1887

Chapter 16 : Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap16-2.gif

Abstract:

This chapter presents some examples of nanoparticles formed by only a few microbial species that are cultivated in only a handful of laboratories worldwide. The investigations so far have just scratched the surface of the potential of the natural world to yield bionanomineral producers. While future research should involve screening surveys of the prokaryotes for this biomineralizing phenomenon, more detailed investigations are justified. The chapter discusses microbial Interaction with Group 15 and 16 Toxic Metalloids. The toxicity of the metalloids Se, Te, and As is due to the disruption of thiol intracellular biochemistry through the formation of stable, long-lived sulfur complexes. Selenium oxyanion reduction occurs in a wide range of microbes, including representatives of the , , , , , , , and genera. Technological applications of Se(0) and Te(0) nanoparticles include their use in photocopiers, microelectronic circuits, and solar cells as a result of their photo-optical and semiconducting physical properties. Nonetheless, once novel Se, Te, and As bionanoparticles are identified as having significant technical applications, applied research into their practical commercial production will without doubt ensue rapidly.

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16

Key Concept Ranking

Chemicals
0.46168688
Fourier Transform Infrared Spectroscopy
0.4564521
0.46168688
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Electron micrographs of elemental Se(0) precipitates. (A) TEM image of nanospheres produced by (Image taken by Sean Langley.) (B) SEM image of nanospheres produced by sp. strain NS3. (C) TEM image of nanospheres produced by (D) TEM image of nanospheres produced by (E) SEM image of nanoplatelets produced by indigenous microbes present in Mono Lake sediments (inset shows black precipitate production). 10.1128/9781555817190.ch16.f1

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Electron micrographs of elemental Se precipitates produced by sp. strain NS3. (A) SEM image of solvent-washed Se precipitates produced by “growing” cells. (B) SEM image of solvent-washed Se precipitates produced by “resting” cells and (C) a representative EDX spectrum. 10.1128/9781555817190.ch16.f2

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Electron micrographs of elemental Te precipitates. (A) SEM images of Te nanorods produced by (B) SEM images of Te nanogranules produced by (C) SEM images of Te nanorods produced by B. beveridgei strain MLTeJB (inset shows EDX spectrum). 10.1128/9781555817190.ch16.f3

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Electron micrographs of elemental Te precipitates produced by (A) TEM image showing whole cell “grown” in the presence of tellurate (inset shows limited precipitate production). (B) High-resolution TEM image of Te nanospheres. (C and D) SEM image and high-resolution TEM image of Te nanorods formed by “resting” cells (inset shows extensive precipitate production) with accompanying EDS spectrum. 10.1128/9781555817190.ch16.f4

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Electron micrographs of mixed Se/Te precipitate formed by strain MLTeJB grown in the presence of tellurite and selenite (inset shows black precipitate; a color illustration would show a yellow solution). (A) SEM image showing whole cell encrusted with Se/Te precipitate. (B) TEM image showing mixed Se/Te nanosphere precipitates produced upon oxidation of (yellow) solution and (C) accompanying EDS spectrum. (The inset shows Se/Te precipitate, which would be red in a color illustration.) 10.1128/9781555817190.ch16.f5

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Electron micrographs of biogenic As-S precipitates. (A) SEM image of As-S nanotubes produced by strain HN-41 (inset shows precipitate, which would be yellow in a color illustration) and (B) accompanying EDS spectrum ( ). 10.1128/9781555817190.ch16.f6

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Electron micrographs of As-S precipitate formed by Searles Lake mixed antibiotic-fed enrichment culture (Ab-1) grown in the presence of arsenate and sulfate (inset shows precipitate, which would be yellow in a color illustration). (A) SEM image. (B) TEM image. (C) Accompanying EDS spectrum. 10.1128/9781555817190.ch16.f7

