1887

Chapter 17 : Microbial Respiration of Anodes and Cathodes in Electrochemical Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap17-2.gif

Abstract:

The microbial fuel cell for bioenergy production from renewable fuels is one of many potential applications of microbial catalysis in electrochemical cells. Numerous investigators have proposed analogous bioelectrochemical cells for engineering applications in bioremediation and biohydrogen production. This chapter summarizes and discusses the interactions between microbes and electrodes for energy generation and environmental applications. The electrode of an electrochemical cell may serve as either an electron acceptor or an electron donor, depending on the needs of the application. The chapter emphasizes the microbial communities that develop on both anodes and cathodes of electrochemical cells, the known bacteria which conserve energy and grow on electrodes, and the current state of understanding for the molecular basis of electron transfer between bacteria and electrodes of electrochemical cells. Reduction products from microbial respiration accumulate in the sediment and result in the development of a depth-dependent potential gradient as measured by a reference electrode. Researchers have recently demonstrated ammonium-dependent electricity generation in a microbial fuel cell, where ammonium was amended to the medium as an electron donor, rather than produced as a primary metabolite.

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17

Key Concept Ranking

Ferrous Iron Oxidation
0.47406512
Bacterial Metabolism
0.44106835
Dissimilatory Metal Reduction
0.4396194
Carbon Dioxide
0.43359724
Anaerobic Respiration
0.42209828
0.47406512
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(Top) The electrolytic cell. An external electrical potential is applied between the two electrodes and a chemical reaction at the electrodes is driven against its Δ by the external potential. Current flowing between the electrodes drives the chemical reaction, consuming electrical energy. (Bottom) The galvanic cell. Chemical energy is converted to electrical energy via an electrochemical cell. The chemical reaction at each electrode occurs spontaneously with its Δ, releasing energy which passes in the form of electrical current between the two electrodes. 10.1128/9781555817190.ch17.f1

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

A conventional (abiotic) hydrogen fuel cell. Hydrogen is spontaneously oxidized at the anode with reduction of oxygen at the cathode. Electrons from hydrogen flow through the external circuit and reduce oxygen to water. The oxidation of hydrogen generates protons that travel across the separator, commonly an ion-selective membrane, to maintain charge balance in the overall redox reaction. 10.1128/9781555817190.ch17.f2

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

A model of a microbial fuel cell featuring direct electron transfer mechanism. Glucose is oxidized to CO by the bacterium. Electrons liberated from glucose are transferred to the anode via direct contact of outer membrane and transmembrane electron carriers and transport structures. 10.1128/9781555817190.ch17.f3

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

A model of a benthic microbial fuel cell (BMFC). A complex community of sediment organisms participates in hydrolysis and fermentation of detritus material to produce simple organic compounds such as acetate that are used by electrode-respiring bacteria enriched from the sediment. The cells transfer electrons to the anode of the BMFC via direct respiration of anode or through an electron mediator, such as a primary metabolite (HS, Fe, or reduced humic material) or secondary metabolite electron shuttles such as flavinoid compounds. 10.1128/9781555817190.ch17.f4

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The indirect electron transfer mechanism for respiration of the anode in a microbial fuel cell. Electron transfer to the anode is enabled by a primary metabolite such as an electron shuttle (e.g., HS, H) or secondary metabolites electron shuttles such as flavins or phenazines. 10.1128/9781555817190.ch17.f5

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Models of the molecular basis for electron transfer to anodes by and Oxidation of organic matter in central metabolism of both organisms produces reduced, intracellular electron carriers such as NADH. Electrons are transferred through the membranes via a series of intermediates to outer membrane cytochromes. 10.1128/9781555817190.ch17.f6

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Bacteria may respire at the cathode of an electrolytic cell. Analogous to electron transfer from cells to the anode of a galvanic cell, the mechanisms of electron transfer from the cathode to bacteria in an electrolytic cell may occur through direct and indirect mechanisms. 10.1128/9781555817190.ch17.f7

