1887

Chapter 4 : Genome Structure and Variability in Coagulase-Negative Staphylococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genome Structure and Variability in Coagulase-Negative Staphylococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap04-2.gif

Abstract:

Coagulase-negative staphylococci (CoNS) are primarily commensals residing on the skin and mucosa of humans and animals. This chapter summarizes the most recent findings in the genomics of CoNS and discusses the mechanisms and factors contributing to the extraordinary flexibility of these pathogens. It first discusses fitness and virulence-associated factors of CoNS. All CoNS were found to be devoid of superantigen and toxin genes, but a number of genes and factors were identified which are associated with the commensal lifestyle and also the virulence of CoNS. An interesting finding of CoNS sequencing projects was that many of the species-and virulence-specific genes are located in a certain region of the staphylococcal genome around the chromosomal origin of replication. CoNS harbor a great diversity of mobile genetic elements which comprise, in addition to plasmids, mainly bacteriophages, genomic islands, transposons, and insertion sequence elements (IS). Horizontal gene transfer by mobile genetic elements has a major impact on enhancing the biological fitness of CoNS. Biofilm formation is a major pathomechanism of CoNS, notably in . Different mechanisms to modulate biofilm formation are indeed detectable during CoNS infections, and the process is therefore supposed to be critically involved in the establishment of device-associated infections. In most cases, hypervariability of biofilm formation was detected which was also accompanied by genome rearrangements, reflecting a significant flexibility of the staphylococcal genome during the infection process.

Citation: Ziebuhr W. 2012. Genome Structure and Variability in Coagulase-Negative Staphylococci, p 44-57. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch4

Key Concept Ranking

Mobile Genetic Elements
0.77571654
Bacteria and Archaea
0.62312466
Horizontal Gene Transfer
0.46815273
Bacterial Genetic Elements
0.4135569
0.77571654
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Dynamics of biofilm formation (BF) during device-related infections.