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817190.ch16
1. Ahmed, M. F.,, S. Ahuja,, M. Alauddin,, S. J. Hug,, J. R. Lloyd,, A. Pfaff,, T. Pichler,, C. Saltikov,, M. Stute, and, A. van Geen. 2006. Ensuring safe drinking water in Bangladesh. Nature 314:1687.
2. Alivisatos, P. 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933937.
3. Baesman, S. M.,, T. D. Bullen,, J. Dewald,, D. H. Zhang,, S. Curran,, F. S. Islam,, T. J. Beveridge, and, R. S. Oremland. 2007. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl. Environ. Microbiol. 73:21352143.
4. Baesman, S. M.,, J. F. Stolz,, T. R. Kulp, and, R. S. Oremland. 2009. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 13:695705.
5. Basnayake, R. S. T.,, J. H. Bius,, O. M. Akpolat, and, T. G. Chasteen. 2001. Production of dimethyl telluride and elemental tellurium by bacteria amended with tellurite or tellurate. Appl. Organomet. Chem. 15:499510.
6. Bhattacharjee, H.,, and B. P. Rosen (ed.). 2007. Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes, vol. 6. Springer-Verlag, Berlin, Germany.
7. Blum, J. S.,, A. B. Bindi,, J. Buzzelli,, J. F. Stolz, and, R. S. Oremland. 1998. Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171:1930.
8. Blum, J. S.,, J. F. Stolz,, A. Oren, and, R. S. Oremland. 2001. Selenihalanaerobacter shriftii gen. nov., sp nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch. Microbiol. 175:208219.
9. Bock, A.,, K. Forchhammer,, J. Heider,, W. Lein-felder,, G. Sawers,, B. Veprek, and, F. Zinoni. 1991. Selenocysteine—the 21st amino-acid. Mol. Microbiol. 5:515520.
10. Budinoff, C. R.,, and J. T. Hollibaugh. 2008. Arsenite-dependent photoautotrophy by an Ectothiorhodospira-dominated consortium. ISME J. 2:340343.
11. Chasteen, T. G.,, D. E. Fuentes,, J. C. Tantaleán, and, C. C. Vásquez. 2009. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol. Rev. 33:820832.
12. Cortese, M. S.,, A. Paszczynski,, T. A. Lewis,, J. L. Sebat,, V. Borek, and, R. L. Crawford. 2002. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. Biometals 15:103120.
13. Csotonyi, J. T.,, E. Stackebrandt, and, V. Yurkov. 2006. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl. Environ. Microbiol. 72:49504956.
14. Dembitsky, V. M.,, and D. O. Levitsky. 2004. Arsenolipids. Prog. Lipid Res. 43:403448.
15. Dettmer, R. 1988. The Quest for the quantum dot. IEE Rev. 34:395397.
16. Dopp, E.,, L. M. Hartmann,, A. M. Florea,, U. von Recklinghausen,, R. Pieper,, B. Shokouhi,, A. W. Rettenmeier,, A. V. Hirner, and, G. Obe. 2004. Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells. Toxicol. Appl. Pharmacol. 201:156165.
17. Doran, J. W.,, and M. Alexander. 1977. Microbial transformations of selenium. Appl. Environ. Microbiol. 33:3137.
18. Dowdle, P. R.,, and R. S. Oremland. 1998. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ. Sci. Technol. 32:37493755.
19. Dungan, R. S.,, S. R. Yates, and, W. T. Frankenberger. 2003. Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ. Microbiol. 5:287295.
20. Ehrlich, H. L. 2002. Geomicrobiology, 4th ed. Marcel Dekker, Inc., New York, NY.
21. Fleming, R. W.,, and M. Alexander. 1972. Dimethylselenide and dimethyltelluride formation by a strain of Penicillium. Appl. Microbiol. 24:424429.
22. Gao, X.,, J. Zhang, and, L. Zhang. 2002. Hollow sphere selenium nanoparticles: their invitro anti hydroxyl radical effect. Adv. Mater. 14:290293.
23. Giepmans, B. N. G.,, S. R. Adams,, M. H. Ellisman, and, R. Y. Tsien. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217224.
