1887

Chapter 5 : Microbial Transformations of Arsenic in the Subsurface

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Transformations of Arsenic in the Subsurface, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap05-2.gif

Abstract:

This chapter describes the biochemical basis of microbial-metalloid interactions with emphasis on energy-yielding redox biotransformations that cycle between the As(V) and As(III) oxidation states. A particular focus is the microbial reduction of As(V) that is sorbed onto subsurface sediments, and the subsequent mobilization of As(III) into water that is abstracted for drinking and irrigation. The reduction of As(V) by clearly has a number of important environmental implications. This organism is the first member of the family Geobacteraceae to be shown to reduce As(V) and this activity is supported by the identification of genes potentially encoding a respiratory arsenate reductase. Genetic studies are needed to confirm the role of these genes in arsenic metabolism in , and explore the diversity of As(V)-reducing and the ecophysiology of organisms in arsenic-impacted subsurface sediments. Recent studies highlight that metal-reducing bacteria, especially dissimilatory As(V)-respiring bacteria, may play an important role in the microbial process. The microbiological focus of research in this area is shifting now toward the unequivocal identification of the organisms involved, which will in turn lead to studies on the underlying mechanisms at a molecular (genetic) level and the factors that result in the activation of these physiological processes in situ. Recent studies suggest that sulfate reduction can be supported even in very low carbon aquifer sediments that contain low concentrations of electron donor, resulting in removal of arsenic mobilized by dissimilatory metal reduction.

Citation: Lloyd J, Gault A, Héry M, MacRae J. 2011. Microbial Transformations of Arsenic in the Subsurface, p 77-90. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch5

Key Concept Ranking

Microbial Ecology
0.5639512
Dissimilatory Metal Reduction
0.4169389
0.5639512
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Biochemical transformations of arsenic oxyanions by microbial cells. 10.1128/9781555817190.ch5.f1

Citation: Lloyd J, Gault A, Héry M, MacRae J. 2011. Microbial Transformations of Arsenic in the Subsurface, p 77-90. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Microbial interactions with arsenic in subsurface sediments. 10.1128/9781555817190.ch5.f2

Citation: Lloyd J, Gault A, Héry M, MacRae J. 2011. Microbial Transformations of Arsenic in the Subsurface, p 77-90. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

ArrA phylogenetic tree based on 203 amino acid sequences using the neighbor-joining method and the Dayhoff model. The “Cambodian cluster” contains sequences derived from clones from stable isotope-probing experiments using C-labeled acetate ( ); the “West Bengal cluster” contains sequences derived from clones from low organic carbon sediments supporting As(V) reduction and mobilization ( ). 10.1128/9781555817190.ch5.3

Citation: Lloyd J, Gault A, Héry M, MacRae J. 2011. Microbial Transformations of Arsenic in the Subsurface, p 77-90. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Change in dissolved arsenic speciation in cultures inoculated with amended with 0.5 mM As(V): As(V) (•) and As(III) (○). The mean and one standard deviation from experiments conducted in triplicate are displayed. 10.1128/9781555817190.ch5.f4

Citation: Lloyd J, Gault A, Héry M, MacRae J. 2011. Microbial Transformations of Arsenic in the Subsurface, p 77-90. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Release of dissolved arsenic species by resting cells incubated with 10 mM ferrihydrite and 100 mM sodium arsenate. (A) Dissolved arsenic and iron in (Gu) and (Gs) cultures. (B) Dissolved As(III) (○) and As(V) (•) in cultures. All experiments were done in triplicate; error bars indicate one standard deviation. 10.1128/9781555817190.ch5.f5