Citation: Gregory K, Holmes D. 2011. Microbial Respiration of Anodes and Cathodes in Electrochemical Cells, p 321-359. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817190.ch17
1. Aelterman, P.,, K. Rabaey,, P. Clauwaert, and, W. Verstraete. 2006a. Microbial fuel cells for wastewater treatment. Water Sci. Technol. 54:915.
2. Aelterman, P.,, K. Rabaey,, H. T. Pham,, N. Boon, and, W. Verstraete. 2006b. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40:33883394.
3. Aklujkar, M.,, J. Krushkal,, G. DiBartolo,, A. Lapidus,, M. L. Land, and, D. R. Lovley. 2009. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol. 9:109.
4. Allen, M. J. 1966. Symposium on bioelectrochemistry of microorganisms. 2. Electrochemical aspects of metabolism. Bacteriol. Rev. 30:8093.
5. Allen, R. M.,, and H. P. Bennetto. 1993. Microbial fuel cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39:2740.
6. Anderson, R. T.,, H. A. Vrionis,, I. Ortiz-Bernad,, C. T. Resch,, P. E. Long,, R. Dayvault,, K. Karp,, S. Marutzky,, D. R. Metzler,, A. Peacock,, D. C. White,, M. Lowe, and, D. R. Lovley. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69:58845891.
7. Aston, W. J.,, and A. P. F. Turner. 1984. Biosensors and biofuel cells. Biotechnol. Genet. Eng. Rev. 1:89120.
8. Ateya, B. G.,, and F. M. Al-Kharafi. 2002. Anodic oxidation of sulphide ions from chloride brines. Electrochem. Commun. 4:231238.
9. Aulenta, F.,, A. Canosa,, P. Reale,, S. Rossetti,, S. Panero, and, M. Majone. 2009. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol. Bioeng. 103:8591.
10. Bagander, L. E.,, and L. Niemisto. 1978. An evaluation of the use of redox measurements for characterizing recent sediments. Estuar. Coast. Mar. Sci. 6:127134.
11. Barbir, F. 2005. PEM Fuel Cells: Theory and Practice. Elsevier Academic Press, Burlington, MA.
12. Bard, A. J.,, and L. R. Faulkner. 2001. Electrochemical Methods Fundamentals and Applications, 2nd ed. John Wiley & Sons, New York, NY.
13. Baron, D.,, E. LaBelle,, D. Coursolle,, J. A. Gralnick, and, D. R. Bond. 2009. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 284:2886528873.
14. Beliaev, A. S.,, D. M. Klingeman,, J. A. Klappen-bach,, L. Wu,, M. F. Romine,, J. A. Tiedje,, K. H. Nealson,, J. K. Fredrickson, and, J. Zhou. 2005. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 187:71387145.
15. Beliaev, A. S.,, and D. A. Saffarini. 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180:62926297.
16. Beliaev, A. S.,, D. A. Saffarini,, J. L. McLaughlin, and, D. Hunnicutt. 2001. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39:722730.
17. Beliaev, A. S.,, D. K. Thompson,, M. W. Fields,, L. Y. Wu,, D. P. Lies,, K. H. Nealson, and, J. Z. Zhou. 2002. Microarray transcription profiling of a Shewanella oneidensis etrA mutant. J. Bacteriol. 184:46124616.
18. Biffinger, J. C.,, J. Pietron,, O. Bretschger,, L. J. Nadeau,, G. R. Johnson,, C. C. williams,, K. H. Nealson, and, B. R. Ringeisen. 2008. The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens. Bioelectron. 24:900905.
19. Biffinger, J. C.,, J. Pietron,, R. Ray,, B. Little, and, B. R. Ringeisen. 2007. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22:16721679.
20. Biffinger, J. C.,, R. Ray,, B. J. Little,, L. A. Fitzgerald,, M. Ribbens,, S. E. Finkel, and, B. R. Ringeisen. 2009. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol. Bioeng. 103:524531.
21. Bocher, B. T.,, M. T. Agler,, M. L. Garcia,, A. R. Beers, and, L. T. Angenent. 2008. Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. J. Ind. Microbiol. Biotechnol. 35:321329.
22. Bond, D. R.,, D. E. Holmes,, L. M. Tender, and, D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483485.
23. Bond, D. R.,, and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:15481555.
24. Bond, D. R.,, and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:21862189.
25. Bouhenni, R.,, A. Gehrke, and, D. Saffarini. 2005. Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl. Environ. Microbiol. 71:49354937.
26. Bowien, B.,, and H. G. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35:405452.
27. Brendel, P. J.,, and G. W. Luther. 1995. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, 02, and S(-ll) in porewaters of marine and freshwater sediments. Environ. Sci. Technol. 29:751761.
28. Bretschger, O.,, A. Obraztsova,, C. A. Sturm,, I. S. Chang,, Y. A. Gorby,, S. B. Reed,, D. E. Culley,, C. L. Reardon,, S. Barua,, M. F. Romine,, J. Zhou,, A. S. Beliaev,, R. Bouhenni,, D. Saffarini,, F. Mansfeld,, B. H. Kim,, J. K. Fredrickson, and, K. H. Nealson. 2007. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73:70037012.
29. Call, D.,, and B. E. Logan. 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42:34013406.
30. Cao, X.,, X. Huang,, N. Boon,, P. Liang, and, M. Fan. 2008. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem. Commun. 10:13921395.
31. Cast, K. L.,, and J. R. V. Flora. 1998. An evaluation of two cathode materials and the impact of copper on bioelectrochemical denitrification. Water Res. 32:6370.
32. Catal, T.,, S. T. Xu,, K. C. Li,, H. Bermek, and, H. Liu. 2008. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens. Bioelectron. 24:849854.
33. Chae, K.-J.,, M.-J. Choi,, J.-W. Lee,, K.-Y. Kim, and, I.-S. Kim. 2009. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 100:35183525.
34. Chang, I. S.,, H. Moon,, J. K. Jang, and, B. H. Kim. 2005. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 20:18561859.
