1887

Chapter 10 : Genome Plasticity of Influenza Viruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genome Plasticity of Influenza Viruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap10-2.gif

Abstract:

This chapter on genome plasticity of influenza viruses discusses the current knowledge of viral factors. Influenza viruses have caused devastating pandemics and epidemics in the past, and they continue to be a major health problem causing a huge economic burden worldwide. Thus, it is important to understand the characteristics of influenza viruses and to elucidate the extensive interplay between virus and host. Besides the eight structural proteins, influenza A virus encodes the three nonstructural proteins NS1, NEP, and PB1-F2. Influenza viruses pose a major problem for human health and thereby cause a substantial economic burden. The influenza pandemics which occurred in the past century share the fact that new subtypes of influenza A viruses were introduced into the human population. There are two classes of US Food and Drug Administration-approved drugs against influenza: inhibitors of the ion channel M2 and NA inhibitors. The first group comprises the adamantanes, rimantadine and amantadine, which act by inhibiting the viral ion channel M2 and thereby block the step of uncoating during virus entry. It becomes clear that circulating influenza viruses need to be closely monitored for resistance to the available drugs. Within the same host species genetic polymorphisms may occur and influence the ability of the virus to use the host proteins. For influenza viruses to survive, they need to be transmitted from host to host. The development of reverse genetics techniques has greatly advanced understanding of the virus and its replication cycle.

Citation: Stertz S, Palese P. 2012. Genome Plasticity of Influenza Viruses, p 162-177. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch10

Key Concept Ranking

Influenza C virus
0.46278775
Tumor Necrosis Factor alpha
0.44613332
Influenza B virus
0.42512345
0.46278775
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Schematic representation of the influenza A virus particle. The virion possesses a membrane which is derived from the host cell plasma membrane and harbors the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA) as well as the ion channel M2. The inner side of the membrane is lined with the matrix protein M1. The viral ribonucleoprotein complexes (RNPs) consist of viral RNA which is encapsidated with the nucleoprotein NP and associated with the polymerase complex, which consists of the three subunits PB1, PB2, and PA. (B) Electron micrographs of influenza A virus particles. MDCK cells were infected with influenza A virus strain A/WSN/33 at a high multiplicity of infection. At 20 h postinfection, samples were fixed (2.5% glutaraldehyde in 0.1 M cacodylate buffer, followed by 2% osmium tetraoxide) and en bloc staining was performed (2% uranyl acetate). Samples were dehydrated and embedded in Epon 812 resin mixture. Ultrathin sections were stained with 2% uranyl acetate in 70% ethanol followed by Reynolds lead. Sections were examined with an H-7650 electron microscope (Hitachi) operated at 80 kV. A section of an MDCK cell from which progeny virions are budding is shown. The inset shows a higher magnification of one of the virions. In this cross section the eight RNP segments are visible as dot-like structures within the particle. These pictures were kindly provided by Yi-ying Chou, Mount Sinai School of Medicine, New York, NY. (C) Schematic representation of the influenza A virus replication cycle. Virions are taken up by endocytosis after binding of HA to sialic acid on surface proteins of the host cell plasma membrane. Upon acidification of the endosome, HA mediates fusion of the viral membrane with the endosomal membrane and the viral RNPs are released into the cytosol. The RNPs are transported to the nucleus, where transcription and replication occur. The late stages of the replication cycle take place at the budding sites at the plasma membrane, where the structural components of the virus form progeny virions.

Citation: Stertz S, Palese P. 2012. Genome Plasticity of Influenza Viruses, p 162-177. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Antigenic drift of H1N1 viruses from 1918, 1943, 1986, and 2007. The HA trimeric complex is shown for virus strains A/Brevig Mission/1/1918, A/Weiss/43, A/Taiwan/1/1986, and A/Brisbane/59/2007 to illustrate the gradual accumulation of amino acid changes in the antigenic sites over the years. The structure of 1918 HA was obtained from the PDB server (ID: 2WRG), and the modeling for the other HA proteins was performed using the Swiss Model software. The left side shows the trimer from the side; the right side displays a zenithal view of the trimer. Blue corresponds to conserved amino acids, and red represents amino acids that differ from the 1918 HA. The antigenic sites are colored in light blue. Most neutralizing antibodies bind to the antigenic sites on the upper part of the trimeric complex. Thus, most amino acid changes occur at these sites. The structure modeling was kindly provided by Estanislao Nistal-Villan ( ).