Citation: Lloyd J, Gault A, Héry M, MacRae J. 2011. Microbial Transformations of Arsenic in the Subsurface, p 77-90. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817190.ch05
1. Acharyya, S. K.,, P. Chakraborty,, S. Lahiri,, B. C. Raymahashay,, S. Guha, and, A. Bhowmik. 1999. Arsenic poisoning in the Ganges delta. Nature 401:545.
2. Afkar, E.,, J. Lisak,, C. Saltikov,, P. Basu,, R. Oremland, and, J. Stolz. 2003. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 226:107112.
3. Akai, J.,, K. Izumi,, H. Fukuhara,, H. Masuda,, S. Nakano,, T. Yoshimura,, H. Ohfuji,, H. M. Anawar, and, K. Akai. 2004. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Appl. Geochem. 19:215230.
4. Appelo, C. A. J.,, M. J. J. Van der Weiden,, C. Tournassat, and, L. Charlet. 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36:30963103.
5. Bandyopadhyay, R. K. 2002. Hydrochemistry of arsenic in Nadia district, West Bengal. J. Geol. Soc. India 59:3346.
6. Caccavo, F., Jr.,, D. J. Lonergan,, D. R. Lovley,, M. Davis,, J. F. Stolz, and, M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen and acetate-oxidizing dissimilatory metal reducing microorganism. Appl. Environ. Microbiol. 60:37523759.
7. Chowdhury, T. R.,, G. K. Kumar Basu,, B. K. Mandal,, B. K. Biswas,, G. Samanta,, U. K. Chowdhury,, C. R. Chanda,, D. Lodh,, S. L. Roy,, K. C. Saha,, S. Roy,, S. Kabir,, Q. Quamruzzaman, and, D. Chakraborti. 1999. Arsenic poisoning in the Ganges delta. Nature 401:545546.
8. Coker, V. S.,, A. G. Gault,, C. I. Pearce,, G. v. d. Laan,, N. D. Telling,, J. M. Charnock,, D. A. Polya, and, J. R. Lloyd. 2006. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ. Sci. Technol. 40:77457750.
9. Das, D.,, G. Samanata,, B. K. Mandal,, T. R. Chowdhury,, C. R. Chanda,, P. P. Chowdhury,, G. K. Basu, and, D. Chakraborti. 1996. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 18:515.
10. Handley, K. M.,, M. Hery, and, J. R. Lloyd. 2009. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Environ. Microbiol. 11:16011611.
11. Harvey, C. F.,, C. H. Swartz,, A. B. M. Badruzzaman,, N. Keon-Blute,, W. Yu,, M. Ashraf Ali,, J. Jay,, R. Beckie,, V. Niedan,, D. Brabander,, P. M. Oates,, K. N. Ashfaque,, S. Islam,, H. F. Hemond, and, M. F. Ahmed. 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science 298:16021606.
12. Héry, M.,, B. E. v. Dongen,, F. Gill,, D. Mondal,, D. J. Vaughan,, R. D. Pancost,, D. A. Polya, and, J. R. Lloyd. 2010. Biogeochemical cycling of arsenic in low organic carbon aquifer sediments from West Bengal. Geobiology 8:155168.
13. Hoeft, S. E.,, T. R. Kulp,, J. F. Stolz,, J. T. Hollibaugh, and, R. S. Oremland. 2004. Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl. Environ. Microbiol. 70:27412747.
14. Islam, F.,, A. G. Gault,, C. Boothman,, D. A. Polya,, J. M. Charnock,, D. Chatterjee, and, J. R. Lloyd. 2004. Role of metal-reducing bacteria in arsenic release from Bengal Delta sediments. Nature 430:6871.
15. Islam, F. S.,, R. L. Pederick,, A. G. Gault,, L. K. Adams,, D. A. Polya,, J. M. Charnock, and, J. R. Lloyd. 2005. Reduction of Fe(III) by Geobacter sulfurreducens and the capture of arsenic by biogenic Fe(II) minerals. Appl. Environ. Microbiol. 71:86428648.
16. Krafft, T.,, and J. M. Macy. 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255:647653.
17. Kulp, T. R.,, S. Han,, C. W. Saltikov,, B. D. Lanoil,, K. Zargar, and, R. S. Oremland. 2007. Effects of imposed salinity gradients on dissimila-tory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl. Environ. Microbiol. 73:51305137.
18. Kulp, T. R.,, S. E. Hoeft,, L. G. Miller,, C. Saltikov,, J. N. Murphy,, S. Han,, B. Lanoil, and, R. S. Oremland. 2006. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles lakes, California. Appl. Environ. Microbiol. 72:65146526.
