1887

Chapter 15 : Genome Plasticity of Herpesviruses: Conservative yet Flexible

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genome Plasticity of Herpesviruses: Conservative yet Flexible, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap15-2.gif

Abstract:

Herpesvirus virions contain a double-stranded DNA (dsDNA) genome of 108 kbp (bovine herpesvirus 4) to 248.5 kbp (anguillid herpesvirus 1) in length. To date, eight different human herpesviruses (HHV) are known. Among human-pathogenic herpesviruses, human cytomegalovirus (HCMV) has the longest genome at ~230 kbp. Importantly, selected host proteins, such as actin, annexin, CD55, and CD59 become "deliberately" incorporated into herpesvirus particles as well. Based on virion morphology criteria, herpesviruses have been found in a variety of vertebrate classes, such as mammals, reptiles, fish, and birds, and even in invertebrates such as oysters. Herpesviruses are the only known viruses capable of deploying two separate transcriptional programs upon infection of a target cell: productive (and usually lytic) infection and latent infection. As observed in other DNA viruses like the Poxviridae, herpesviruses seem to steal genes from their host species and use them for their own purposes, a strategy called molecular piracy. Among herpesviruses, HHV-8 seems to be "the unchallenged master of molecular piracy". A section in the chapter explains leading genetic paradigms combined with selected findings from certain herpesviruses, to put the most important principles of herpesvirus genome plasticity and also their limitations into a broader perspective. The chapter presents examples that highlight the ability of herpesviruses to rapidly mutate under selecting conditions, indicating a remarkable potential of genetic plasticity and adaptability within a handful of in vivo passages.

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15

Key Concept Ranking

Herpes simplex virus 1
0.43410096
Viral Life Cycle
0.41314453
0.43410096
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 4
FIGURE 4

Phylogenetic trees based on alignments of primary amino acid sequences of the MCMV proteins pUL138 (A), pTRL12 (B), pUL139 (C), and pUL146 (D) indicate significant differences concerning variability of individual viral proteins, even at adjacent positions in the viral genome, like the ′ region. For all four proteins, all currently available protein sequences (status January 2011) from the NCBI server have been compared. The sequences of the homologous chimpanzee or rhesus CMV (CCMV or rhCMV, respectively) proteins serve as the outgroup. The alignment and phylogenetic tree were constructed with the www.phylogeny.fr online tool ( ). The legend depicts the protein sequence divergence. doi:10.1128/9781555817213.ch15f04

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1
FIGURE 1

Model of herpesvirus virion morphology. The linear dsDNA genome is enclosed in the icosahedral capsid, which is surrounded by the proteinaceous tegument and embedded in the membrane envelope derived from the host cell. The virion membrane contains several virus-encoded as well as host-derived transmembrane proteins. doi:10.1128/9781555817213.ch15f01

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic tree based on alignment of the primary amino acid sequences of DNA polymerases of the indicated herpesviruses demonstrates a relationship between the eight human-pathogenic herpesviruses (HSV-1, HSV-2, VZV, EBV, HCMV, HHV-6, HHV-7, and KSHV) and relevant animal herpesviruses(i.e. Marek's disease virus, pseudorabies virus, MHV-68, and MCMV). The sequence of the DNA polymerase delta serves as an outgroup. The alignment and phylogenetic tree were constructed using the www.phylogeny.fr online tool ( ). The legend depicts the protein sequence divergence. doi:10.1128/9781555817213.ch15f02

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Comparative genomic organization and gene content of prototypic human herpesviruses, herpes simplex virus (top), human cytomegalovirus clinical isolates and laboratory strain AD169 (middle), and Epstein-Barr virus (bottom). For more detailed descriptions, see the text. and depict repetitive sequences of the L-terminal sequence ( ) or the S-terminal sequence ( ) and the L-terminal sequence, respectively, and their inverted repeats ′ and with zero to several or one to several copies. Additionally, the sequence and the inverted repeat ′ are shown. and ′ are synonymous with and , respectively, and and ′ are synonymous with and , respectively. Abbreviations: , terminal repeat long; , internal repeat long; , internal repeat short; , terminal repeat short; , unique long gene segment; , unique short gene segment; , terminal direct repeat; , internal direct repeat; , origin of lytic replication; (L), origin of lytic replication in L component (S1/2), origin of lytic replication in the S component , origin of plasmid replication; MIEP, major immediate-early promoter. doi:10.1128/9781555817213.ch15f03