24. Herbel, M. J.,, J. S. Blum,, R. S. Oremland, and, S. E. Borglin. 2003. Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol. J. 20:587602.
25. Herbel, M. J.,, J. Switzer Blum,, S. E. Hoeft,, S. M. Cohen,, L. L. Arnold,, J. Lisak,, J. F. Stolz, and, R. S. Oremland. 2002. Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol. Ecol. 41:5967.
26. Hockin, S.,, and G. M. Gadd. 2006. Removal of selenate from sulfate-containing media by sul-fate-reducing bacterial biofilms. Environ. Microbiol. 8:816826.
27. Hockin, S. L.,, and G. M. Gadd. 2003. Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl. Environ. Microbiol. 69:70637072.
28. Hoeft, S. E.,, J. Switzer Blum,, J. F. Stolz,, F. R. Tabita,, B. Witte,, G. M. King,, J. M. Santini, and, R. S. Oremland. 2007. Alkalilimnicola ehrlichii, sp. nov., a novel, arsenite-oxidizing haloalkaliphilic γ-Proteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int. J. Syst. Evol. Microbiol. 57:504512.
29. Hollibaugh, J. T.,, C. Budinoff,, R. A. Hollibaugh,, B. Ransom, and, N. Bano. 2006. Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Appl. Environ. Microbiol. 72:20432049.
30. Huber, R.,, M. Sacher,, A. Vollmann,, H. Huber, and, D. Rose. 2000. Respiration of arsenate and selenate by hyperthermophilic archaea. Syst. Appl. Microbiol. 23:305314.
31. Johnson, B. R.,, M. J. Schweiger, and, S. K. Sundaram. 2005. Chalcogenide nanowires by evaporation-condensation. J. Non-Crystalline Solids 351:14101416.
32. Johnson, N. C.,, S. Manchester,, L. Sarin,, Y. M. Gao,, I. Kulaots, and, R. H. Hurt. 2008. Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ. Sci. Technol. 42:57725778.
33. Jones, J. B.,, G. L. Dilworth, and, T. C. Stadtman. 1979. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch. Biochem. Biophys. 195:255260.
34. Kessi, J.,, M. Ramuz,, E. Wehrli,, M. Spycher, and, R. Bachofen. 1999. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 65:47344740.
35. Klett, A. 1900. Zur kenntniss der reducirenden eigenschaften der bakterian. Z. Hyg. Infektionskr. 33:137.
36. Klonowska, A.,, T. Heulin, and, A. Vermeglio. 2005. Selenite and tellurite reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 71:56075609.
37. Knight, V. V.,, and R. Blakemore. 1998. Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch. Microbiol. 169:239248.
38. Krafft, T.,, A. Bowen,, F. Theis, and, J. M. Macy. 2000. Cloning and sequencing of the genes encoding the periplasmic-cyctochrome B-containing selenate reductase for Thauera selenatis. DNA Seq. 10:365377.
39. Kulp, T. R.,, S. E. Hoeft,, M. Asao,, M. T. Madigan,, J. T. Hollibaugh,, J. C. Fisher,, J. F. Stolz,, C. W. Culbertson,, L. G. Miller, and, R. S. Oremland. 2008. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967970.
40. Leaver, J. T.,, D. J. Richardson, and, C. S. Butler. 2008. Enterobacter cloacea SLD1a-1 gains a selective advantage from selenate reduction when growing in nitrate-depleted anaerobic environment. J. Ind. Microbiol. Biotechnol. 35:863873.
41. Ledbetter, R. N.,, S. A. Connon,, A. L. Neal,, A. Dohnalkova, and, T. S. Magnuson. 2007. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, Oregon. Appl. Environ. Microbiol. 73:59285936.
42. Lee, J. H.,, M. G. Kim,, B. Y. Yoo,, N. V. Myung,, J. S. Maeng,, T. Lee,, A. C. Dohnalkova,, J. K. Fredrickson,, M. J. Sadowsky, and, H. G. Hur. 2007. Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. Proc. Natl. Acad. Sci. USA 104:2041020415.
43. Lemly, A. D. 2004. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 59:4456.
44. Lenz, M.,, E. D. Van Hullebusch,, G. Hommes,, P. F. X. Corvini, and, P. N. L. Lens. 2008. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors Water Res. 42:21842194.