19. Langner, H. W.,, and W. P. Inskeep. 2000. Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 34:31313136.
20. Lear, G.,, B. Song,, A. G. Gault,, D. A. Polya, and, J. R. Lloyd. 2007. Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl. Environ. Microbiol. 73:10411048.
21. Lloyd, J. R.,, and R. S. Oremland. 2006. Microbial transformations of arsenic in the environment; from soda lakes to aquifers. Elements 2:8590.
22. MacRae, J. D.,, I. N. Lavine,, K. A. McCaffery, and, K. Ricupero. 2007. Isolation and characterization of NP4, arsenate-reducing Sulfurospirillum, from Maine groundwater. J. Environ. Eng.-ASCE 133:8188.
23. Malasarn, D.,, C. W. Saltikov,, K. M. Campbell,, J. M. Santini,, J. G. Hering, and, D. K. Newman. 2004. arrA is a reliable marker for As(V) respiration. Science 306:455.
24. Mukhopadhyay, R.,, B. Rosen,, L. Phung, and, S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26:311.
25. Neufeld, J. D.,, M. Wagner, and, J. C. Murrell. 2007. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1:103110.
26. Nickson, R.,, J. McArthur,, W. Burgess,, K. M. Ahmed,, P. Ravenscroft, and, M. Rahman. 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395:338.
27. Nickson, R. T.,, J. M. McArthur,, P. Ravenscroft,, W. G. Burgess, and, K. M. Ahmed. 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15:403413.
28. Oremland, R. S.,, and J. F. Stolz. 2003. The ecology of arsenic. Science 300:939944.
29. Oremland, R. S.,, J. F. Stolz, and, J. T. Hollibaugh. 2004. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol. Ecol. 48:1527.
30. Radajewski, S.,, P. Ineson,, N. R. Parekh, and, J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646649.
31. Richey, C.,, P. Chovanec,, S. E. Hoeft,, R. S. Oremland,, P. Basu, and, J. F. Stolz. 2009. Respiratory arsenate reductase as a bidirectional enzyme. Biochem. Biophys. Res. Commun. 382:298302.
32. Rowland, H. A. L.,, C. Boothman,, R. Pancost,, A. G. Gault,, D. A. Polya, and, J. R. Lloyd. 2009. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal aquifer sediments. J. Environ. Qual. 38:15981607.
33. Rowland, H. A. L.,, R. L. Pederick,, D. A. Polya,, R. D. Pancost,, B. E. Van Dongen,, A. G. Gault,, D. J. Vaughan,, C. Bryant,, B. Anderson, and, J. R. Lloyd. 2007. The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 5:281292.
34. Saltikov, C. W.,, A. Cifuentes,, K. Venkateswaran, and, D. K. Newman. 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69:28002809.
35. Saltikov, C. W.,, and D. K. Newman. 2003. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 100:1098310988.
36. Santini, J. M.,, L. I. Skly,, R. D. Schnagll, and, J. M. Macy. 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66:9297.
37. Silver, S.,, and L. T. Phung. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71:599608.
38. Smedley, P. L.,, and D. G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:517568.
39. Smith, A. H.,, E. O. Lingas, and, M. Rahman. 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. WHO 78:10931103.
40. Song, B.,, E. Chyun,, P. R. Jaffe, and, B. B. Ward. 2009. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiol. Ecol. 68:108117.
41. Tufano, K. J.,, C. Reyes,, C. W. Saltikov, and, S. Fendorf. 2008. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 42:82838289.
42. Van Geen, A.,, J. Rose,, S. Thoral,, J. Garnier,, Y. Zheng, and, J. Bottero. 2004. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. Geochim. Cosmochim. Acta 68:34753486.
43. Zobrist, J.,, P. R. Dowdle,, J. A. Davis, and, R. S. Oremland. 2000. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34:47474753.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error