35. Chaudhuri, S. K.,, J. G. Lack, and, J. D. Coates. 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 67:28442848.
36. Chaudhuri, S. K.,, and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21:12291232.
37. Chen, G.-W.,, S.-J. Choi,, T.-H. Lee,, G.-Y. Lee,, J.-H. Cha, and, C.-W. Kim. 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl. Microbiol. Biotechnol. 79:379388.
38. Cheng, S.,, B. A. Dempsey, and, B. E. Logan. 2007. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ. Sci. Technol. 41:81498153.
39. Cheng, S.,, H. Liu, and, B. E. Logan. 2006a. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40:24262432.
40. Cheng, S.,, H. Liu, and, B. E. Logan. 2006b. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40:364369.
41. Cheng, S.,, and B. E. Logan. 2007a. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. USA 104:1887118873.
42. Cheng, S. A.,, and B. E. Logan. 2007b. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9:492496.
43. Cho, Y. K.,, T. J. Donohue,, I. Tejedor,, M. A. Anderson,, K. D. McMahon, and, D. R. Noguera. 2008. Development of a solar-powered microbial fuel cell. J. Appl. Microbiol. 104:640650.
44. Choi, Y.-J.,, J. Song,, S. Jung, and, S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11:863869.
45. Choo, Y.-F.,, J. Lee,, I. S. Chang, and, B. H. Kim. 2006. Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J. Microbiol. Biotechnol. 16:14811484.
46. Chung, K.,, and S. Okabe. 2009. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Biotechnol. Bioeng. 104:901910.
47. Clauwaert, P.,, P. Aelterman,, T. H. Pham,, L. De Schamphelaire,, M. Carballa,, K. Rabaey, and, W. Verstraete. 2008. Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 79:901913.
48. Clauwaert, P.,, K. Rabaey,, P. Aelterman,, L. De Schamphelaire,, T. H. Ham,, P. Boeckx,, N. Boon, and, W. Verstraete. 2007a. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41:33543360.
49. Clauwaert, P.,, D. Van der Ha,, N. Boon,, K. Verbeken,, M. Verhaege,, K. Rabaey, and, W. Verstraete. 2007b. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol. 41:75647569.
50. Clauwaert, P.,, and W. Verstraete. 2009. Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 82:829836.
51. Cohen, B. 1931. The bacterial culture as an electrical half-cell. J. Bacteriol. 21:1819.
52. Coppi, M. V.,, C. Leang,, S. J. Sandler, and, D. R. Lovley. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 67:31803187.
53. Cordas, C. M.,, L. T. Guerra,, C. Xavier, and, J. J. G. Moura. 2008. Electroactive biofilms of sulphate reducing bacteria. Electrochim. Acta 54:2934.
54. Coursolle, D.,, D. B. Baron,, D. R. Bond, and, J. A. Gralnick. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192:467474.
55. Cristina, M.,, C. Cristina,, M. Isabel,, G. Jean,, Y. L. Ming,, J. P. William,, D. Cees, and, J. J. G. Moura. 1993. Electrochemical studies of the hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Eur. J. Biochem. 212:7986.
56. Crittenden, S. R.,, C. J. Sund, and, J. J. Sumner. 2006. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir 22:94739476.
57. Dale, J. R.,, R. Wade, Jr., and, T. J. Dichristina. 2007. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J. Bacteriol. 189:10361043.
58. Davis, J. B. 1963. Generation of electricity by microbial action. Adv. Appl. Microbiol. 5:5164.
59. Delaney, G. M.,, H. P. Bennetto,, J. R. Mason,, S. D. Roller,, J. L. Stirling, and, C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism-mediator-substrate combinations. J. Chem. Technol. Biotechnol. B Biotechnol. 34:1327.
60. Deng, Q.,, X. Y. Li,, J. E. Zuo,, A. Ling, and, B. E. Logan. 2010. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources 195:11301135.
61. De Schamphelaire, L.,, K. Rabaey,, P. Boeckx,, N. Boon, and, W. Verstraete. 2008. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microb. Biotechnol. 1:446462.
62. De Schamphelaire, L.,, K. Rabaey,, N. Boon,, W. Verstraete, and, P. Boeckx. 2007. Minireview: the potential of enhanced manganese redox cycling for sediment oxidation. Geomicrobiol. J. 24:547558.
63. Ding, Y. H. R.,, K. K. Hixson,, M. A. Aklujkar,, M. S. Lipton,, R. D. Smith,, D. R. Lovley, and, T. Mester. 2008. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. Biochim. Biophys. Acta Proteins Proteomics 1784:19351941.
64. Dutta, P. K.,, K. Rabaey,, Z. G. Yuan, and, J. Keller. 2008. Spontaneous electrochemical removal of aqueous sulfide. Water Res. 42:49654975.
65. Emde, R.,, and B. Schink. 1989. Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl. Microbiol. Biotechnol. 32:170175.
66. Emde, R.,, and B. Schink. 1990. Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system Arch. Microbiol. 153:506512.
67. Fan, Y. Z.,, E. Sharbrough, and, H. Liu. 2008. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 42:81018107.
68. Feleke, Z.,, K. Araki,, Y. Sakakibara,, T. watanabe, and, M. Kuroda. 1998. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Res. 32:27282734.
69. Feng, Y.,, X. wang,, B. E. Logan, and, H. Lee. 2008. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 78:873880.
70. Finneran, K. T.,, M. E. Housewright, and, D. R. Lovley. 2002. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol. 4:510516.
71. Franks, A. E.,, K. P. Nevin,, H. F. Jia,, M. Izallalen,, T. L. Woodard, and, D. R. Lovley. 2009. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci. 2:113119.
