1887

Chapter 17 : The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen,

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap17-2.gif

Abstract:

As a parasite that causes a variety of chronic human and livestock diseases in Africa and elsewhere, the trypanosome needs to overcome a number of grand challenges mounted, directly or indirectly, by its wide range of hosts. In general, the adaptations are all to do with the generation, diversification, and regulation of hypervariant, multigene families, the most important of which encodes thousands of variant surface glycoprotein (VSG) isoforms. To understand how the various interlinked processes in antigenic variation contribute to and are served by genome adaptations, it is necessary first to describe what we know, phenotypically and genotypically, about this variation system. Uniquely to the African trypanosomes that use antigenic variation, there is also a set of minichromosomes, number ~100. There is a set of potential transcription units, known as bloodstream expression sites (BES), adjacent to the telomeres of some of the megabase chromosomes and numbering 5 to 15 per genome, depending on the strain. The main function of BES is to provide transcription loci for VSG. Mechanisms for singular and differential expression of VSG center on the BES, which emphasizes the pivotal role of the expression site in antigenic variation. Importantly, short indels of a few bases also occur, creating frame-shifting: pseudogene formation. The other types of VSG locus also display signs of change through recombination, although fewer data are available.

Citation: Barry J. 2012. The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, , p 286-302. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch17

Key Concept Ranking

RNA Polymerase II
0.5102041
RNA Polymerase I
0.50765306
0.5102041
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The VSG protein and gene cassette. (A) Quaternary structure of the ILTat 1.24 VSG dimer (image courtesy of Mark Carrington), with the N-terminal domain (monomers purple or green) to the left and the C-terminal domain (both monomers orange) to the right. (B) Diagram of the VSG primary structure, showing signal peptide (light blue), the N-terminal domain (purple) with secondary structure indicated, and the C-terminal domain (orange). Accompanying the primary structure is an identity histogram of ILTat 1.24 and the six top ClustalW hits in the genome strain queried with the ILTat 1.24 VSG (N-and C-terminal domains queried separately), showing that conservation is greatest at the downstream end of the C-terminal domain. (C) Silent cassette, in which the coding sequence is color-coded to match the protein diagrams. The 70-bp tract delimiting the upstream end of the cassette is indicated by a hatched arrow. Beneath is a Jalview ( ) image of the alignment of two cassettes retrieved by ILTat 1.24 querying of the genome strain in geneDB (http://old.genedb.org/genedb/tryp/index.jsp), stretching 2,000 bp upstream and 200 bp downstream of the coding sequence. Extended vertical lines denote the cassette ends and the start codon. The only significant identity is at the cassette flanks. doi:10.1128/9781555817213.ch17f01

Citation: Barry J. 2012. The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, , p 286-302. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The genome. To the left are images of ethidium bromide-stained pulsed-field gel separations of genomic DNA of two strains of (images courtesy of Sara Melville); the positions and sizes of, and numbers within, each chromosome size class are shown alongside. To the right are maps of typical loci from the four genome compartments inhabited by . On the maps, solid-colored arrows indicate s, white arrows indicate other open reading frames, black vertically hatched arrows indicate 70-bp repeat tracts (shown as vertical lines when there are very few repeats in the tract), colored vertically hatched arrows indicate other repeat tracts (which have no direct role in antigenic variation), multiply repeated arrows with blue X's indicate telomere repeat tracts, right-angled arrows indicate promoters, and the flash symbol indicates active . The karyotypic locations of the genome compartments are indicated. doi:10.1128/9781555817213.ch17f02

Citation: Barry J. 2012. The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, , p 286-302. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

switching. Maps of the genome compartments are as in Fig. 2 , and the five types of switch that have been observed in vivo in normally switching trypanosomes are depicted, in order of their probability in the switching hierarchy. Two BES are shown centrally, the left one with the and some of its flanks deleted following a spontaneous break that initiates recombinational switching. (1) A minichromosome donates a duplicate running from its 70-bp repeat tract to perhaps the end of the chromosome; (2) a silent BES donates as for switch type 1; (3) there is a reversible transcriptional switch between two BES (note that this mechanism would not be prompted by the break-deletion events in the active BES); (4) a cassette is duplicated from an intact array gene, replacing the cassette in the active BES—the 3′ limit of duplication could be anywhere from the start of the C-terminal domain-encoding sequence to within the 3′ UTR of the (5) one or more segments from one or more array (pseudo)s segmentally convert the in the BES. doi:10.1128/9781555817213.ch17f03