Citation: Stertz S, Palese P. 2012. Genome Plasticity of Influenza Viruses, p 162-177. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Influenza host-pathogen interaction map. Analysis of protein-protein interaction data for the host cell factors which were found to be required for influenza virus replication resulted in a highly significant ( < 0.001, permutation test) host-pathogen interaction map containing 4,266 interactions between 181 confirmed influenza virus-host cellular factors (green circles), 10 influenza virus-encoded proteins or complexes (red circles), and a further 184 cellular proteins (orange circles). Interaction data were elucidated based on binary protein interaction data derived from publicly available databases including BIND, HPRD, MINT, Reactome, Rual et al., and Stelzl et al. ( ) (BHMRRS; blue connections), curated protein complex data (CORUM; pink connections), the Hynet yeast two-hybrid database (aqua connections), and published viral-protein interaction data (yellow and green connections). Red circles indicate influenza nodes, green circles represent confirmed factors, and orange circles indicate unconfirmed influenza host proteins identified in the primary RNAi screen. Viral nodes are abbreviated as follows: HA, hemagglutinin; NS1, NS1 protein; M1, M1 matrix protein; NEP, NEP/NS2 protein; NP, NP protein; PB1 and PB2, the polymerase subunits PB1 and PB2; PB1-F2, PB1-F2 protein; vRNP, influenza virus ribonucleoprotein complex; virion, proteins incorporated into virions. Adapted from .

Citation: Stertz S, Palese P. 2012. Genome Plasticity of Influenza Viruses, p 162-177. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

1918 influenza mortality by age in the United States. The death rate during the 1918 influenza pandemic per 100,000 individuals is shown for different age groups. The resulting curve has a characteristic W shape, with the highest mortality in infants followed by elderly people. Children 5 to 14 years of age as well as adults 45 to 60 years of age displayed partial protection. Adapted from . doi:10.1128/9781555817213.ch10f04