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817213.chap15
1. Arase, H.,, E. S. Mocarski,, A.E. Campbell,, A. B. Hill,, and L. L. Lanier. 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296: 1323 1326.
2. Arav-Boger, R.,, R. E. Willoughby,, R. F. Pass,, J. C. Zong,, W. J. Jang,, D. Alcendor,, and G. S. Hayward. 2002. Polymorphisms of the cytomegalovirus (CMV)-encoded tumor necrosis factor-alpha and beta-chemokine receptors in congenital CMV disease. J. Infect. Dis. 186: 1057 1064.
3. Arbuckle, J. H.,, M. M. Medveczky,, J. Luka,, S. H. Hadley,, A. Luegmayr,, D. Ablashi,, T. C. Lund,, J. Tolar,, M. K. De,, J. G. Montoya,, A. L. Komaroff,, P. F. Ambros,, and P. G. Medveczky. 2010. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA 107: 5563 5568.
4. Atalay, R.,, Z. Zimmermann,, M. Wagner,, E. Borst,, C. Benz,, M. Messerle,, and H. Hengel. 2002. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fc gamma receptor homologs. J. Virol. 76: 8596 8608.
5. Baek, D.,, J. Villen,, C. Shin,, F. D. Camargo,, S. P. Gygi,, and D. P. Bartel. 2008. The impact of microRNAs on protein output. Nature 455: 64 71.
6. Baldanti, F.,, A. Sarasini,, M. Furione,, M. Gatti,, G. Comolli,, M. G. Revello,, and G. Gerna. 1998. Coinfection of the immunocompromised but not the immunocompetent host by multiple human cytomegalovirus strains. Arch. Virol. 143: 1701 1709.
7. Baldick, C. J., Jr.,, and T. Shenk. 1996. Proteins associated with purified human cytomegalovirus particles. J. Virol. 70: 6097 6105.
8. Boehmer, P. E.,, and I. R. Lehman. 1997. Herpes simplex virus DNA replication. Annu. Rev. Biochem. 66: 347 384.
9. Bogani, F.,, and P. E. Boehmer. 2008. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities. Proc. Natl. Acad. Sci. USA 105: 11709 11714.
10. Borst, E. M.,, G. Hahn,, U. H. Koszinowski,, and M. Messerle. 1999. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol. 73: 8320 8329.
11. Bresnahan, W. A.,, and T. Shenk. 2000. A subset of viral transcripts packaged within human cytomegalovirus particles. Science 288: 2373 2376.
12. Brondke, H.,, B. Schmitz,, and W. Doerfler. 2007. Nucleotide sequence comparisons between several strains and isolates of human cytomegalovirus reveal alternate start codon usage. Arch. Virol. 152: 2035 2046.
13. Brown, J. C. 2007. High G+C content of herpes simplex virus DNA: proposed role in protection against retrotransposon insertion. Open Biochem. J. 1: 33 42.
14. Bubic, I.,, M. Wagner,, A. Krmpotic,, T. Saulig,, S. Kim,, W. M. Yokoyama,, S. Jonjic,, and U. H. Koszinowski. 2004. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J. Virol. 78: 7536 7544.
15. Burns, W. H.,, R. Saral,, G. W. Santos,, O. L. Laskin,, P. S. Lietman,, C. McLaren,, and D. W. Barry. 1982. Isolation and characterisation of resistant herpes simplex virus after acyclovir therapy. Lancet i: 421 423.
16. Cha, T. A.,, E. Tom,, G. W. Kemble,, G. M. Duke,, E. S. Mocarski,, and R. R. Spaete. 1996. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70: 78 83.
17. Cheng, T. P.,, M. C. Valentine,, J. Gao,, J. T. Pingel,, and W. M. Yokoyama. 2010. Stability of murine cytomegalovirus genome after in vitro and in vivo passage. J. Virol. 84: 2623 2628.