Citation: Barry J. 2012. The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, , p 286-302. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

evolution. (A) The basic evolutionary protocol operating on the array. Benefits to the trypanosome of gene duplication are shown to the left, and benefits of divergence are shown to the right. (B) Divergence of recently duplicated N-terminal domains. ClustalW nucleotide alignments of high-identity N-terminal domains identified in the genome strain are displayed as Jalview images ( ). Each image shows identity as black and difference as white. The percent peptide and nucleotide identities of each pair are shown. The highest-identify pair shows some base substitutions (point mutations) and short indels, as well as one cluster of substitutions or a segmental conversion from another gene. Similar substitutions, short indels, and a segmental conversion are evident in the second pair, while the remaining two pairs show too many differences to allow interpretation. Examination of many such pairs shows no particular preference in the position of mutations. doi:10.1128/9781555817213.ch17f04

Citation: Barry J. 2012. The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, , p 286-302. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817213.chap17
1. Barbet, A. F.,, and S. M. Kamper. 1993. The importance of mosaic genes to trypanosome survival. Parasitol. Today 9:6366.
2. Barbour, A. G.,, Q. Dai,, B. I. Restrepo,, H. G. Stoenner,, and S. A. Frank. 2006. Pathogen escape from host immunity by a genome program for antigenic variation. Proc. Natl. Acad. Sci. USA 103:1829018295.
3. Barry, J. D. 1997. The relative significance of mechanisms of antigenic variation in African trypanosomes. Parasitol. Today 13:212218.
4. Barry, J. D.,, and R. McCulloch. 2001. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49:170.
5. Barry, J. D.,, S. V. Graham,, K. R. Matthews,, P. G. Shiels,, and O. A. Shonekan. 1990. Stage-specific mechanisms for activation and expression of variant surface glycoprotein genes in Trypanosoma brucei. Biochem. Soc. Trans. 18:708710.
6. Bentley, D.,, M. Holden,, M. Sebaihia,, A. M. Cerdeno-Tarraga,, and J. Parkhill. 2002a. Genome giants. Trends Microbiol. 10:309310.
7. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill,, and D. A. Hopwood. 2002b. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141147.
8. Berriman, M.,, E. Ghedin,, C. Hertz-Fowler,, G. Blandin,, H. Renauld,, D. C. Bartholomeu,, N. J. Lennard,, E. Caler,, N. E. Hamlin,, B. Haas,, U. Bohme,, L. Hannick,, M. A. Aslett,, J. Shallom,, L. Marcello,, L. Hou,, B. Wickstead,, U. C. Alsmark,, C. Arrowsmith,, R. J. Atkin,, A. J. Barron,, F. Bringaud,, K. Brooks,, M. Carrington,, I. Cherevach,, T. J. Chillingworth,, C. Churcher,, L. N. Clark,, C. H. Corton,, A. Cronin,, R. M. Davies,, J. Doggett,, A. Djikeng,, T. Feldblyum,, M. C. Field,, A. Fraser,, I. Goodhead,, Z. Hance,, D. Harper,, B. R. Harris,, H. Hauser,, J. Hostetler,, A. Ivens,, K. Jagels,, D. Johnson,, J. Johnson,, K. Jones,, A. X. Kerhornou,, H. Koo,, N. Larke,, S. Landfear,, C. Larkin,, V. Leech,, A. Line,, A. Lord,, A. MacLeod,, P. J. Mooney,, S. Moule,, D. M. Martin,, G. W. Morgan,, K. Mungall,, H. Norbertczak,, D. Ormond,, G. Pai,, C. S. Peacock,, J. Peterson,, M. A. Quail,, E. Rabbinowitsch,, M. A. Rajandream,, C. Reitter,, S. L. Salzberg,, M. Sanders,, S. Schobel,, S. Sharp,, M. Simmonds,, A. J. Simpson,, L. Tallon,, C. M. Turner,, A. Tait,, A. R. Tivey,, S. Van Aken,, D. Walker,, D. Wanless,, S. Wang,, B. White,, O. White,, S. Whitehead,, J. Woodward,, J. Wortman,, M. D. Adams,, T. M. Embley,, K. Gull,, E. Ullu,, J. D. Barry,, A. H. Fairlamb,, F. Opperdoes,, B. G. Barrell,, J. E. Donelson,, N. Hall,, C. M. Fraser,, S. E. Melville,, and N. M. El Sayed. 2005. The genome of the African trypanosome Trypanosoma brucei. Science 309: 416422.
