1887

Chapter 10 : Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap10-2.gif

Abstract:

This chapter presents an overview of gram-positive dissimilatory Fe(III)-reducing bacteria (DIRB), with a focus toward obligate dissimilatory bacteria. To complement the phylogeny, the physiology of obligate gram-positive DIRB is characterized, including the physical properties of the habitat, mineral forms of iron reduced, and alternative metal and nonmetal electron acceptors utilized. The chapter summarizes current results and putative models for extracellular electron transfer by gram-positive bacteria. To support hypotheses for gram-positive extracellular electron transfer at the molecular level, this chapter incorporates both physiological and genomic information on several gram-positive DIRB. Researchers use a variety of experimental approaches to define extracellular electron transfer mechanisms in DIRB. While some hyperthermophilic DIRB have been demonstrated to show an obligate utilization of Fe(III) as an electron acceptor, gram-positive DIRB are biochemically unconstrained with organisms capable of growth across a wide range of environmental conditions and capable of utilization of multiple terminal electron acceptors in addition to Fe(III) reduction. Future research is directed to understanding how -type cytochromes are integrated into the physiology and ecology of gram-positive DIRB. To understand this process at a molecular level, continued mechanistic studies using phylogenetically distinct gram-positive DIRB are required. In addition, further characterization of obligatory DIRB is also required to expand the known phylogenetic, ecological, and physiological understanding of these organisms and their relationship to environmental processes.

Citation: Wrighton K, Engelbrektson A, Clark I, Melnyk R, Coates J. 2011. Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria, p 173-194. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch10