18. Cheung, A.,, and E. Kieff. 1982. Long internal direct repeat in Epstein-Barr virus-DNA. J. Virol. 44: 286 294.
19. Choi, J. K.,, R. E. Means,, B. Damania,, and J. U. Jung. 2001. Molecular piracy of Kaposi’s sarcoma associated herpesvirus. Cytokine Growth Factor Rev. 12: 245 257.
20. Chong, K. T.,, and C. A. Mims. 1981. Murine cytomegalovirus particle types in relation to sources of virus and pathogenicity. J. Gen. Virol. 57: 415 419.
21. Cicin-Sain, L.,, I. Bubic,, M. Schnee,, Z. Ruzsics,, C. Mohr,, S. Jonjic,, and U. H. Koszinowski. 2007. Targeted deletion of regions rich in immune-evasive genes from the cytomegalovirus genome as a novel vaccine strategy. J. Virol. 81: 13825 13834.
22. Cicin-Sain, L.,, R. Podlech,, M. Messerle,, M. J. Reddehase,, and U. H. Koszinowski. 2005. Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J. Virol. 79: 9492 9502.
23. Cockrell, S. K.,, M. E. Sanchez,, A. Erazo,, and F. L. Homa. 2009. Role of the UL25 protein in herpes simplex virus DNA encapsidation. J. Virol. 83: 47 57.
24. Corbett, A. J.,, C. A. Forbes,, D. Moro,, and A. A. Scalzo. 2007. Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J. Gen. Virol. 88: 758 769.
25. Cui, X. H.,, A. McGregor,, M. R. Schleiss,, and M. A. McVoy. 2009. The impact of genome length on replication and genome stability of the herpesvirus guinea pig cytomegalovirus. Virology 386: 132 138.
26. Daniels, K. A.,, G. Devora,, W. C. Lai,, C. L. O’Donnell,, M. Bennett,, and R. M. Welsh. 2001. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194: 29 44.
27. Davison, A. J. 2010. Herpesvirus systematics. Vet. Microbiol. 143: 52 69.
28. Davison, A. J.,, B. L. Trus,, N. Q. Cheng,, A. C. Steven,, M. S. Watson,, C. Cunningham,, R. M. Le Deuff,, and T. Renault. 2005. A novel class of herpesvirus with bivalve hosts. J. Gen. Virol. 86: 41 53.
29. Deckers, M.,, J. Hofmann,, K. A. Kreuzer,, H. Reinhard,, A. Edubio,, H. Hengel,, S. Voigt,, and B. Ehlers. 2009. High genotypic diversity and a novel variant of human cytomegalovirus revealed by combined UL33/UL55 genotyping with broad-range PCR. Virol. J. 6: 210.
30. Delecluse, H. J.,, and W. Hammerschmidt. 1993. Status of Marek’s disease virus in established lymphoma cell-lines: herpesvirus integration is common. J. Virol. 67: 82 92.
31. Delecluse, H. J.,, S. Schuller,, and W. Hammerschmidt. 1993. Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J. 12: 3277 3286.
32. Delius, H.,, and J. B. Clements. 1976. A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions. J. Gen. Virol. 33: 125 133.
33. Dereeper, A.,, V. Guignon,, G. Blanc,, S. Audic,, S. Buffet,, F. Chevenet,, J. F. Dufayard,, S. Guindon,, V. Lefort,, M. Lescot,, J. M. Claverie,, and O. Gascuel. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36: W465 W469.
34. Dokun, A. O.,, S. Kim,, H. R. C. Smith,, H. S. P. Kang,, D. T. Chu,, and W. M. Yokoyama. 2001. Specific and nonspecific NK cell activation during virus infection. Nat. Immunol. 2: 951 956.
35. Dolken, L.,, A. Krmpotic,, S. Kothe,, L. Tuddenham,, M. Tanguy,, L. Marcinowski,, Z. Ruzsics,, N. Elefant,, Y. Altuvia,, H. Margalit,, U. Koszinowski,, S. Jonjic,, and S. Pfeffer. 2010. Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog. 6: e1001150.