9. Bitter, W.,, H. Gerrits,, R. Kieft,, and P. Borst. 1998. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature 391:499502.
10. Blumenthal, T. 1998. Gene clusters and polycistronic transcription in eukaryotes. Bioessays 20:480487.
11. Boothroyd, C. E.,, O. Dreesen,, T. Leonova,, K. I. Ly,, L. M. Figueiredo,, G. A. Cross,, and F. N. Papavasiliou. 2009. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459:278281.
12. Bringaud, F.,, N. Biteau,, J. E. Donelson,, and T. Baltz. 2001. Conservation of metacyclic variant surface glycoprotein expression sites among different trypanosome isolates. Mol. Biochem. Parasitol. 113:6778.
13. Callejas, S.,, V. Leech,, C. Reitter,, and S. Melville. 2006. Hemizygous subtelomeres of an African trypanosome chromosome may account for over 75% of chromosome length. Genome Res. 16:11091118.
14. Caporale, L. H. 2006. The Implicit Genome. Oxford University Press,Oxford, United Kingdom.
15. Carrington, M.,, and J. Boothroyd. 1996. Implications of conserved structural motifs in disparate trypanosome surface proteins. Mol. Biochem. Parasitol. 81:119126.
16. Dagenais, T. R.,, K. P. Demick,, J. D. Bangs,, K. T. Forest,, D. M. Paulnock,, and J. M. Mansfield. 2009. T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect. Immun. 77:141151.
17. de Lange, T.,, J. M. Kooter,, P. A. M. Michels,, and P. Borst. 1983. Telomere conversion in trypanosomes. Nucleic Acids Res. 11:81498165.
18. El Sayed, N. M.,, P. J. Myler,, G. Blandin,, M. Berriman,, J. Crabtree,, G. Aggarwal,, E. Caler,, H. Renauld,, E. A. Worthey,, C. Hertz-Fowler,, E. Ghedin,, C. Peacock,, D. C. Bartholomeu,, B. J. Haas,, A. N. Tran,, J. R. Wortman,, U. C. Alsmark,, S. Angiuoli,, A. Anupama,, J. Badger,, F. Bringaud,, E. Cadag,, J. M. Carlton,, G. C. Cerqueira,, T. Creasy,, A. L. Delcher,, A. Djikeng,, T. M. Embley,, C. Hauser,, A. C. Ivens,, S. K. Kummerfeld,, J. B. Pereira-Leal,, D. Nilsson,, J. Peterson,, S. L. Salzberg,, J. Shallom,, J. C. Silva,, J. Sundaram,, S. Westenberger,, O. White,, S. E. Melville,, J. E. Donelson,, B. Andersson,, K. D. Stuart,, and N. Hall. 2005. Comparative genomics of Trypanosomatid parasitic protozoa. Science 309:404409.
19. Fan, C.,, Y. Zhang,, Y. Yu,, S. Rounsley,, M. Long,, and R. A. Wing. 2008. The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice. Mol. Plant 1:839850.
20. Field, M. C.,, and J. C. Boothroyd. 1996. Sequence divergence in a family of variant surface glycoprotein genes from trypanosomes—coding region hypervariability and downstream recombinogenic repeats. J. Mol. Evol. 42:500511.
21. Freitas-Junior, L. H.,, E. Bottius,, L. A. Pirrit,, K. W. Deitsch,, C. Scheidig,, F. Guinet,, U. Nehrbass,, T. E. Wellems,, and A. Scherf. 2000. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407:10181022.
22. Futse, J. E.,, K. A. Brayton,, D. P. Knowles, Jr.,, and G. H. Palmer. 2005. Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants. Mol. Microbiol. 57:212221.
23. Futse, J. E.,, K. A. Brayton,, M. J. Dark,, D. P. Knowles, Jr.,, and G. H. Palmer. 2008. Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proc. Natl. Acad. Sci. USA 105:21232127.
24. Gjini, E.,, D. T. Haydon,, J. D. Barry,, and C. Cobbold. 2010. Critical interplay between parasite differentiation, host immunity, and antigenic variation in trypanosome infections. Am. Nat. 176:424439.
25. Graham, S. V.,, S. Terry,, and J. D. Barry. 1999. A structural and transcription pattern for variant surface glycoprotein gene expression sites used in metacyclic stage Trypanosoma brucei. Mol. Biochem. Parasitol. 103:141154.
26. Gunzl, A.,, T. Bruderer,, G. Laufer,, B. Schimanski,, L. C. Tu,, H. M. Chung,, P. T. Lee,, and M. G. Lee. 2003. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot. Cell 2:542551.