72. Fredrickson, J. K.,, M. F. Romine,, A. S. Beliaev,, J. M. Auchtung,, M. E. Driscoll,, T. S. Gardner,, K. H. Nealson,, A. L. Osterman,, G. Pinchuk,, J. L. Reed,, D. A. Rodionov,, J. L. M. Rodrigues,, D. A. Saffarini,, M. H. Serres,, A. M. Spormann,, I. B. Zhulin, and, J. M. Tiedje. 2008. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6:592603.
73. Freguia, S.,, M. Masuda,, S. Tsujimura, and, K. Kano. 2009. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76:1418.
74. Freguia, S.,, K. Rabaey,, Z. G. Yuan, and, J. Keller. 2007. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ. Sci. Technol. 41:29152921.
75. Freguia, S.,, E. H. Teh,, N. Boon,, K. M. Leung,, J. Keller, and, K. Rabaey. 2010. Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 101:12331238.
76. Froelich, P. N.,, G. P. Klinkhammer,, M. L. Bender,, N. A. Luedtke,, G. R. Heath,, D. Cullen,, P. Dauphin,, D. Hammond,, B. Hartman, and, V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic—suboxic diagenesis. Geochim. Cosmochim. Acta 43:10751090.
77. Gillespie, L. J. 1920. Reduction potentials of bacterial cultures and of water-logged soils. Soil Sci. 9:199216.
78. Gorby, Y. A.,, S. Yanina,, J. S. McLean,, K. M. Rosso,, D. Moyles,, A. Dohnalkova,, T. J. Beveridge,, I. S. Chang,, B. H. Kim,, K. S. Kim,, D. E. Culley,, S. B. Reed,, M. F. Romine,, D. A. Saffarini,, E. A. Hill,, L. Shi,, D. A. Elias,, D. W. Kennedy,, G. Pinchuk,, K. watanabe,, S. Ishii,, B. Logan,, K. H. Nealson, and, J. K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103:1135811363.
79. Gregory, K. B.,, D. R. Bond, and, D. R. Lovley. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6:596604.
80. Gregory, K. B.,, and D. R. Lovley. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39:89438947.
81. Ha, P. T.,, B. Tae, and, I. S. Chang. 2008. Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels 22:164168.
82. Habermann, W.,, and E. H. Pommer. 1991. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 35:128133.
83. Haveman, S. A.,, R. J. DiDonato,, L. Villanueva,, E. S. Shelobolina,, B. L. Postier,, B. Xu,, A. Liu, and, D. R. Lovley. 2008. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl. Environ. Microbiol. 74:42774284.
84. He, Z.,, and L. T. Angenent. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:20092015.
85. He, Z.,, J. Kan,, F. Mansfeld,, L. T. Angenent, and, K. H. Nealson. 2009a. Self-sustained photo-trophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol. 43:16481654.
86. He, Z.,, J. J. Kan,, Y. B. Wang,, Y. L. Huang,, F. Mansfeld, and, K. H. Nealson. 2009b. Electricity production coupled to ammonium in a microbial fuel cell. Environ. Sci. Technol. 43:33913397.
87. Heidelberg, J. F.,, I. T. Paulsen,, K. E. Nelson,, E. J. Gaidos,, W. C. Nelson,, T. D. Read,, J. A. Eisen,, R. Seshadri,, N. Ward,, B. Methe,, R. A. Clayton,, T. Meyer,, A. Tsapin,, J. Scott,, M. Beanan,, L. Brinkac,, S. Daugherty,, R. T. DeBoy,, R. J. Dodson,, A. S. Durkin,, D. H. Haft,, J. F. Kolonay,, R. Madupu,, J. D. Peterson,, L. A. Umayam,, O. White,, A. M. Wolf,, J. Vamathevan,, J. Weidman,, M. Impraim,, K. Lee,, K. Berry,, C. Lee,, J. Mueller,, H. Khouri,, J. Gill,, T. R. Utterback,, L. A. McDonald,, T. V. Feldblyum,, H. O. Smith,, J. C. Venter,, K. H. Nealson, and, C. M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20:11181123.
88. Heilmann, J.,, and B. E. Logan. 2006. Production of electricity from proteins using a microbial fuel cell. Water Environ. Res. 78:531537.
89. Himmelheber, D. W.,, M. Taillefert,, K. D. Pennell, and, J. B. Hughes. 2008. Spatial and temporal evolution of biogeochemical processes following in situ capping of contaminated sediments. Environ. Sci. Technol. 42:41134120.
90. Holmes, D. E.,, D. R. Bond, and, D. R. Lovley. 2004a. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70:12341237.
91. Holmes, D. E.,, D. R. Bond,, R. A. O’Neill,, C. E. Reimers,, L. R. Tender, and, D. R. Lovley. 2004b. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48:178190.
92. Holmes, D. E.,, S. K. Chaudhuri,, K. P. Nevin,, T. Mehta,, B. A. Methe,, A. Liu,, J. E. Ward,, T. L. Woodard,, J. Webster, and, D. R. Lovley. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8:18051815.
93. Holmes, D. E.,, K. T. Finneran,, R. A. O’Neil, and, D. R. Lovley. 2002. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68:23002306.
94. Holmes, D. E.,, K. P. Nevin,, T. L. Woodard,, A. D. Peacock, and, D. R. Lovley. 2007a. Prolixibacter bellariivorans gen nov, sp nov, a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int. J. Syst. Evol. Microbiol. 57:701707.
95. Holmes, D. E.,, J. S. Nicoll,, D. R. Bond, and, D. R. Lovley. 2004c. Potential role of a novel psychro-tolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 70:60236030.
96. Holmes, D. E.,, R. A. O’Neil,, H. A. Vrionis,, L. A. N’Guessan,, I. Ortiz-Bernad,, M. J. Larrahondo,, L. A. Adams,, J. A. Ward,, J. S. Nicoll,, K. P. Nevin,, M. A. Chavan,, J. P. Johnson,, P. E. Long, and, D. R. Lovley. 2007b. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J. 1:663677.
97. Huang, J. X.,, B. L. Sun, and, X. B. Zhang. 2010. Electricity generation at high ionic strength in microbial fuel cell by a newly isolated Shewanella marisflavi EP1. Appl. Microbiol. Biotechnol. 85:11411149.
98. Huang, L. P.,, and B. E. Logan. 2008. Electricity generation and treatment of paper recycling waste-water using a microbial fuel cell. Appl. Microbiol. Biotechnol. 80:349355.