36. Dolken, L.,, J. Perot,, V. Cognat,, A. Alioua,, M. John,, J. Soutschek,, Z. Ruzsics,, U. Koszinowski,, O. Voinnet,, and S. Pfeffer. 2007. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J. Virol. 81: 13771 13782.
37. Farley, C. A.,, W. S. Foster,, W. G. Banfield,, and G. Kasnic. 1972. Oyster herpes-type virus. Science 178: 759 760.
38. Field, A. K.,, and K. K. Biron. 1994. The end of innocence revisited: resistance of herpesviruses to antiviral drugs. Clin. Microbiol. Rev. 7: 1 13.
39. Gomi, Y.,, T. Imagawa,, M. Takahashi,, and K. Yamanishi. 2000. Oka varicella vaccine is distinguishable from its parental virus in DNA sequence of open reading frame 62 and its transactivation activity. J. Med. Virol. 61: 497 503.
40. Gomi, Y.,, H. Sunamachi,, Y. Mori,, K. Nagaike,, M. Takahashi,, and K. Yamanishi. 2002. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J. Virol. 76: 11447 11459.
41. Grimson, A.,, K. K. Farh,, W. K. Johnston,, P. Garrett-Engele,, L. P. Lim,, and D. P. Bartel. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27: 91 105.
42. Hayakawa, Y.,, and R. W. Hyman. 1987. Isomerization of the UL region of varicella-zoster virus DNA. Virus Res. 8: 25 31.
43. Hayward, G. S.,, R. J. Jacob,, S. C. Wadsworth,, and B. Roizman. 1975. Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc. Natl. Acad. Sci. USA 72: 4243 4247.
44. Hengel, H.,, U. Reusch,, A. Gutermann,, H. Ziegler,, S. Jonjic,, P. Lucin,, and U. H. Koszinowski. 1999. Cytomegaloviral control of MHC class I function in the mouse. Immunol. Rev. 168: 167 176.
45. Hudson, J. B.,, V. Misra,, and T. R. Mosmann. 1976. Properties of the multicapsid virions of murine cytomegalovirus. Virology 72: 224 234.
46. Hurley, E. A.,, S. Agger,, J. A. McNeil,, J. B. Lawrence,, A. Calendar,, G. Lenoir,, and D. A. Thorley-Lawson. 1991. When Epstein-Barr virus persistently infects B-cell lines, it frequently integrates. J. Virol. 65: 1245 1254.
47. Javier, R. T.,, F. Sedarati,, and J. G. Stevens. 1986. Two avirulent herpes simplex viruses generate lethal recombinants in vivo. Science 234: 746 748.
48. Jenkins, C.,, A. Abendroth,, and B. Slobedman. 2004. A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J. Virol. 78: 1440 1447.
49. Jenkins, F. J.,, and B. Roizman. 1986. Herpes simplex virus 1 recombinants with noninverting genomes frozen in different isomeric arrangements are capable of independent replication. J. Virol. 59: 494 499.
50. Jurak, I.,, M. F. Kramer,, J. C. Mellor,, A. L. van Lint,, F. P. Roth,, D. M. Knipe,, and D. M. Coen. 2010. Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J. Virol. 84: 4659 4672.
51. Karlin, S.,, B. E. Blaisdell,, and G. A. Schachtel. 1990. Contrasts in codon usage of latent versus productive genes of Epstein-Barr virus: data and hypotheses. J. Virol. 64: 4264 4273.
52. Kattenhorn, L. M.,, R. Mills,, M. Wagner,, A. Lomsadze,, V. Makeev,, M. Borodovsky,, H. L. Ploegh,, and B. M. Kessler. 2004. Identification of proteins associated with murine cytomegalovirus virions. J. Virol. 78: 11187 11197.
53. Kinchington, P. R.,, W. C. Reinhold,, T. A. Casey,, S. E. Straus,, J. Hay,, and W. T. Ruyechan. 1985. Inversion and circularization of the varicella-zoster virus genome. J. Virol. 56: 194 200.