Key Concept Ranking

Gram-Positive Bacteria
0.7903951
Gram-Negative Bacteria
0.5730623
Scanning Electron Microscopy
0.4632445
Transmission Electron Microscopy
0.4532823
Dissimilatory Metal Reduction
0.44830117
16s rRNA Sequencing
0.42230093
0.7903951
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817190.ch10
1. Aelterman, P.,, K. Rabaey,, H. T. Pham,, N. Boon, and, W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40:33883394.
2. Bayer, E. A.,, J. P. Belaich,, Y. Shoham, and, R. Lamed. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521554.
3. Beliaev, A. S.,, D. A. Saffarini,, J. L. McLaughlin, and, D. Hunnicut. 2001. MTRC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens mr-1. Mol. Microbiol. 39:722730.
4. Bhowmick, D. C.,, B. Bal,, N. S. Chatterjee,, A. N. Ghosh, and, S. Pal. 2009. A low-GC gram-positive thermoanaerobacter-like bacterium isolated from an Indian hot spring contains Cr(VI) reduction activity both in the membrane and cytoplasm. J. Appl. Microbiol. 106:20062016.
5. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, N. A. Chernykh,, N. A. Kostrikina,, E. V. Pikuta, and, F. A. Rainey. 1997. Reduction of elemental sulfur by moderately thermophilic organotrophic bacteria and the description of Thermoanaerobacter sulfurophilus sp. nov. Mikrobiologiya 66:483489.
6. Bond, D. R.,, and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:15481555.
7. Bond, D. R.,, and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:21862189.
8. Boone, D. R.,, Y. Liu,, Z. J. Zhao,, D. L. Balk-will,, G. T. Drake, and, T. O. Stevens. 1995. Bacillus infernus sp. Nov., an Fe(III)-and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441448.
9. Bretschger, O.,, A. Obraztsova,, C. A. Sturm,, I. S. Chang,, Y. A. Gorby,, S. B. Reed,, D. E. Culley,, C. L. Reardon,, S. Barua,, M. F. Romine,, J. Zhou,, A. S. Beliaev,, R. Bouhenni,, D. Saffarini,, F. Mansfeld,, B.-H. Kim,, J. K. Fredrickson, and, K. H. Nealson. 2007. Current production and metal oxide reduction by Shewanella oneidensis mr-1 wild type and mutants. 73:70037012.
10. Bridge, T.,, and D. Johnson. 1998. Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ. Microbiol. 64:21812186.
11. Brown, J. S.,, and D. W. Holden. 2002. Iron acquisition by gram-positive bacterial pathogens. Microbes Infect. 4:11491156.
12. Butler, J. E.,, N. D. Young, and, D. R. Lovley. 2010. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40.
13. Byrne-Bailey, K. G.,, K. C. Wrighton,, R. A. Melnyk,, P. Agbo,, T. C. Hazen, and, J. D. Coates. 2010. Draft genome sequence of the electricity producing Thermincola potens strain JR. J. Bacteriol. 192:40784079.
14. Castillo-Gonzalez, H. A.,, and M. A. Bruns. 2005. Dissimilatory iron reduction and odor indicator abatement by biofilm communities in swine manure microcosms. Appl. Environ. Microbiol. 71:49724978.
15. Chaudhuri, S. K.,, and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21:12291232.
16. Coulanges, V.,, P. Andre,, O. Ziegler,, L. Buchheit, and, D. J. Vidon. 1997. Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect. Immun. 65:27782785.
17. Deneer, H. G.,, V. Healey, and, I. Boychuk. 1995. Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiology 141(Pt. 8):19851992.
18. Desvaux, M.,, E. Dumas,, I. Chafsey, and, M. Hebraud. 2006. Protein cell surface display in gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol. Lett. 256:115.
19. Dobbin, P. S.,, J. P. Carter,, C. G. S. San Juan,, M. von Hobe,, A. K. Powell, and, D. J. Richardson. 1999. Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol. Lett. 176:131138.
20. Dubiel, M.,, C. H. Hsu,, C. C. Chien,, F. Mansfeld, and, D. K. Newman. 2002. Microbial iron respiration can protect steel from corrosion. Appl. Environ. Microbiol. 68:14401445.
21. Ehrlich, H. L. 2008. Are gram-positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle? Geobiology 6:220224.
22. Engle, M.,, Y. Li,, C Woese, and, J. Wiegel. 1995. Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int. J. Syst. Bacteriol. 45:454461.
23. Feinberg, L. F.,, R. Srikanth,, R. W. Vachet, and, J. F. Holden. 2008. Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl. Environ. Microbiol. 74:396402.
24. Finneran, K.,, H. Forbush,, C. Gaw VanPraagh, and, D. Lovley. 2002. Desulfitobacterium metallireducens sp. Nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. Int. J. Syst. Evol. Microbiol. 52:1929.
25. Freguia, S.,, M. Masuda,, S. Tsujimura, and, K. Kano. 2009. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76:1418.
26. Gavrilov, S.,, A. Slobodkin,, F. Robb, and, S. de Vries. 2007. Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens. Microbiology 76:139146.
27. Gorby, Y. A.,, S. Yanina,, J. S. McLean,, K. M. Rosso,, D. Moyles,, A. Dohnalkova,, T. J. Beveridge,, I. S. Chang,, B. H. Kim,, K. S. Kim,, D. E. Culley,, S. B. Reed,, M. F. Romine,, D. A. Saffarini,, E. A. Hill,, L. Shi,, D. A. Elias,, D. W. Kennedy,, G. Pinchuk,, K. Watanabe,, S. i. Ishii,, B. Logan,, K. H. Nealson, and, J. K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain mr-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103:1135811363.
