rouxel,, C. R. German, and, K. J. Edwards. 2009. Preservation of iron(II) at hydrothermal vents within carbon-rich matrices. Nat. Geosci. doi: 10.1038/NGEO1433.
58. Wheat, C. G.,, H. W. Jannasch,, J. N. Plant,, C. L. Moyer,, F. J. Sansone, and, G. M. McMurtry. 2000. Continuous sampling of hydrothermal fluids from Loihi Seamount after the 1996 event. J. Geophys. Res.-Solid Earth 105:1935319367.
59. Wheat, C. G.,, and M. J. Mottl. 2000. Composition of pore and spring waters from Baby Bare: global implications of geochemical fluxes from a ridge flank hydrothermal system. Geochim. Cosmochim. Acta 64:629642.
60. Wolff-Boenisch, D.,, S. R. Gislason,, E. H. Oelkers, and, C. V. Putnis. 2004. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6 and temperatures from 25 to 74°C. Geochim. Cosmochim. Acta 68:48434858.
61. Zhou, Z.,, and W. S. Fyfe. 1989. Palagonitization of basaltic glass from DSDP site 335, Leg 37: textures, chemical composition, and mechanism of formation. Am. Mineralogist 74:10451053.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error