54. Kotenko, S. V.,, S. Saccani,, L. S. Izotova,, O. V. Mirochnitchenko,, and S. Pestka. 2000. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl. Acad. Sci. USA 97: 1695 1700.
55. Kurz, S.,, H. P. Steffens,, A. Mayer,, J. R. Harris,, and M. J. Reddehase. 1997. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J. Virol. 71: 2980 2987.
56. Lawrence, J. B.,, C. A. Villnave,, and R. H. Singer. 1988. Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of 2 closely integrated copies of EBV in a lymphoma line. Cell 52: 51 61.
57. Lee, S. H.,, S. Girard,, D. Macina,, M. Busa,, A. Zafer,, A. Belouchi,, P. Gros,, and S. M. Vidal. 2001. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 28: 42 45.
58. Lestou, V. S.,, M. Debraekeleer,, S. Strehl,, G. Ott,, H. Gadner,, and P. F. Ambros. 1993. Nonrandom integration of Epstein-Barr virus in lymphoblastoid cell lines. Genes Chromosomes Cancer 8: 38 48.
59. Linnemann, C. C., Jr.,, K. K. Biron,, W. G. Hoppenjans,, and A. M. Solinger. 1990. Emergence of acyclovir-resistant varicella zoster virus in an AIDS patient on prolonged acyclovir therapy. AIDS 4: 577 579.
60. McGeoch, D. J.,, S. Cook,, A. Dolan,, F. E. Jamieson,, and E. A. Telford. 1995. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J. Mol. Biol. 247: 443 458.
61. McVoy, M. A.,, and S. P. Adler. 1994. Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J. Virol. 68: 1040 1051.
62. McVoy, M. A.,, and D. Ramnarain. 2000. Machinery to support genome segment inversion exists in a herpesvirus which does not naturally contain invertible elements. J. Virol. 74: 4882 4887.
63. Michelson, S.,, P. Turowski,, L. Picard,, J. Goris,, M. P. Landini,, A. Topilko,, B. Hemmings,, C. Bessia,, A. Garcia,, and J. L. Virelizier. 1996. Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell derived PP2A. J. Virol. 70: 1415 1423.
64. Mocarski, E. S.,, L. E. Post,, and B. Roizman. 1980. Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22: 243 255.
65. Morissette, G.,, and L. Flamand. 2010. Herpesviruses and chromosomal integration. J. Virol. 84: 12100 12109.
66. Murthy, S.,, G. S. Hayward,, S. Wheelan,, M. S. Forman,, J. H. Ahn,, R. F. Pass,, and R. Rav-Boger. 2011. Detection of a single identical cytomegalovirus (CMV) strain in recently seroconverted young women. PLoS One 6: e15949.
67. Oliveira, S. A.,, S. H. Park,, P. Lee,, A. Bendelac,, and T. E. Shenk. 2002. Murine cytomegalovirus m02 gene family protects against natural killer cell-mediated immune surveillance. J. Virol. 76: 885 894.
68. Pahwa, S.,, K. Biron,, W. Lim,, P. Swenson,, M. H. Kaplan,, N. Sadick,, and R. Pahwa. 1988. Continuous varicella-zoster infection associated with acyclovir resistance in a child with AIDS. JAMA 260: 2879 2882.
69. Pereira, L.,, E. Cassai,, R. W. Honess,, B. Roizman,, M. Terni,, and A. Nahmias. 1976. Variability in structural polypeptides of herpes simplex virus 1 strains: potential application in molecular epidemiology. Infect. Immun. 13: 211 220.
70. Pfeffer, S.,, A. Sewer,, M. Lagos-Quintana,, R. Sheridan,, C. Sander,, F. A. Grasser,, L. F. van Dyk,, C. K. Ho,, S. Shuman,, M. Chien,, J. J. Russo,, J. Ju,, G. Randall,, B. D. Lindenbach,, C. M. Rice,, V. Simon,, D. D. Ho,, M. Zavolan,, and T. Tuschl. 2005. Identification of microRNAs of the herpesvirus family. Nat. Methods 2: 269 276.