Citation: Stertz S, Palese P. 2012. Genome Plasticity of Influenza Viruses, p 162-177. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817213.chap10
1. Basler, C. F.,, A. H. Reid,, J. K. Dybing,, T. A. Janczewski,, T. G. Fanning,, H. Zheng,, M. Salvatore,, M. L. Perdue,, D. E. Swayne,, A. Garcia-Sastre,, P. Palese,, and J. K. Taubenberger. 2001. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl. Acad. Sci. USA 98: 2746 2751.
2. Baum, L. G.,, and J. C. Paulson. 1991. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology 180: 10 15.
3. Belshe, R. B.,, M. H. Smith,, C. B. Hall,, R. Betts,, and A. J. Hay. 1988. Genetic basis of resistance to rimantadine emerging during treatment of influenza virus infection. J. Virol. 62: 1508 1512.
4. Boon, A. C.,, J. deBeauchamp,, A. Hollmann,, J. Luke,, M. Kotb,, S. Rowe,, D. Finkelstein,, G. Neale,, L. Lu,, R. W. Williams,, and R. J. Webby. 2009. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J. Virol. 83: 10417 10426.
5. Bouvier, N. M.,, A. C. Lowen,, and P. Palese. 2008. Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J. Virol. 82: 10052 10058.
6. Brass, A. L.,, I. C. Huang,, Y. Benita,, S. P. John,, M. N. Krishnan,, E. M. Feeley,, B. J. Ryan,, J. L. Weyer,, L. van der Weyden,, E. Fikrig,, D. J. Adams,, R. J. Xavier,, M. Farzan,, and S. J. Elledge. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139: 1243 1254.
7. Bright, R. A.,, M. J. Medina,, X. Xu,, G. Perez-Oronoz,, T. R. Wallis,, X. M. Davis,, L. Povinelli,, N. J. Cox,, and A. I. Klimov. 2005. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 366: 1175 1181.
8. Chen, W.,, P. A. Calvo,, D. Malide,, J. Gibbs,, U. Schubert,, I. Bacik,, S. Basta,, R. O’Neill,, J. Schickli,, P. Palese,, P. Henklein,, J. R. Bennink,, and J. W. Yewdell. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7: 1306 1312.
9. Chen, Z.,, W. Wang,, H. Zhou,, A. L. Suguitan, Jr.,, C. Shambaugh,, L. Kim,, J. Zhao,, G. Kemble,, and H. Jin. 2010. Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. J. Virol. 84: 44 51.
10. Conenello, G. M.,, D. Zamarin,, L. A. Perrone,, T. Tumpey,, and P. Palese. 2007. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 3: 1414 1421.
11. Connor, R. J.,, Y. Kawaoka,, R. G. Webster,, and J. C. Paulson. 1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205: 17 23.
12. Couceiro, J. N.,, J. C. Paulson,, and L. G. Baum. 1993. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 29: 155 165.
13. Dreiding, P.,, P. Staeheli,, and O. Haller. 1985. Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses. Virology 140: 192 196.
14. Egorov, A.,, S. Brandt,, S. Sereining,, J. Ramonova,, B. Ferko,, D. Katinger,, A. Grassauer,, G. Alexandrova,, H. Katinger,, and T. Muster. 1998. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J. Virol. 72: 6437 6441.
15. Gabriel, G.,, B. Dauber,, T. Wolff,, O. Planz,, H. D. Klenk,, and J. Stech. 2005. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl. Acad. Sci. USA 102: 18590 18595.
16. Gack, M. U.,, R. A. Albrecht,, T. Urano,, K. S. Inn,, I. C. Huang,, E. Carnero,, M. Farzan,, S. Inoue,, J. U. Jung,, and A. Garcia-Sastre. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5: 439 449.
17. Garcia-Sastre, A.,, A. Egorov,, D. Matassov,, S. Brandt,, D. E. Levy,, J. E. Durbin,, P. Palese,, and T. Muster. 1998. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252: 324 330.
18. Gelder, C. M.,, R. Lambkin,, K. W. Hart,, D. Fleming,, O. M. Williams,, M. Bunce,, K. I. Welsh,, S. E. Marshall,, and J. Oxford. 2002. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J. Infect. Dis. 185: 114 117.
19. Gibbs, J. S.,, D. Malide,, F. Hornung,, J. R. Bennink,, and J. W. Yewdell. 2003. The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J. Virol. 77: 7214 7224.
20. Glaser, L.,, J. Stevens,, D. Zamarin,, I. A. Wilson,, A. Garcia-Sastre,, T. M. Tumpey,, C. F. Basler,, J. K. Taubenberger,, and P. Palese. 2005. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 79: 11533 11536.