45. Lloyd, J. R.,, A. N. Mabbett,, D. R. Williams, and, L. E. Macaskie. 2001. Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59:327337.
46. Lortie, L.,, W. D. Gould,, S. Rajan,, R. G. L. Mccready, and, K. J. Cheng. 1992. Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58:40424044.
47. Losi, M. E.,, and W. T. Frankenberger, Jr. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63:30793084.
48. Ma, J.,, D. Y. Kobayashi, and, N. Yee. 2007. Chemical kinetic and molecular genetic study of selenium oxyanion reduction by Enterobacter cloacae SLD1a-1. Environ. Sci. Technol. 41:77957801.
49. Ma, J.,, D. Y. Kobayashi, and, N. Yee. 2009. Role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. Environ. Microbiol. 11:149158.
50. Macy, J. M.,, K. Nunan,, K. D. Hagen,, D. R. Dixon,, P. J. Harbour,, M. Cahill, and, L. I. Sly. 1996. Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46:11531157.
51. Macy, J. M.,, S. Rech,, G. Auling,, M. Dorsch,, E. Stackebrandt, and, L. I. Sly. 1993. Thauera selenatis gen. nov, sp. nov, a member of the Beta-subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43:135142.
52. Maher, M. J.,, J. Santini,, I. J. Pickering,, R. Prince,, J. M. Macy, and, G. N. George. 2004. X-ray absorption spectroscopy of selenate reductase. Inorg. Chem. 43:402404.
53. Masscheleyn, P. H.,, R. D. Delaune, and, W. H. Patrick. 1990. Transformations of selenium as affected by sediment oxidation reduction potential and pH. Environ. Sci. Technol. 24:9196.
54. McEwan, A. G.,, J. P. Ridge,, C. A. McDevitt, and, P. Hugenholtz. 2002. The DMSO reductase family of microbial molybdenum enzymes: molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol. J. 19:322.
55. Moore, M. D.,, and S. Kaplan. 1992. Identification of intrinsic high-level resistance to rare-earth-oxides and oxyanions in members of the class Proteobacteria—characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 174:15051514.
56. Moscoso, H.,, C. Saavedra,, C. Loyola,, S. Pichuantes, and, C. Vásquez. 1998. Biochemical characterization of tellurite-reducing activities of Bacillus stearothermophilus V. Res. Microbiol. 149:389397.
57. Nath, S.,, S. K. Ghosh,, S. Panigahi,, T. Thundat, and, T. Pal. 2004. Synthesis of selenium nanoparticle and its photocatalytic application for decolorization of methylene blue under UV irradiation. Langmuir 20:78807883.
58. Newman, D. K.,, D. Ahmann, and, F. M. M. Morel. 1998. A brief review of microbial arsenate reduction. Geomicrobiol. J. 15:255268.
59. Newman, D. K.,, E. K. Kennedy,, J. D. Coates,, D. Ahmann,, D. J. Ellis,, D. R. Lovley, and, F. M. Morel. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168:380388.
60. Oremland, R. S.,, J. S. Blum,, C. W. Culbertson,, P. T. Visscher,, L. G. Miller,, P. Dowdle, and, F. E. Strohmaier. 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenaterespiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60:30113019.
61. Oremland, R. S.,, P. R. Dowdle,, S. Hoeft,, J. O. Sharp,, J. K. Schaefer,, L. G. Miller,, J. Blum,, R. L. Smith,, N. S. Bloom, and, D. Wallschlaeger. 2000. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim. Cosmochim. Acta 64:30733084.
62. Oremland, R. S.,, M. J. Herbel,, J. S. Blum,, S. Langley,, T. J. Beveridge,, P. M. Ajayan,, T. Sutto,, A. V. Ellis, and, S. Curran. 2004. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl. Environ. Microbiol. 70:5260.
63. Oremland, R. S.,, J. T. Hollibaugh,, A. S. Maest,, T. S. Presser,, L. G. Miller, and, C. W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture—biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55:23332343.