99. Jeremiasse, A. W.,, H. V. M. Hamelers, and, C. J. N. Buisman. 2010. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:3943.
100. Jong, B. C.,, B. H. Kim,, I. S. Chang,, P. W. Y. Liew,, Y. F. Choo, and, G. S. Kang. 2006. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ. Sci. Technol. 40:64496454.
101. Jung, S.,, and J. M. Regan. 2007. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol. 77:394402.
102. Kamitani, A.,, S. Morishita,, H. Kotaki, and, S. Arscott. 2008. Miniaturized microDMFC using silicon microsystems techniques: performances at low fuel flow rates. J. Micromech. Microeng. 18:125019125028.
103. Karube, I.,, T. Matsunaga,, S. Tsuru, and, S. Suzuki. 1977. Biochemical fuel cell utilizing immobilized cells of Clostridium butyricum. Biotechnol. Bioeng. 19:17271733.
104. Kim, B. C.,, X. L. Qian,, L. A. Ching,, M. V. Coppi, and, D. R. Lovley. 2006. Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 188:31383142.
105. Kim, B. H.,, H. S. Park,, H. J. Kim,, G. T. Kim,, I. S. Chang,, J. Lee, and, N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63:672681.
106. Kim, G. T.,, M. S. Hyun,, I. S. Chang,, H. J. Kim,, H. S. Park,, B. H. Kim,, S. D. Kim,, J. W. T. wimpenny, and, A. J. Weightman. 2005. Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99:978987.
107. Kim, H. J.,, M. S. Hyun,, I. S. Chang, and, B. H. Kim. 1999. A microbial fuel cell type lac-tate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9:365367.
108. Kim, H. J.,, H. S. Park,, M. S. Hyun,, I. S. Chang,, M. Kim, and, B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30:145152.
109. Kim, J. R.,, S. H. Jung,, J. M. Regan, and, B. E. Logan. 2007. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 98:25682577.
110. Kim, N.,, Y. Choi,, S. Jung, and, S. Kim. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70:109114.
111. Konstantinidis, K. T.,, M. H. Serres,, M. F. Romine,, J. L. M. Rodrigues,, J. Auchtung,, L. A. McCue,, M. S. Lipton,, A. Obraztsova,, C. S. Giometti,, K. H. Nealson,, J. K. Fredrickson, and, J. M. Tiedje. 2009. Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc. Natl. Acad. Sci. USA 106:1590915914.
112. Lanthier, M.,, K. B. Gregory, and, D. R. Lovley. 2008. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett. 278:2935.
113. Leang, C.,, M. V. Coppi, and, D. R. Lovley. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185:20962103.
114. Lee, H. S.,, C. I. Torres,, P. Parameswaran, and, B. E. Rittmann. 2009. Fate of H-2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ. Sci. Technol. 43:79717976.
115. Lee, J. Y.,, N. T. Phung,, I. S. Chang,, B. H. Kim, and, H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223:185191.
116. Lefebvre, O.,, A. Al-Mamun, and, Y. H. Ng. 2008. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci. Technol. 58:881885.
117. Lewis, K. 1966. Symposium on bioelectrochemistry of microorganisms. 4. Biochemical fuel cells. Bacteriol. Rev. 30:101113.
118. Liang, P.,, H. Y. Wang,, X. Huang,, X. X. Cao, and, Y. H. Mo. 2009. Influence of environmental factors on electricity production by microbial fuel cell inoculation Shewanella baltica. Huan Jing Ke Xue 30:21482152.
119. Lies, D. P.,, M. E. Hernandez,, A. Kappler,, R. E. Mielke,, J. A. Gralnick, and, D. K. Newman. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71:44144426.
120. Liu, H.,, S. A. Cheng, and, B. E. Logan. 2005a. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39:658662.
121. Liu, H.,, S. Grot, and, B. E. Logan. 2005b. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39:43174320.
122. Liu, H.,, and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38:40404046.
123. Liu, H.,, R. Ramnarayanan, and, B. E. Logan. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38:22812285.
124. Liu, L.,, F.-B. Li,, C.-H. Feng, and, X.-Z. Li. 2009. Microbial fuel cell with an azo-dye-feeding cathode. Appl. Microbiol. Biotechnol. 85:175183.
125. Liu, Z. D.,, Z. W. Du,, J. Lian,, X. Y. Zhu,, S. H. Li, and, H. R. Li. 2007. Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst. Lett. Appl. Microbiol. 44:393398.
126. Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, Hoboken, NJ.
127. Logan, B. E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7:375381.
128. Logan, B. E.,, D. Call,, S. Cheng,, H. V. M. Hamelers,, T. Sleutels,, A. W. Jeremiasse, and, R. A. Rozendal. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42:86308640.
129. Logan, B. E.,, B. Hamelers,, R. A. Rozendal,, U. Schröder,, J. Keller,, S. Freguia,, P. Aelterman,, W. Verstraete, and, K. Rabaey. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40:51815192.
130. Logan, B. E.,, and J. M. Regan. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14:512518.
131. Lonergan, D. J.,, H. Jenter,, J. D. Coates,, E. J. P. Phillips,, T. Schmidt, and, D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178:24022408.
132. Lovley, D. R. 2006a. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4:497508.
133. Lovley, D. R. 2006b. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 17:327332.
134. Lovley, D. R. 2008a. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6:225231.
135. Lovley, D. R. 2008b. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19:564571.
136. Lovley, D. R.,, D. E. Holmes, and, K. P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219286.
137. Lovley, D. R.,, E. J. Phillips,, D. J. Lonergan, and, P. K. Widman. 1995. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61:21322138.