27. Haanstra, J. R.,, M. Stewart,, V. D. Luu,, A. van Tuijl,, H. V. Westerhoff,, C. Clayton,, and B. M. Bakker. 2008. Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J. Biol. Chem. 283:24952507.
28. Hall, T.,, and K. Esser. 1984. Topologic mapping of protective and nonprotective epitopes on the variant surface glycoprotein of the WRATat 1 clone of Trypanosoma brucei rhodesiense. J. Immunol. 132:20592063.
29. Hartley, C. L.,, and R. McCulloch. 2008. Trypanosoma brucei BRCA2 acts in antigenic variation and has undergone a recent expansion in BRC repeat number that is important during homologous recombination. Mol. Microbiol. 68:12371251.
30. He, X.,, and J. Zhang. 2005. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:11571164.
31. Hertz-Fowler, C.,, L. M. Figueiredo,, M. A. Quail,, M. Becker,, A. Jackson,, N. Bason,, K. Brooks,, C. Churcher,, S. Fahkro,, I. Goodhead,, P. Heath,, M. Kartvelishvili,, K. Mungall,, D. Harris,, H. Hauser,, M. Sanders,, D. Saunders,, K. Seeger,, S. Sharp,, J. E. Taylor,, D. Walker,, B. White,, R. Young,, G. A. Cross,, G. Rudenko,, J. D. Barry,, E. J. Louis,, and M. Berriman. 2008. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 3:e3527.
32. Hutchinson, O. C.,, K. Picozzi,, N. G. Jones,, H. Mott,, R. Sharma,, S. C. Welburn,, and M. Carrington. 2007. Variant surface glycoprotein gene repertoires in Trypanosoma brucei have diverged to become strain-specific. BMC Genomics 8:234.
33. LaFave, M. C.,, and J. Sekelsky. 2009. Mitotic recombination: why? when? how? where? PLoS Genet. 5:e1000411.
34. Lau, A. O. 2009. An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective. Mol. Biochem. Parasitol. 164:18.
35. Lee, M. G.,, and L. H. T. Van der Ploeg. 1987. Frequent independent duplicative transpositions activate a single VSG gene. Mol. Cell. Biol. 7:357364.
36. Lee, P. S.,, P. W. Greenwell,, M. Dominska,, M. Gawel,, M. Hamilton,, and T. D. Petes. 2009. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet. 5:e1000410.
37. Linardopoulou, E. V.,, E. M. Williams,, Y. Fan,, C. Friedman,, J. M. Young,, and B. J. Trask. 2005. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437:94100.
38. Lynch, M. 2007. The Origins of Genome Architecture. Sinauer Associates, Sunderland, MA.
39. Lythgoe, K. A.,, L. J. Morrison,, A. F. Read,, and J. D. Barry. 2007. Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proc. Natl. Acad. Sci. USA 104: 80958100.
40. Marcello, L.,, and J. D. Barry. 2007a. From silent genes to noisy populations—dialogue between the genotype and phenotypes of antigenic variation. J. Eukaryot. Microbiol. 54:1417.
41. Marcello, L.,, and J. D. Barry. 2007b. Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res. 17:13441352.
42. Melville, S. E.,, V. Leech,, C. S. Gerrard,, A. Tait,, and J. M. Blackwell. 1998. The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. Mol. Biochem. Parasitol. 94:155173.
43. Metruccio, M. M.,, E. Pigozzi,, D. Roncarati,, F. Berlanda Scorza,, N. Norais,, S. A. Hill,, V. Scarlato,, and I. Delany. 2009. A novel phase variation mechanism in the meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. PLoS Pathog. 5:e1000710.
44. Michels, P. A. M.,, A. Y. C. Liu,, A. Bernards,, P. Sloof,, M. M. W. Vanderbijl,, A. H. Schinkel,, H. H. Menke,, P. Borst,, G. H. Veeneman,, M. C. Tromp,, and J. H. Vanboom. 1983. Activation of the genes for variant surface glycoprotein-117 and glycoprotein-118 in Trypanosoma brucei. J. Mol. Biol. 166:537556.
45. Miller, E. N.,, L. M. Allan,, and M. J. Turner. 1984. Topological analysis of antigenic determinants on a variant surface glycoprotein of Trypanosoma brucei. Mol. Biochem. Parasitol. 13:6781.
46. Morrison, L. J.,, P. Majiwa,, A. F. Read,, and J. D. Barry. 2005. Probabilistic order in antigenic variation of Trypanosoma brucei. Int. J. Parasitol. 35:961972.