64. Oremland, R. S.,, T. R. Kulp,, J. S. Blum,, S. E. Hoeft,, S. Baesman,, L. G. Miller, and, J. F. Stoltz. 2005. A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308:13051308.
65. Oremland, R. S.,, F. Wolfe-Simon,, C. W. Saltikov, and, J. F. Stolz. 2009. Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol. J. 26:522536.
66. Pearce, C. I.,, V. S. Coker,, J. M. Charnock,, R. A. D. Pattrick,, J. F. W. Mosselmans,, N. Law,, T. J. Beveridge, and, J. R. Lloyd. 2008. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155603.
67. Pearce, C. I.,, R. A. D. Pattrick,, N. Law,, J. C. Charnock,, V. S. Coker,, J. F. Fellowes,, R. S. Oremland, and, J. R. Lloyd. 2009. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ. Technol. 30:13131326.
68. Peng, D.,, J. Zhang,, Q. Liu, and, E. W. Taylor. 2007. Size effect of elemental selenium nanoparticles (nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem. 101:14571463.
69. Pickett, N. L.,, and P. O’Brien. 2001. Syntheses of semiconductor nanoparticles using single-molecular precursors. Chem. Rec. 1:467479.
70. Planer-Friedrich, B.,, J. C. Fischer,, J. T. Hollibaugh,, E. Sűß, and, D. Wallschläger. 2009. Oxidative transformation of trithioarsenate along alkaline geothermal drainages: abiotic versus microbially mediated processes. Geomicrobiol. J. 26:339350.
71. Planer-Friedrich, B.,, C. Lehr,, J. Matschullat,, B. J. Merkel,, D. K. Nordstrom, and, M. W. Sandstrom. 2006. Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim. Cosmochim. Acta 70:24802491.
72. Prakash, N. T.,, N. Sharma,, R. Prakash,, K. K. Raina,, J. F. Fellowes,, C. I. Pearce,, J. R. Lloyd, and, R. A. D. Pattrick. 2009. Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol. Lett. 31:18571862. doi: 10.1007/s10529-009-0096-0.
73. Presser, T. S. 1994. The Kesterson Effect. Environ. Manage. 18:437454.
74. Rathgeber, C.,, N. Yurkova,, E. Stackebrandt,, J. T. Beatty, and, V. Yurkov. 2002. Isolation of tellurite-and selenite-resistant bacteria from hydro-thermal vents of the Juan de Fuca Ridge in the pacific ocean. Appl. Environ. Microbiol. 68:46134622.
75. Rech, S. A.,, and J. M. Macy. 1992. The terminal reductases for Se(VI) and nitrate respiration in Thauera selenatis are two distinct enzymes. J. Bacteriol. 174:73167320.
76. Richey, C.,, P. Chovanec,, S. E. Hoeft,, R. S. Oremland,, P. Basu, and, J. F. Stolz. 2009. Respiratory arsenate reductase as a bidirectional enzyme. Biochem. Biophys. Res. Commun. 382:298302.
77. Salminen, R.,, M. J. Batista,, M. Bidovec,, A. Demetriades,, B. De Vivo,, W. De Vos,, M. Duris,, A. Gilucis,, V. Gregorauskiene,, J. Halamic,, P. Heitzmann,, A. Lima,, G. Jordan,, G. Klaver,, P. Klein,, J. Lis,, J. Locutura,, K. Marsina,, A. Mazreku,, P. J. O’Connor,, S. A. Olsson,, R. T. Ottesen,, V. Petersell,, J. A. Plant,, S. Reeder,, I. Salpeteur,, H. Sandstrom,, U. Siewers,, A. Steenfelt, and, T. Tarvainen. 2006. Geochemical Atlas of Europe. In R. Salminen (ed.), Part 1: Background Information, Methodology and Maps. EuroGeoSurveys-FOREGS Geochemical Baseline Mapping Programme. http://www.gtk.fi/publ/foregsatlas/.
78. Schröder, I.,, S. R. Rech,, T. Krafft, and, J. M. Macy. 1997. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272:2376523768.
79. Shrift, A. 1964. Selenium cycle in nature. Nature 201:13041305.
80. Silver, S.,, and L. T. Phung. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71:599608.
81. Smithers, R. M.,, and H. R. Krouse. 1967. Tellurium isotope fractionation study. Can. J. Chem. 46:583591.