71. Pfeffer, S.,, M. Zavolan,, F. A. Grasser,, M. Chien,, J. J. Russo,, J. Ju,, B. John,, A. J. Enright,, D. Marks,, C. Sander,, and T. Tuschl. 2004. Identification of virus-encoded microRNAs. Science 304: 734 736.
72. Polic, B.,, H. Hengel,, A. Krmpotic,, J. Trgovcich,, I. Pavic,, P. Lucin,, S. Jonjic,, and U. H. Koszinowski. 1998. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188: 1047 1054.
73. Raab-Traub, N., and K. Flynn. 1986. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47: 883 889.
74. Rafailidis, P. I.,, E. G. Mourtzoukou,, I. C. Varbobitis,, and M. E. Falagas. 2008. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol. J. 5: 47.
75. Roizman, B. 1980. Genome variation and evolution among herpes viruses. Ann. N. Y. Acad. Sci. 354: 472 483.
76. Roizman, B.,, and M. Tognon. 1983. Restriction endonuclease patterns of herpes simplex virus DNA: application to diagnosis and molecular epidemiology. Curr. Top. Microbiol. Immunol. 104: 273 286.
77. Russo, J. J.,, R. A. Bohenzky,, M. C. Chien,, J. Chen,, M. Yan,, D. Maddalena,, J. P. Parry,, D. Peruzzi,, I. S. Edelman,, Y. Chang,, and P. S. Moore. 1996. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA 93: 14862 14867.
78. Rustgi, V. K.,, R. A. Sacher,, P. O’Brien,, and V. F. Garagusi. 1983. Fatal disseminated cytomegalovirus infection in an apparently normal adult. Arch. Intern. Med. 143: 372 373.
79. Schachtel, G. A.,, P. Bucher,, E. S. Mocarski,, B. E. Blaisdell,, and S. Karlin. 1991. Evidence for selective evolution in codon usage in conserved amino-acid segments of human alphaherpesvirus proteins. J. Mol. Evol. 33: 483 494.
80. Selbach, M.,, B. Schwanhausser,, N. Thierfelder,, Z. Fang,, R. Khanin,, and N. Rajewsky. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58 63.
81. Smith, H. R. C.,, J. W. Heusel,, I. K. Mehta,, S. Kim,, B. G. Dorner,, O. V. Naidenko,, K. Iizuka,, H. Furukawa,, D. L. Beckman,, J. T. Pingel,, A. A. Scalzo,, D. H. Fremont,, and W. M. Yokoyama. 2002. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99: 8826 8831.
82. Smith, L. M.,, A. R. McWhorter,, L. L. Masters,, G. R. Shellam,, and A. J. Redwood. 2008. Laboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus. J. Virol. 82: 6689 6696.
83. Spackova, M.,, M. Wiese-Posselt,, M. Dehnert,, D. Matysiak-Klose,, U. Heininger,, and A. Siedler. 2010. Comparative varicella vaccine effectiveness during outbreaks in day-care centres. Vaccine 28: 686 691.
84. Spear, G. T.,, N. S. Lurain,, C. J. Parker,, M. Ghassemi,, G. H. Payne,, and M. Saifuddin. 1995. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J. Immunol. 155: 4376 4381.
85. Stern-Ginossar, N.,, N. Elefant,, A. Zimmermann,, D. G. Wolf,, N. Saleh,, M. Biton,, E. Horwitz,, Z. Prokocimer,, M. Prichard,, G. Hahn,, D. Goldman-Wohl,, C. Greenfield,, S. Yagel,, H. Hengel,, Y. Altuvia,, H. Margalit,, and O. Mandelboim. 2007. Host immune system gene targeting by a viral miRNA. Science 317: 376 381.