138. Lu, L.,, N. Q. Ren,, D. F. Xing, and, B. E. Logan. 2009. Hydrogen production with effluent from an ethanol-H-2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron. 24:30553060.
139. Luo, H. P.,, G. L. Liu,, R. D. Zhang, and, L. X. Cao. 2009. Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7. Huan Jing Ke Xue 30:21182123.
140. Marsili, E.,, D. B. Baron,, I. D. Shikhare,, D. Coursolle,, J. A. Gralnick, and, D. R. Bond. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105:39683973.
141. McKinlay, J. B.,, and J. G. Zeikus. 2004. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microbiol. 70:34673474.
142. Mehta, T.,, M. V. Coppi,, S. E. Childers, and, D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71:86348641.
143. Methe, B. A.,, K. E. Nelson,, J. A. Eisen,, I. T. Paulsen,, W. Nelson,, J. F. Heidelberg,, D. Wu,, M. Wu,, N. Ward,, M. J. Beanan,, R. J. Dodson,, R. Madupu,, L. M. Brinkac,, S. C. Daugherty,, R. T. DeBoy,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, S. A. Sullivan,, D. H. Haft,, J. Selengut,, T. M. Davidsen,, N. Zafar,, O. White,, B. Tran,, C. Romero,, H. A. Forberger,, J. Weidman,, H. Khouri,, T. V. Feldblyum,, T. R. Utterback,, S. E. Van Aken,, D. R. Lovley, and, C. M. Fraser. 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:19671969.
144. Meyer, T. E.,, A. I. Tsapin,, I. Vandenberghe,, L. De Smet,, D. Frishman,, K. H. Nealson,, M. A. Cusanovich, and, J. J. Van Beeumen. 2004. Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8:5777.
145. Milliken, C. E.,, and H. D. May. 2007. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl. Microbiol. Biotechnol. 73:11801189.
146. Min, B.,, J. R. Kim,, S. E. Oh,, J. M. Regan, and, B. E. Logan. 2005a. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39:49614968.
147. Min, B. K.,, S. A. Cheng, and, B. E. Logan. 2005b. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39:16751686.
148. Miyawaki, O.,, and T. Yano. 1992. Electrochemical bioreactor with regeneration of NAD1 by rotating graphite disk electrode with PMS absorbed. Enzyme Microb. Technol. 14:474478.
149. Mohan, S. V.,, G. Mohanakrishna,, B. P. Reddy,, R. Saravanan, and, P. N. Sarma. 2008. Bio-electricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem. Eng. J. 39:121130.
150. Moon, H.,, I. S. Chang,, J. K. Jang, and, B. H. Kim. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem. Eng. J. 27:5965.
151. Mu, Y.,, K. Rabaey,, R. A. Rozendal,, Z. G. Yuan, and, J. Keller. 2009a. Decolorization of azo dyes in bioelectrochemical systems. Environ. Sci. Technol. 43:51375143.
152. Mu, Y.,, R. A. Rozendal,, K. Rabaey, and, J. Keller. 2009b. Nitrobenzene removal in bioelectrochemical systems. Environ. Sci. Technol. 43:86908695.
153. Myers, C. R.,, and J. M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens strain MR-1. J. Bacteriol. 179:11431152.
154. Myers, J. M.,, and C. R. Myers. 2001. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67:260269.
155. Nealson, K. H.,, A. Belz, and, B. McKee. 2002. Breathing metals as a way of life: geobiology in action. Antonie Van Leeuwenhoek 81:215222.
156. Nevin, K. P.,, B. C. Kim,, R. H. Glaven,, J. P. Johnson,, T. L. Woodard,, B. A. Methe,, R. J. Didonato,, S. F. Covalla,, A. E. Franks,, A. Liu, and, D. R. Lovley. 2009. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628.
157. Nevin, K. P.,, and D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66:22482251.
158. Nevin, K. P.,, and D. R. Lovley. 2002a. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68:22942299.
159. Nevin, K. P.,, and D. R. Lovley. 2002b. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19:141159.
160. Nevin, K. P.,, H. Richter,, S. F. Covalla,, J. P. Johnson,, T. L. Woodard,, A. L. Orloff,, H. Jia,, M. Zhang, and, D. R. Lovley. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 10:25052514.
161. Newman, D. K.,, and R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405:9497.
162. Nielsen, M. E.,, C. E. Reimers, and, H. A. Stecher. 2007. Enhanced power from chambered benthic microbial fuel cells. Environ. Sci. Technol. 41:78957900.
163. Nielsen, M. E.,, C. E. Reimers,, H. K. White,, S. Sharma, and, P. R. Girguis. 2008. Sustainable energy from deep ocean cold seeps. Energy Environ. Sci. 1:584593.
164. Nielsen, M. E.,, D. M. Wu,, P. R. Girguis, and, C. E. Reimers. 2009. Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells. Environ. Sci. Technol. 43:86718677.
165. Niessen, J.,, U. Schröder,, F. Harnisch, and, F. Scholz. 2005. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett. Appl. Microbiol. 41:286290.
166. Niessen, J.,, U. Schröder, and, F. Scholz. 2004. Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem. Commun. 6:955958.
167. Oh, S. E.,, and B. E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 70:162169.
168. Oh, S. E.,, and B. E. Logan. 2007. Voltage reversal during microbial fuel cell stack operation. J. Power Sources 167:1117.
169. Pant, D.,, G. Van Bogaert,, L. Diels, and, K. Vanbroekhoven. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101:15331543.
170. Parameswaran, P.,, H. S. Zhang,, C. I. Torres,, B. E. Rittmann, and, R. Krajmalnik-Brown. 2010. Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol. Bioeng. 105:6978.
171. Park, D. H.,, and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181:24032410.
172. Park, D. H.,, and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66:12921297.