82. Stolz, J. E.,, P. Basu,, J. M. Santini, and, R. S. Oremland. 2006. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. 60:107130.
83. Stolz, J. F.,, D. J. Ellis,, J. S. Blum,, D. Ahmann,, D. R. Lovley, and, R. S. Oremland. 1999. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfuro spirillum clade of the epsilon Proteobacteria. Int. J. Syst. Bacteriol. 49:11771180.
84. Stolz, J. F.,, and R. S. Oremland. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23:615627.
85. Switzer Blum, J.,, S. Han,, B. Lanoil,, C. Saltikov,, B. Witte,, F. R. Tabita,, S. Langley,, T. J. Beveridge,, L. Jahnke, and, R. S. Oremland. 2009. Ecophysiology of “Halarsenatibacter silvermanii” strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. Appl. Environ. Microbiol. 75:19501960.
86. Tomei, F. A.,, L. L. Barton,, C. L. Lemanski, and, T. G. Zocco. 1992. Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can. J. Microbiol. 38:13281333.
87. Torma, A. E.,, and F. Habashi. 1972. Oxidation of copper (II) selenide by Thiobacillus ferrooxidans. Can. J. Microbiol. 18:17801781.
88. Trutko, S. M.,, V. K. Akimenko,, N. E. Suzina,, L. A. Anisimova,, M. G. Shlyapnikov,, B. P. Baskunov,, V. I. Duda, and, A. M. Boronin. 2000. Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch. Microbiol. 173:178186.
89. Turner, R. J.,, Y. Aharonowitz,, J. H. Weiner, and, D. E. Taylor. 2001. Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can. J. Microbiol. 47:3340.
90. Van Fleet-Stalder, V.,, T. G. Chasteen,, I. J. Pickering,, G. N. George, and, R. C. Prince. 2000. Fate of selenate and selenite metabolized by Rhodobacter sphaeroides. Appl. Environ. Microbiol. 66:48494853.
91. Warrier, M.,, M. K. Lo,, H. Monbouquette, and, M. A. Garcia-Garibay. 2004. Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles. Photochem. Photobiol. Sci. 3:859863.
92. Williams, K. H.,, A. L. N’Guessan,, J. Druhan,, M. J. Wilkins,, D. Holmes,, P. E. Long, and, D. R. Lovley. 2007. Field-scale evidence for selenium bioremediation in a uranium-contaminated aquifer. 107th General Meeting of the American Society for Microbiology, Toronto, Canada.
93. Yamada, A.,, N. Miyagishima, and, T. Matsunaga. 1997. Tellurite removal by marine photo-synthetic bacteria. J. Mar. Biotechnol. 5:4649.
94. Yamamura, S.,, M. Yamashita,, N. Fujimoto,, M. Kuroda,, M. Kashiwa,, K. Sei,, M. Fujita, and, M. Ike. 2007. Bacillus selenatarsenatis sp. nov., a selenate-and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int. J. Syst. Evol. Microbiol. 57:10601064.
95. Yee, N.,, and D. Y. Kobayashi. 2008. Molecular genetics of selenate reduction by Enterobacter cloacae SLD-1. Adv. Appl. Microbiol. 64:107123.
96. Yee, N.,, J. Ma,, A. Dalia,, T. Boonfueng, and, D. Y. Kobayashi. 2007. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl. Environ. Microbiol. 73:19141920.
97. Yuan, C.,, X. Lu,, J. Qin,, B. P. Rosen, and, X. C. Le. 2008. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ. Sci. Technol. 42:32013206.
98. Zannoni, D.,, F. Borsetti,, J. J. Harrison, and, R. J. Turner. 2008. The bacterial response to the chalcogen metalloids Se and Te. Adv. Microb. Physiol. 53:171.
99. Zehr, J. P.,, and R. S. Oremland. 1987. Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell-suspensions and estuarine sediments. Appl. Environ. Microbiol. 53:13651369.

Tables

Generic image for table
TABLE 1

Some examples of microbial interaction with Se, Te, and As

Citation: Pearce C, Baesman S, Switzer Blum J, Fellowes J, Oremland R. 2011. Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids, p 297-319. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error