21. Goodbourn, S.,, L. Didcock,, and R. E. Randall. 2000. Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. J. Gen. Virol. 81: 2341 2364.
22. Grimm, D.,, P. Staeheli,, M. Hufbauer,, I. Koerner,, L. Martinez-Sobrido,, A. Solorzano,, A. Garcia-Sastre,, O. Haller,, and G. Kochs. 2007. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc. Natl. Acad. Sci. USA 104: 6806 6811.
23. Hale, B. G.,, R. E. Randall,, J. Ortin,, and D. Jackson. 2008. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89: 2359 2376.
24. Haller, O.,, G. Kochs,, and F. Weber. 2006. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344: 119 130.
25. Haller, O.,, P. Staeheli,, and G. Kochs. 2009. Protective role of interferon-induced Mx GTPases against influenza viruses. Rev. Sci. Tech. 28: 219 231.
26. Hatta, M.,, P. Gao,, P. Halfmann,, and Y. Kawaoka. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293: 1840 1842.
27. Herlocher, M. L.,, S. Elias,, R. Truscon,, S. Harrison,, D. Mindell,, C. Simon,, and A. S. Monto. 2001. Ferrets as a transmission model for influenza: sequence changes in HA1 of type A (H3N2) virus. J. Infect. Dis. 184: 542 546.
28. Herlocher, M. L.,, R. Truscon,, S. Elias,, H. L. Yen,, N. A. Roberts,, S. E. Ohmit,, and A. S. Monto. 2004. Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J. Infect. Dis. 190: 1627 1630.
29. Horisberger, M. A.,, P. Staeheli,, and O. Haller. 1983. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. Proc. Natl. Acad. Sci. USA 80: 1910 1914.
30. Ito, T.,, J. N. Couceiro,, S. Kelm,, L. G. Baum,, S. Krauss,, M. R. Castrucci,, I. Donatelli,, H. Kida,, J. C. Paulson,, R. G. Webster,, and Y. Kawaoka. 1998. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 72: 7367 7373.
31. Jackson, D.,, M. J. Hossain,, D. Hickman,, D. R. Perez,, and R. A. Lamb. 2008. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 105: 4381 4386.
32. Johnson, N. P.,, and J. Mueller. 2002. Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76: 105 115.
33. Karlas, A.,, N. Machuy,, Y. Shin,, K. P. Pleissner,, A. Artarini,, D. Heuer,, D. Becker,, H. Khalil,, L. A. Ogilvie,, S. Hess,, A. P. Maurer,, E. Muller,, T. Wolff,, T. Rudel,, and T. F. Meyer. 2010. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463: 818 822.
34. Kawaoka, Y.,, S. Krauss,, and R. G. Webster. 1989. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63: 4603 4608.
35. Kawaoka, Y.,, and R. G. Webster. 1988. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc. Natl. Acad. Sci. USA 85: 324 328.
36. Kido, H.,, Y. Yokogoshi,, K. Sakai,, M. Tashiro,, Y. Kishino,, A. Fukutomi,, and N. Katunuma. 1992. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells—a possible activator of the viral fusion glycoprotein. J. Biol. Chem. 267: 13573 13579.
37. Ko, J. H.,, H. K. Jin,, A. Asano,, A. Takada,, A. Ninomiya,, H. Kida,, H. Hokiyama,, M. Ohara,, M. Tsuzuki,, M. Nishibori,, M. Mizutani,, and T. Watanabe. 2002. Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Res. 12: 595 601.
38. Kobasa, D.,, S. Kodihalli,, M. Luo,, M. R. Castrucci,, I. Donatelli,, Y. Suzuki,, T. Suzuki,, and Y. Kawaoka. 1999. Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. J. Virol. 73: 6743 6751.
39. Kochs, G.,, I. Koerner,, L. Thiel,, S. Kothlow,, B. Kaspers,, N. Ruggli,, A. Summerfield,, J. Pavlovic,, J. Stech,, and P. Staeheli. 2007. Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J. Gen. Virol. 88: 1403 1409.
40. Konig, R.,, S. Stertz,, Y. Zhou,, A. Inoue,, H. H. Hoffmann,, S. Bhattacharyya,, J. G. Alamares,, D. M. Tscherne,, M. B. Ortigoza,, Y. Liang,, Q. Gao,, S. E. Andrews,, S. Bandyopadhyay,, P. De Jesus,, B. P. Tu,, L. Pache,, C. Shih,, A. Orth,, G. Bonamy,, L. Miraglia,, T. Ideker,, A. Garcia-Sastre,, J. A. Young,, P. Palese,, M. L. Shaw,, and S. K. Chanda. 2010. Human host factors required for influenza virus replication. Nature 463: 813 817.