173. Park, D. H.,, and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81:348355.
174. Park, H.-I.,, D.-K. Kim,, Y.-J. Choi, and, D. Pak. 2005. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Proc. Biochem. 40:33833388.
175. Park, H. S.,, B. H. Kim,, H. S. Kim,, H. J. Kim,, G. T. Kim,, M. Kim,, I. S. Chang,, Y. K. Park, and, H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297306.
176. Pham, C. A.,, S. J. Jung,, N. T. Phung,, J. Lee,, I. S. Chang,, B. H. Kim,, H. Yi, and, J. Chun. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223:129134.
177. Pham, T. H.,, P. Aelterman, and, W. Verstraete. 2009. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol. 27:168178.
178. Pham, T. H.,, N. Boon,, P. Aelterman,, P. Clauwaert,, L. De Schamphelaire,, L. Vanhaecke,, K. De Maeyer,, M. Hofte,, W. Verstraete, and, K. Rabaey. 2008a. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 77:11191129.
179. Pham, T. H.,, N. Boon,, K. De Maeyer,, M. Hofte,, K. Rabaey, and, W. Verstraete. 2008b. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl. Microbiol. Biotechnol. 80:985993.
180. Pham, T. H.,, J. K. Jang,, H. S. Moon,, I. S. Chang, and, B. H. Kim. 2005. Improved performance of microbial fuel cell using membrane-electrode assembly. J. Microbiol. Biotechnol. 15:438441.
181. Phung, N. T.,, J. Lee,, K. H. Kang,, I. S. Chang,, G. M. Gadd, and, B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 233:7782.
182. Pitts, K. E.,, P. S. Dobbin,, F. Reyes-Ramirez,, A. J. Thomson,, D. J. Richardson, and, H. E. Seward. 2003. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J. Biol. Chem. 278:2775827765.
183. Potter, M. 1910. On the difference of potential due to the vital activity of microorganisms. Proc. Univ. Durham Phil. Soc. 3:245249.
184. Potter, M. 1911. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B 84:260276.
185. Prasad, D.,, T. K. Sivaram,, S. Berchmans, and, V. Yegnaraman. 2006. Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J. Power Sources 160:991996.
186. Rabaey, K.,, N. Boon,, M. Hofte, and, W. Verstraete. 2005a. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39:34013408.
187. Rabaey, K.,, N. Boon,, S. D. Siciliano,, M. Verhaege, and, W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70:53735382.
188. Rabaey, K.,, P. Clauwaert,, P. Aelterman, and, W. Verstraete. 2005b. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 39:80778082.
189. Rabaey, K.,, G. Lissens,, S. D. Siciliano, and, W. Verstraete. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25:15311535.
190. Rabaey, K.,, S. T. Read,, P. Clauwaert,, S. Freguia,, P. L. Bond,, L. L. Blackall, and, J. Keller. 2008. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J. 2:519527.
191. Rabaey, K.,, J. Rodriguez,, L. L. Blackall,, J. Keller,, P. Gross,, D. Batstone,, W. Verstraete, and, K. H. Nealson. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1:918.
192. Rabaey, K.,, K. Van de Sompel,, L. Maignien,, N. Boon,, P. Aelterman,, P. Clauwaert,, L. De Schamphelaire,, H. T. Pham,, J. Vermeulen,, M. Verhaege,, P. Lens, and, W. Verstraete. 2006. Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 40:52185224.
193. Rabaey, K.,, and W. Verstraete. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trend Biotechnol. 23:291298.
194. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:109810101.
195. Reguera, G.,, K. P. Nevin,, J. S. Nicoll,, S. F. Covalla,, T. L. Woodard, and, D. R. Lovley. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72:73457348.
196. Reimers, C. E. 2007. Applications of microelectrodes to problems in chemical oceanography. Chem. Rev. 107:590600.
197. Reimers, C. E.,, P. Girguis,, H. A. Stecher,, L. M. Tender,, N. Ryckelynck, and, P. Whaling. 2006. Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123136.
198. Reimers, C. E.,, H. A. Stecher,, J. C. Westall,, Y. Alleau,, K. A. Howell,, L. Soule,, H. K. White, and, P. R. Girguis. 2007. Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Appl. Environ. Microbiol. 73:70297040.
199. Reimers, C. E.,, L. M. Tender,, S. Fertig, and, w. Wang. 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35:192195.
200. Ren, Z.,, L. M. Steinberg, and, J. M. Regan. 2008. Electricity production and microbial bio-film characterization in cellulose-fed microbial fuel cells. Water Sci. Technol. 58:617622.
201. Ren, Z.,, T. E. Ward,, B. E. Logan, and, J. M. Regan. 2007a. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J. Appl. Microbiol. 103:22582266.
202. Ren, Z.,, T. E. Ward, and, J. M. Regan. 2007b. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 41:47814786.
203. Rezaei, F.,, D. F. Xing,, R. Wagner,, J. M. Regan,, T. L. Richard, and, B. E. Logan. 2009. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75:36733678.
204. Rhoads, A.,, H. Beyenal, and, Z. Lewandowski. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39:46664671.
205. Richter, H.,, M. Lanthier,, K. P. Nevin, and, D. R. Lovley. 2007. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl. Environ. Microbiol. 73:53475353.
206. Ringeisen, B. R.,, E. Henderson,, P. K. Wu,, J. Pietron,, R. Ray,, B. Little,, J. C. Biffinger, and, J. M. Jones-Meehan. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40:26292634.
207. Rismani-Yazdi, H.,, A. D. Christy,, B. A. Dehority,, M. Morrison,, Z. Yu, and, O. H. Tuovinen. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97:13981407.