47. Moxon, E. R.,, P. B. Rainey,, M. A. Nowak,, and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4: 2433.
48. Navarro, M.,, X. Penate,, and D. Landeira. 2007. Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol. 15:263270.
49. Ohshima, K.,, S. Kang,, J. E. Larson,, and R. D. Wells. 1996. TTA.TAA triplet repeats in plasmids form a non-H bonded structure. J. Biol. Chem. 271:1678416791.
50. Pays, E. 1989. Pseudogenes, chimaeric genes and the timing of antigen variation in African trypanosomes. Trends Genet. 5:389391.
51. Pays, E.,, and B. Vanhollebeke. 2008. Mutual self-defence: the trypanolytic factor story. Microbes Infect. 10:985989.
52. Pays, E.,, D. Salmon,, L. J. Morrison,, L. Marcello,, and J. D. Barry,. 2007. Antigenic variation in Trypanosoma brucei, p. 339372. In D. Barry,, R. McCulloch,, J. Mottram,, and A. Acosta-Serrano (ed.), Trypanosomes: after the Genome. Horizon Scientific Press, Wymondham, United Kingdom.
53. Pays, E.,, S. Houard,, A. Pays,, S. Van Assel,, F. Dupont,, D. Aerts,, G. Huet-Duvillier,, V. Gomes,, C. Richet,, P. Degand, et al. 1985. Trypanosoma brucei: the extent of conversion in antigen genes may be related to the DNA coding specificity. Cell 42:821829.
54. Pease, L. R.,, D. H. Schulze,, G. M. Pfaffenbach,, and S. G. Nathenson. 1983. Spontaneous H-2 mutants provide evidence that a copy mechanism analogous to gene conversion generates polymorphism in the major histocompatibility complex. Proc. Natl. Acad. Sci. USA 80:242246.
55. Prucca, C. G.,, and H. D. Lujan. 2009. Antigenic variation in Giardia lamblia. Cell Microbiol. 11:17061715.
56. Robinson, N. P.,, N. Burman,, S. E. Melville,, and J. D. Barry. 1999. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol. Cell. Biol. 19:58395846.
57. Robinson, N. P.,, R. McCulloch,, C. Conway,, A. Browitt,, and J. D. Barry. 2002. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei. J. Biol. Chem. 277:2618526193.
58. Schwede, A.,, and M. Carrington. 2010. Bloodstream form trypanosome plasma membrane proteins: antigenic variation and invariant antigens. Parasitology 137:20292039.
59. Shah, J. S.,, J. R. Young,, B. E. Kimmel,, K. P. Iams,, and R. O. Williams. 1987. The 59 flanking sequence of a Trypanosoma brucei variable surface glycoprotein gene. Mol. Biochem. Parasitol. 24:163174.
60. Siegel, T. N.,, D. R. Hekstra,, L. E. Kemp,, L. M. Figueiredo,, J. E. Lowell,, D. Fenyo,, X. Wang,, S. Dewell,, and G. A. Cross. 2009. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev. 23: 10631076.
61. Teshima, K. M.,, and H. Innan. 2008. Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:13851398.
62. Therizols, P.,, T. Duong,, B. Dujon,, C. Zimmer,, and E. Fabre. 2010. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc. Natl. Acad. Sci. USA 107:20252030.
63. Thon, G.,, T. Baltz,, and H. Eisen. 1989. Antigenic diversity by the recombination of pseudogenes. Genes Dev. 3:12471254.
64. Timmers, H. T. M.,, T. de Lange,, J. M. Kooter,, and P. Borst. 1987. Coincident multiple activations of the same surface antigen gene in Trypanosoma brucei. J. Mol. Biol. 194:8190.
65. Vanhamme, L.,, P. Poelvoorde,, A. Pays,, P. Tebabi,, H. V. Xong,, and E. Pays. 2000. Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol. Microbiol. 36:328340.
66. Verstrepen, K. J.,, and G. R. Fink. 2009. Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu. Rev. Genet. 43:124.
67. Waterhouse, A. M.,, J. B. Procter,, D. M. Martin,, M. Clamp,, and G. J. Barton. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:11891191.
68. Wickstead, B.,, K. Ersfeld,, and K. Gull. 2004. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res. 14: 10141024.
69. Young, R.,, J. E. Taylor,, A. Kurioka,, M. Becker,, E. J. Louis,, and G. Rudenko. 2008. Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 9:385.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error