41. Leser, G. P.,, and R. A. Lamb. 2005. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 342: 215 227.
42. Li, Z.,, H. Chen,, P. Jiao,, G. Deng,, G. Tian,, Y. Li,, E. Hoffmann,, R. G. Webster,, Y. Matsuoka,, and K. Yu. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 79: 12058 12064.
43. Lowen, A. C.,, S. Mubareka,, J. Steel,, and P. Palese. 2007. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 3: 1470 1476.
44. Lowen, A. C.,, S. Mubareka,, T. M. Tumpey,, A. Garcia-Sastre,, and P. Palese. 2006. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 103: 9988 9992.
45. Manicassamy, B.,, R. A. Medina,, R. Hai,, T. Tsibane,, S. Stertz,, E. Nistal-Villan,, P. Palese,, C. F. Basler,, and A. Garcia-Sastre. 2010. Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines. PLoS Pathog. 6: e1000745.
46. Martin, K.,, and A. Helenius. 1991. Transport of incoming influenza virus nucleocapsids into the nucleus. J. Virol. 65: 232 244.
47. Massin, P.,, S. van der Werf,, and N. Naffakh. 2001. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J. Virol. 75: 5398 5404.
48. Matlin, K. S.,, H. Reggio,, A. Helenius,, and K. Simons. 1981. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell. Biol. 91: 601 613.
49. McAuley, J. L.,, F. Hornung,, K. L. Boyd,, A. M. Smith,, R. McKeon,, J. Bennink,, J. W. Yewdell,, and J. A. McCullers. 2007. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2: 240 249.
50. Mehle, A.,, and J. A. Doudna. 2009. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc. Natl. Acad. Sci. USA 106: 21312 21316.
51. Mibayashi, M.,, L. Martinez-Sobrido,, Y. M. Loo,, W. B. Cardenas,, M. Gale, Jr.,, and A. Garcia-Sastre. 2007. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81: 514 524.
52. Munster, V. J.,, E. de Wit,, D. van Riel,, W. E. Beyer,, G. F. Rimmelzwaan,, A. D. Osterhaus,, T. Kuiken,, and R. A. Fouchier. 2007. The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J. Infect. Dis. 196: 258 265.
53. Nemeroff, M. E.,, U. Utans,, A. Kramer,, and R. M. Krug. 1992. Identification of cis-acting intron and exon regions in influenza virus NS1 messenger RNA that inhibit splicing and cause the formation of aberrantly sedimenting presplicing complexes. Mol. Cell. Biol. 12: 962 970.
54. Neumann, G.,, and Y. Kawaoka. 2006. Host range restriction and pathogenicity in the context of influenza pandemic. Emerg. Infect. Dis. 12: 881 886.
55. Noah, D. L.,, K. Y. Twu,, and R. M. Krug. 2003. Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3’ end processing of cellular pre-mRNAS. Virology 307: 386 395.
56. Obenauer, J. C.,, J. Denson,, P. K. Mehta,, X. Su,, S. Mukatira,, D. B. Finkelstein,, X. Xu,, J. Wang,, J. Ma,, Y. Fan,, K. M. Rakestraw,, R. G. Webster,, E. Hoffmann,, S. Krauss,, J. Zheng,, Z. Zhang,, and C. W. Naeve. 2006. Large-scale sequence analysis of avian influenza isolates. Science 311: 1576 1580.
57. Palese, P. 2004. Influenza: old and new threats. Nat. Med. 10( 12 Suppl.): S82 S87.
58. Palese, P.,, and M. L. Shaw,. 2007. Orthomyxoviridae: the viruses and their replication, p. 1647 1689. In D. M. Knipe, and P. M. Howley (ed.), Fields Virology, 5th ed., vol. 2. Lippincott Williams & Wilkins, Philadelphia. PA.
59. Palm, M.,, M. Leroy,, A. Thomas,, A. Linden,, and D. Desmecht. 2007. Differential anti-influenza activity among allelic variants at the Sus scrofa Mx1 locus. J. Interferon Cytokine Res. 27: 147 155.
60. Pavlovic, J.,, O. Haller,, and P. Staeheli. 1992. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle . J. Virol. 66: 2564 2569.
61. Pichlmair, A.,, O. Schulz,, C. P. Tan,, T. I. Naslund,, P. Liljestrom,, F. Weber,, and C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 997 1001.
62. Qiu, Y.,, and R. M. Krug. 1994. The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J. Virol. 68: 2425 2432.