28. Gorlenko, V.,, A. Tsapin,, Z. Namsaraev,, T. Teal,, T. Tourova,, D. Engler,, R. Mielke, and, K. Nealson. 2004. Anaerobranca californiensis sp nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int. J. Syst. Evol. Microbiol. 54:739743.
29. Johnson, D. B.,, P. Bacelar-Nicolau,, N. Okibe,, A. Thomas, and, K. B. Hallberg. 2009. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int. J. Syst. Evol. Microbiol. 59:10821089.
30. Johnson, D. B.,, N. Okibe, and, F. F. Roberto. 2003. Novel thermoacidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch. Microbiol. 180:6068.
31. Junier, P.,, M. Frutschi,, N. S. Wigginton,, E. J. Schofield,, J. R. Bargar, and, R. Bernier-Latmani. 2009. Metal reduction by spores of Desulfotomaculum reducens. Environ. Microbiol. 11:30073017.
32. Kanso, S.,, A. Greene, and, B. Patel. 2002. Bacillus subterraneus sp. nov., an iron-and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int. J. Syst. Evol. Microbiol. 52:869.
33. Kostka, J. E.,, D. D. Dalton,, H. Skelton,, S. Dollhopf, and, J. W. Stucki. 2002. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68:62566262.
34. Kunapuli, U.,, T. Lueders, and, R. U. Meckenstock. 2007. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J. 1:643653.
35. Lies, D. P.,, M. E. Hernandez,, A. Kappler,, R. E. Mielke,, J. A. Gralnick, and, D. K. Newman. 2005. Shewanella oneidensis mr-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71:44144426.
36. Lin, B.,, C. Hycinthe,, S. Bonneville,, M. Braster,, P. Van Cappellen, and, W. F. M Rölling. 2007. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ. Microbiol. 9:19561968.
37. Lloyd, J. R. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27:411425.
38. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259287.
39. Lovley, D. R. 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4:497508.
40. Lovley, D. R.,, D. E. Holmes, and, K. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219286.
41. Marshall, C.,, and H. May. 2009. Electrochemical evidence of direct electrode reduction by a thermophilic gram-positive bacterium, Thermincola ferriacetica. Energy Environ. Sci. 2:699705.
42. Marsili, E.,, D. B. Baron,, I. D. Shikhare,, D. Coursolle,, J. A. Gralnick, and, D. R. Bond. 2008. Shewanella secretes flavins that mediate extra-cellular electron transfer. Proc. Natl. Acad. Sci. USA 105:39683973.
43. Mathis, B. J.,, C. W. Marshall,, C. E. Milliken,, R. S. Makkar,, S. E. Creager, and, H. D. May. 2008. Electricity generation by thermophilic microorganisms from marine sediment. Appl. Microbiol. Biotechnol. 78:147155.
44. Matias, V. R. F.,, and T. J. Beveridge. 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56:240251.
45. Matias, V. R. F.,, and T. J. Beveridge. 2006. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188:10111021.
46. Methe, B.,, K. Nelson,, J. Eisen,, I. Paulsen,, W. Nelson,, J. Heidelberg,, D. Wu,, M. Wu,, N. Ward,, M. Beanan,, R. Dodson,, R. Madupu,, L. Brinkac,, S. Daugherty,, R. DeBoy,, A. Durkin,, M. Gwinn,, J. Kolonay,, S. Sullivan,, D. Haft,, J. Selengut,, T. Davidsen,, N. Zafar,, O. White,, B. Tran,, C. Romero,, H. Forberger,, J. Weidman,, H. Khouri,, T. Feldblyum,, T. Utterback,, S. Van Aken,, D. Lovley, and, C. Fraser. 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:19671969.
47. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311343.
48. Nevin, K. P.,, and D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66:22482251.
49. Nevin, K. P.,, and D. R. Lovley. 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68:22942299.
50. Niggemyer, A.,, S. Spring,, E. Stackebrandt, and, R. F. Rosenzweig. 2001. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol. 67:55685580.
51. Park, D.,, B. Kim,, B. Moore,, H. Hill,, M. Song, and, H. Rhee. 1997. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol. Tech. 11:145148.
52. Park, H. S. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297306.
53. Petrie, L.,, N. N. North,, S. L. Dollhopf,, D. L. Blackwill, and, J. E. Kostka. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl. Environ. Microbiol. 69:74677479.
54. Pham, T. H.,, N. Boon,, P. Aelterman,, P. Clauwaert,, L. De Schamphelaire,, L. Vanhaecke,, K. De Maeyer,, M. Höfte,, W. Verstraete, and, K. Rabaey. 2008. Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 77:11191129.
55. Pollock, J.,, K. Weber,, J. Lack,, L. Achenbach,, M. Mormile, and, J. Coates. 2007. Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Appl. Microbiol. Biotechnol. 77:927934.
56. Prowe, S. G.,, and G. Antranikian. 2001. Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. Int. J. Syst. Evol. Microbiol. 51:457465.
57. Rabaey, K.,, N. Boon,, S. D. Siciliano,, M. Verhaege, and, W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70:53735382.
58. Rabaey, K.,, J. Rodríguez,, L. L. Blackall,, J. Keller,, P. Gross,, D. Batstone,, W. Verstraete, and, K. H. Nealson. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1:918.
59. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:10981101.
60. Rismani-Yazdi, H.,, A. Christy,, B. Dehority,, M. Morrison,, Z. Yu, and, O. Tuovinen. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97:13981407.