86. Stern-Ginossar, N.,, N. Saleh,, M. D. Goldberg,, M. Prichard,, D. G. Wolf,, and O. Mandelboim. 2009. Analysis of human cytomegalovirus-encoded microRNA activity during infection. J. Virol. 83: 10684 10693.
87. Tillieux, S. L.,, W. S. Halsey,, E. S. Thomas,, J. J. Voycik,, G. M. Sathe,, and V. Vassilev. 2008. Complete DNA sequences of two Oka strain varicella-zoster virus genomes. J. Virol. 82: 11023 11044.
88. Umbach, J. L.,, M. A. Nagel,, R. J. Cohrs,, D. H. Gilden,, and B. R. Cullen. 2009. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J. Virol. 83: 10677 10683.
89. Umbach, J. L.,, K. Wang,, S. Tang,, P. R. Krause,, E. K. Mont,, J. I. Cohen,, and B. R. Cullen. 2010. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2. J. Virol. 84: 1189 1192.
90. Varnum, S. M.,, D. N. Streblow,, M. E. Monroe,, P. Smith,, K. J. Auberry,, L. Pasa-Tolic,, D. Wang,, D. G. Camp,, K. Rodland,, S. Wiley,, W. Britt,, T. Shenk,, R. D. Smith,, and J. A. Nelson. 2004. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol. 78: 10960 10966.
91. Virgin, H. W.,, P. Latreille,, P. Wamsley,, K. Hallsworth,, K. E. Weck,, A. J. DalCanto,, and S. H. Speck. 1997. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71: 5894 5904.
92. Voigt, V.,, C. A. Forbes,, J. N. Tonkin,, M. A. Degli-Esposti,, H. R. C. Smith,, W. M. Yokoyama,, and A. A. Scalzo. 2003. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc. Natl. Acad. Sci. USA 100: 13483 13488.
93. Wagner, E. K.,, and D. C. Bloom. 1997. Experimental investigation of herpes simplex virus latency. Clin. Microbiol. Rev. 10: 419 443.
94. Wagner, M.,, Z. Ruzsics,, and U. H. Koszinowski. 2002. Herpesvirus genetics has come of age. Trends Microbiol. 10: 318 324.
95. Waidner, L. A.,, R. W. Morgan,, A. S. Anderson,, E. L. Bernberg,, S. Kamboj,, M. Garcia,, S. M. Riblet,, M. Ouyang,, G. K. Isaacs,, M. Markis,, B. C. Meyers,, P. J. Green,, and J. Burnside. 2009. MicroRNAs of gallid and meleagrid herpesviruses show generally conserved genomic locations and are virus specific. Virology 388: 128 136.
96. Wang, A.,, L. Ren,, G. Abenes,, and R. Hai. 2009. Genome sequence divergences and functional variations in human cytomegalovirus strains. FEMS Immunol. Med. Microbiol. 55: 23 33.
97. Weber, P. C.,, M. D. Challberg,, N. J. Nelson,, M. Levine,, and J. C. Glorioso. 1988. Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54: 369 381.
98. Wrensch, M.,, A. Weinberg,, J. Wiencke,, R. Miike,, G. Barger,, and K. Kelsey. 2001. Prevalence of antibodies to four herpesviruses among adults with glioma and controls. Am. J. Epidemiol. 154: 161 165.
99. Wright, J. F.,, A. Kurosky,, E. L. Pryzdial,, and S. Wasi. 1995. Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J. Virol. 69: 4784 4791.
100. Yu, D.,, M. C. Silva,, and T. Shenk. 2003. Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc. Natl. Acad. Sci. USA 100: 12396 12401.

Tables

Generic image for table
TABLE 1

Selection of herpesviruses of nonhuman primates, mammals, birds, and fish

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15
Generic image for table
TABLE 2

Herpesviruses of humans

Citation: Trilling M, Khanh Le V, Hengel H. 2012. Genome Plasticity of Herpesviruses: Conservative yet Flexible, p 248-266. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error