63. Rual, J. F.,, K. Venkatesan,, T. Hao,, T. Hirozane-Kishikawa,, A. Dricot,, N. Li,, G. F. Berriz,, F. D. Gibbons,, M. Dreze,, N. Ayivi-Guedehoussou,, N. Klitgord,, C. Simon,, M. Boxem,, S. Milstein,, J. Rosenberg,, D. S. Goldberg,, L. V. Zhang,, S. L. Wong,, G. Franklin,, S. Li,, J. S. Albala,, J. Lim,, C. Fraughton,, E. Llamosas,, S. Cevik,, C. Bex,, P. Lamesch,, R. S. Sikorski,, J. Vandenhaute,, H. Y. Zoghbi,, A. Smolyar,, S. Bosak,, R. Sequerra,, L. Doucette-Stamm,, M. E. Cusick,, D. E. Hill,, F. P. Roth. and M. Vidal. 2005. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437: 1173 1178.
64. Rumyantsev, S. N. 2006. Genetic immunity and influenza pandemics. FEMS Immunol. Med. Microbiol. 48: 1 10.
65. Salomon, R.,, J. Franks,, E. A. Govorkova,, N. A. Ilyushina,, H. L. Yen,, D. J. Hulse-Post,, J. Humberd,, M. Trichet,, J. E. Rehg,, R. J. Webby,, R. G. Webster,, and E. Hoffmann. 2006. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 203: 689 697.
66. Seo, S. H.,, E. Hoffmann,, and R. G. Webster. 2002. Lethal H5N1 influenza viruses escape host anti-viral cytokine respones. Nat. Med. 8: 950 954.
67. Shapira, S. D.,, I. Gat-Viks,, B. O. Shum,, A. Dricot,, M. M. de Grace,, L. Wu,, P. B. Gupta,, T. Hao,, S. J. Silver,, D. E. Root,, D. E. Hill,, A. Regev,, and N. Hacohen. 2009. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139: 1255 1267.
68. Staeheli, P.,, R. Grob,, E. Meier,, J. G. Sutcliffe,, and O. Haller. 1988. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 8: 4518 4523.
69. Steel, J.,, A. C. Lowen,, S. Mubareka,, and P. Palese. 2009. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 5: e1000252.
70. Stelzl, U.,, U. Worm,, M. Lalowski,, C. Haenig,, F. H. Brembeck,, H. Goehler,, M. Stroedicke,, M. Zenkner,, A. Schoenherr,, S. Koeppen,, J. Timm,, S. Mintzlaff,, C. Abraham,, N. Bock,, S. Kietzmann,, A. Goedde,, E. Toksoz,, A. Droege,, S. Krobitsch,, B. Korn,, W. Birchmeier,, H. Lehrach,, and E. E. Wanker. 2005. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122: 957 968.
71. Subbarao, E. K.,, W. London,, and B. R. Murphy. 1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67: 1761 1764.
72. Sweet, C.,, F. G. Hayden,, K. J. Jakeman,, S. Grambas,, and A. J. Hay. 1991. Virulence of rimantadine-resistant human influenza A (H3N2) viruses in ferrets. J. Infect. Dis. 164: 969 972.
73. Talon, J.,, M. Salvatore,, R. E. O’Neill,, Y. Nakaya,, H. Zheng,, T. Muster,, A. Garcia-Sastre,, and P. Palese. 2000. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc. Natl. Acad. Sci. USA 97: 4309 4314.
74. Tang, Y. W.,, H. Li,, H. Wu,, Y. Shyr,, and K. M. Edwards. 2007. Host single-nucleotide polymorphisms and altered responses to inactivated influenza vaccine. J. Infect. Dis. 196: 1021 1025.
75. Trammell, R. A.,, and L. A. Toth. 2008. Genetic susceptibility and resistance to influenza infection and disease in humans and mice. Expert Rev. Mol. Diagn. 8: 515 529.
76. Tumpey, T. M.,, K. J. Szretter,, N. Van Hoeven,, J. M. Katz,, G. Kochs,, O. Haller,, A. Garcia-Sastre,, and P. Staeheli. 2007. The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J. Virol. 81: 10818 10821.
77. van Riel, D.,, V. J. Munster,, E. de Wit,, G. F. Rimmelzwaan,, R. A. Fouchier,, A. D. Osterhaus,, and T. Kuiken. 2006. H5N1 virus attachment to lower respiratory tract. Science 312: 399.
78. Wright, P. F.,, G. Neumann,, and Y. Kawaoka,. 2007. Orthomyxoviruses, p. 1691 1740. In D. M. Knipe, and P. M. Howley (ed.), Fields Virology, 5th ed., vol. 2. Lippincott Williams & Wilkins, Philadelphia, PA.
79. Zamarin, D.,, A. Garcia-Sastre,, X. Xiao,, R. Wang,, and P. Palese. 2005. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog. 1: e4.
80. Zamarin, D.,, M. B. Ortigoza,, and P. Palese. 2006. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J. Virol. 80: 7976 7983.

Tables

Generic image for table
TABLE 1

Summary of virulence markers

Citation: Stertz S, Palese P. 2012. Genome Plasticity of Influenza Viruses, p 162-177. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error