61. Robertson, W. J.,, P. D. Franzmann, and, B. J. Mee. 2000. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasolene. J. Appl. Microbiol. 88:248259.
62. Roh, Y.,, S. V. Liu,, G. Li,, H. Huang,, T. J. Phelps, and, J. Zhou. 2002. Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol. 68:60136020.
63. Sani, R.,, B. Peyton,, W. Smith,, W. Apel, and, J. Petersen. 2002. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl. Microbiol. Biotechnol. 60:192199.
64. Schröder, I.,, E. Johnson, and, S. de Vries. 2003. Microbial ferric iron reductases. FEMS Microbiol. Rev. 27:427447.
65. Sharma, S.,, G. Cavallaro, and, A. Rosato. 2010. A systematic investigation of multiheme c-type cytochromes in prokaryotes. J. Biol. Inorg. Chem. 15:559571.
66. Shelobolina, E. S.,, C. G. Vanpraagh, and, D. R. Lovley. 2003. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20:143156.
67. Shi, L.,, T. C. Squier,, J. M. Zachara, and, J. K. Fredrickson. 2007. Respiration of metal (hydr)oxides by shewanella and geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65:1220.
68. Slepova, T. V.,, T. G. Sokolova,, T. V. Kolganova,, T. P. Tourova, and, E. A. Bonch-Osmolovskaya. 2009. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int. J. Syst. Evol. Microbiol. 59:213217.
69. Slobodkin, A.,, C. Jeanthon,, S. L’Haridon,, T. Nazina,, M. Miroshnichenko, and, E. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39:99102.
70. Slobodkin, A. I. 2005. Thermophilic microbial metal reduction. Mikrobiologiia 74:581595.
71. Slobodkin, A. I.,, T. G. Sokolova,, A. M. Lysenko, and, J. Wiegel. 2006a. Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus. Int. J. Syst. Evol. Microbiol. 56:23492351.
72. Slobodkin, A. I.,, T. P. Tourova,, N. A. Kostrikina,, A. M. Lysenko,, K. E. German,, E. A. Bonch-Osmolovskaya, and, N.-K. Birkeland. 2006b. Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. Int. J. Syst. Evol. Microbiol. 56:369372.
73. Sokolova, T. G.,, N. A. Kostrikina,, N. A. Chernyh,, T. V. Kolganova,, T. P. Tourova, and, E. A. Bonch-Osmolovskaya. 2005. Thermincola carboxydiphila gen. Nov., sp. Nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int. J. Syst. Evol. Microbiol. 55:20692073.
74. Sorokin, D. Y.,, T. P. Tourova,, M. Mussmann, and, G. Muyzer. 2008. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431439.
75. Switzer Blum, J.,, A. Burns Bindi,, J. Buzzelli,, J. F. Stolz, and, R. S. Oremland. 1998. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171:1930.
76. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfatereducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162:193198.
77. Turick, C. E.,, F. Caccavo, and, L. S. Tisa. 2003. Electron transfer from Shewanella algae BRY to hydrous ferric oxide is mediated by cell-associated melanin. FEMS Microbiol. Lett. 220:99104.
78. Viamajala, S.,, W. Smith,, R. Sani,, W. Apel,, J. Petersen,, A. Neal,, F. Roberto,, D. Newby, and, B. Peyton. 2007. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. Bioresource Technol. 98:612622.
79. Villemur, R.,, M. Lanthier,, R. Beaudet, and, F. Lépine. 2006. The Desulfitobacterium genus. FEMS Microbiol. Rev. 30:706733.
80. Weber, K. A.,, L. A. Achenbach, and, J. D. Coates. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4:752764.
81. Wrighton, K. C.,, P. Agbo,, F. Warnecke,, K. A. Weber,, E. L. Brodie,, T. Z. Desantis,, P. Hugenholtz,, G. L. Andersen, and, J. D. Coates. 2008. A novel ecological role of the firmicutes identified in thermophilic microbial fuel cells. ISME J. 2:11461156.
82. Xing, D.,, Y. Zuo,, S. Cheng,, J. M. Regan, and, B. E. Logan. 2008. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42:41464151.
83. Ye, Q.,, Y. Roh,, S. L. Carroll,, B. Blair,, J. Zhou,, C. L. Zhang, and, M. W. Fields. 2004. Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl. Environ. Microbiol. 70:55955602.
84. Zavarzina, D. G.,, T. G. Sokolova,, T. P. Tourova,, N. A. Chernyh,, N. A. Kostrikina, and, E. A. Bonch-Osmolovskaya. 2007. Thermincola ferriacetica sp. Nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:17.
85. Zavarzina, D. G.,, T. P. Tourova,, B. B. Kuznetsov,, E. A. Bonch-Osomolovskaya, and, A. I. Slobodkin. 2002. Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 52:17371743.
86. Zuber, B.,, M. Haenni,, T. Ribeiro,, K. Minnig,, F. Lopes,, P. Moreillon, and, J. Dubochet. 2006. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J. Bacteriol. 188:66526660.

Tables

Generic image for table
TABLE 1

Gram-positive bacteria capable of dissimilatory reduction of Fe(III) during growth

Citation: Wrighton K, Engelbrektson A, Clark I, Melnyk R, Coates J. 2011. Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria, p 173-194. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch10
Generic image for table
TABLE 2

The genome gram-positive DIRB that have genome sequences and abundance of multiheme -cytochromes

Citation: Wrighton K, Engelbrektson A, Clark I, Melnyk R, Coates J. 2011. Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria, p 173-194. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error