208. Roling, W. F. M.,, B. M. van Breukelen,, M. Braster,, B. Lin, and, H. W. van Verseveld. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67:46194629.
209. Roller, S. D.,, H. P. Bennetto,, G. M. Delaney,, J. R. Mason,, J. L. Stirling, and, C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells. 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Technol. Biotechnol. B-Biotechnol. 34:312.
210. Rosenbaum, M.,, U. Schroder, and, F. Scholz. 2005a. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl. Microbiol. Biotechnol. 68:753756.
211. Rosenbaum, M.,, U. Schröder, and, F. Scholz. 2005b. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ. Sci. Technol. 39:63286333.
212. Rosso, K. M.,, J. M. Zachara,, J. K. Fredrickson,, Y. A. Gorby, and, S. C. Smith. 2003. Nonlocal bacterial electron transfer to hematite surfaces. Geochim. Cosmochim. Acta 67:10811087.
213. Rozendal, R. A.,, H. V. M. Hamelers,, G. t. J. W. Euverink,, S. J. Metz, and, C. J. N. Buisman. 2006. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31:16321640.
214. Rozendal, R. A.,, A. W. Jeremiasse,, H. V. M. Hamelers, and, C. J. N. Buisman. 2007. Hydrogen production with a microbial biocathode. Environ. Sci. Technol. 42:629634.
215. Ryckelynck, N.,, H. A. Stecher, and, C. E. Reimers. 2005. Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry 76:113139.
216. Sakakibara, Y.,, and M. Kuroda. 1993. Electric prompting and control of denitrification. Biotechnol. Bioeng. 42:535537.
217. Sanchez, S.,, A. Arratia,, R. Córdova,, H. Gomez, and, R. Schrebler. 1995. Electron transport in biological processes. II: Electrochemical behaviour of Q10 immersed in a phospholipidic matrix added on a pyrolitic graphite electrode. Bioelectrochem. Bioenerg. 36:6771.
218. Schechner, P.,, E. Kroll,, E. Bubis,, S. Chervinsky, and, E. Zussman. 2007. Silver-plated electrospun fibrous anode for glucose alkaline fuel cells. J. Electrochem. Soc. 154:B942B948.
219. Schindler, J. E.,, and K. R. Honick. 1971. Oxidation-reduction determinations at the mud-water interface. Limnol. Oceanogr. 16:837840.
220. Schlereth, D. D.,, and V. M. Fernandez. 1992. Direct electron transfer between Alcaligenes eutrophus Z-1 hydrogenase and glassy carbon electrodes. Bioelectrochem. Bioenerg. 28:473482.
221. Schröder, U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9:26192629.
222. Schröder, U.,, J. Niessen, and, F. Scholz. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem.-Int. Ed. 42:28802883.
223. Shea, C.,, P. Clauwaert,, W. Verstraete, and, R. Nerenberg. 2008. Adapting a denitrifying biocathode for perchlorate reduction. Water Sci. Technol. 58:19411946.
224. Shelobolina, E. S.,, C. G. Vanpraagh, and, D. R. Lovley. 2003. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20:143156.
225. Shimomura, T.,, and R. A. Sanford. 2005. Reductive dechlorination of tetrachloroethene in a sand reactor using a potentiostat. J. Environ. Qual. 34:14351438.
226. Sisler, F. D. 1961. Electrical energy from biochemical fuel cells. New Sci. 256:110111.
227. Sisler, F. D. 1962. Electrical energy from microbiological processes. J. Wash. Acad. Sci. 52:181187.
228. Skadberg, B.,, S. L. Geoly-Horn,, V. Sangamalli, and, J. R. V. Flora. 1999. Influence of pH, current and copper on the biological dechlorination of 2,6-dichlorophenol in an electrochemical cell. Water Res. 33:19972010.
229. Stams, A. J. M.,, F. A. M. de Bok,, C. M. Plugge,, M. H. A. van Eekert,, J. Dolfing, and, G. Schraa. 2006. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol. 8:371382.
230. Strycharz, S. M.,, T. L. Woodard,, J. P. Johnson,, K. P. Nevin,, R. A. Sanford,, F. E. Loffler, and, D. R. Lovley. 2008. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74:59435947.
231. Sucheta, A.,, R. Cammack,, J. Weiner, and, F. A. Armstrong. 1993. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport. Biochemistry 32:54555465.
232. Sun, M.,, Z. X. Mu,, Y. P. Chen,, G. P. Sheng,, X. W. Liu,, Y. Z. Chen,, Y. Zhao,, H. L. Wang,, H. Q. Yu,, L. Wei, and, F. Ma. 2009. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environ. Sci. Technol. 43:33723377.
233. Sund, C. J.,, S. McMasters,, S. R. Crittenden,, L. E. Harrell, and, J. J. Sumner. 2007. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76:561568.
234. Surya, A.,, N. Murthy, and, S. Anita. 1994. Tetracyanoquinodimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg. 33:7173.
235. Szekeres, S.,, I. Kiss,, T. T. Bejerano, and, I. M. Soares. 2001. Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system. Water Res. 35:715719.
236. Tanaka, K.,, C. A. Vega, and, R. Tamamushi. 1983. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells. Bioelectrochem. Bioenerg. 11:289297.
237. Tandukar, M.,, S. J. Huber,, T. Onodera, and, S. G. Pavlostathis. 2009. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol. 43:81598165.
238. Tender, L. M.,, S. A. Gray,, E. Groveman,, D. A. Lowy,, P. Kauffman,, J. Melhado,, R. C. Tyce,, D. Flynn,, R. Petrecca, and, J. Dobarro. 2008. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J. Power Sources 179:571575.
239. Tender, L. M.,, C. E. Reimers,, H. A. Stecher,, D. E. Holmes,, D. R. Bond,, D. A. Lowy,, K. Pilobello,, S. J. Fertig, and, D. R. Lovley. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20:821825.
240. ter Heijne, A.,, H. V. M. Hamelers, and, C. J. N. Buisman. 2007. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol. 41:41304134.