Citation: Ziebuhr W. 2012. Genome Structure and Variability in Coagulase-Negative Staphylococci, p 44-57. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817213.chap4
1. Bader, M. W.,, S. Sanowar,, M. E. Daley,, A. R. Schneider,, U. Cho,, W. Xu,, R. E. Klevit,, H. Le Moual,, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461 472.
2. Byrne, M. E.,, D. A. Rouch,, and R. A. Skurray. 1989. Nucleotide sequence analysis of IS 256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn 4001. Gene 81: 361 367.
3. Cho, S. H.,, K. Naber,, J. Hacker,, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570 575.
4. Christensen, G. D.,, L. M. Baddour,, B. M. Madison,, J. T. Parisi,, S. N. Abraham,, D. L. Hasty,, J. H. Lowrance,, J. A. Josephs,, and W. A. Simpson. 1990. Colonial morphology of staphylococci on Memphis agar: phase variation of slime production, resistance to beta-lactam antibiotics, and virulence. J. Infect. Dis. 161: 1153 1169.
5. Christensen, G. D.,, W. A. Simpson,, J. J. Younger,, L. M. Baddour,, F. F. Barrett,, D. M. Melton,, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996 1006.
6. Conlon, K.,, H. Humphreys,, and J. O’Gara. 2004. Inactivations of rsbU and sarA by IS 256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J. Bacteriol. 186: 6208 6219.
7. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
8. Couto, I.,, S. W. Wu,, A. Tomasz,, and H. de Lencastre. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J. Bacteriol. 185: 645 653.
9. Deighton, M.,, S. Pearson,, J. Capstick,, D. Spelman,, and R. Borland. 1992. Phenotypic variation of Staphylococcus epidermidis isolated from a patient with native valve endocarditis. J. Clin. Microbiol. 30: 2385 2390.
10. Dettenkofer, M.,, S. Wenzler-Rottele,, R. Babikir,, H. Bertz,, W. Ebner,, E. Meyer,, H. Ruden,, P. Gastmeier,, and F. D. Daschner. 2005. Surveillance of nosocomial sepsis and pneumonia in patients with a bone marrow or peripheral blood stem cell transplant: a multicenter project. Clin. Infect. Dis. 40: 926 931.
11. Deveau, H.,, J. E. Garneau,, and S. Moineau. 2010. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64: 475 493.
12. Edmond, M. B.,, S. E. Wallace,, D. K. McClish,, M. A. Pfaller,, R. N. Jones,, and R. P. Wenzel. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29: 239 244.
13. Filee, J.,, P. Siguier,, and M. Chandler. 2007. Insertion sequence diversity in archaea. Microbiol. Mol. Biol. Rev. 71: 121 157.
14. Flückiger, U.,, M. Ulrich,, A. Steinhuber,, G. Döring,, D. Mack,, R. Landmann,, C. Goerke,, and C. Wolz. 2005. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect. Immun. 73: 1811 1819.
15. Fournier, P. E.,, M. Drancourt,, and D. Raoult. 2007. Bacterial genome sequencing and its use in infectious diseases. Lancet Infect. Dis. 7: 711 723.
16. Frebourg, N. B.,, S. Lefebvre,, S. Baert,, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38: 877 880.
17. Galdbart, J. O.,, J. Allignet,, H. S. Tung,, C. Ryden,, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351 355.
18. Galdbart, J. O.,, A. Morvan,, N. Desplaces,, and N. el Solh. 1999. Phenotypic and genomic variation among Staphylococcus epidermidis strains infecting joint prostheses. J. Clin. Microbiol. 37: 1306 1312.
19. Gatermann, S.,, B. Kreft,, R. Marre,, and G. Wanner. 1992a. Identification and characterization of a surface-associated protein (Ssp) of Staphylococcus saprophyticus. Infect. Immun. 60: 1055 1060.
20. Gatermann, S.,, H. G. Meyer,, and G. Wanner. 1992b. Staphylococcus saprophyticus hemagglutinin is a 160-kilodalton surface polypeptide. Infect. Immun. 60: 4127 4132.
21. Gill, S. R.,, D. E. Fouts,, G. L. Archer,, E. F. Mongodin,, R. T. Deboy,, J. Ravel,, I. T. Paulsen,, J. F. Kolonay,, L. Brinkac,, M. Beanan,, R. J. Dodson,, S. C. Daugherty,, R. Madupu,, S. V. Angiuoli,, A. S. Durkin,, D. H. Haft,, J. Vamathevan,, H. Khouri,, T. Utterback,, C. Lee,, G. Dimitrov,, L. Jiang,, H. Qin,, J. Weidman,, K. Tran,, K. Kang,, I. R. Hance,, K. E. Nelson,, and C. M. Fraser. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187: 2426 2438.
22. Goossens, H. 2005. European status of resistance in nosocomial infections. Chemotherapy 51: 177 181.
23. Götz, F. 1990. Staphylococcus carnosus: a new host organism for gene cloning and protein production. Soc. Appl. Bacteriol. Symp. Ser. 19: 49S 53S.
24. Gu, J.,, H. Li,, M. Li,, C. Vuong,, M. Otto,, Y. Wen,, and Q. Gao. 2005. Bacterial insertion sequence IS 256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J. Hosp. Infect. 61: 342 348.
25. Hancock, R. E.,, and H. G. Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551 1557.
26. Hanssen, A. M.,, and J. U. Ericson Sollid. 2006. SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol. 46: 8 20.
27. Hanssen, A. M.,, G. Kjeldsen,, and J. U. Sollid. 2004. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48: 285 296.
28. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083 1091.
29. Hennig, S.,, S. Nyunt Wai,, and W. Ziebuhr. 2007. Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate. Int. J. Med. Microbiol. 297: 117 122.
30. Hennig, S.,, and W. Ziebuhr. 2008. A transposase-independent mechanism gives rise to precise excision of IS 256 from insertion sites in Staphylococcus epidermidis. J. Bacteriol. 190: 1488 1490.
31. Hope, R.,, D. M. Livermore,, G. Brick,, M. Lillie,, and R. Reynolds. 2008. Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001-06. J. Antimicrob. Chemother. 62( Suppl. 2): ii65 ii74.
32. Horvath, P.,, and R. Barrangou. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167 170.
33. Hugonnet, S.,, H. Sax,, P. Eggimann,, J. C. Chevrolet,, and D. Pittet. 2004. Nosocomial bloodstream infection and clinical sepsis. Emerg. Infect. Dis. 10: 76 81.
34. Hussain, M.,, M. Herrmann,, C. von Eiff,, F. Perdreau-Remington,, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519 524.
35. Karginov, F. V.,, and G. J. Hannon. 2010. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37: 7 19.
36. Katayama, Y.,, F. Takeuchi,, T. Ito,, X. X. Ma,, Y. Ui-Mizutani,, I. Kobayashi,, and K. Hiramatsu. 2003. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 185: 2711 2722.
37. Kobayashi, I.,, A. Nobusato,, N. Kobayashi-Takahashi,, and I. Uchiyama. 1999. Shaping the genome—restriction-modification systems as mobile genetic elements. Curr. Opin. Genet. Dev. 9: 649 656.
38. Kocianova, S.,, C. Vuong,, Y. Yao,, J. M. Voyich,, E. R. Fischer,, F. R. DeLeo,, and M. Otto. 2005. Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Investig. 115: 688 694.
39. Kong, K. F.,, C. Vuong,, and M. Otto. 2006. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol. 296: 133 139.
40. Koskela, A.,, A. Nilsdotter-Augustinsson,, L. Persson,, and B. Soderquist. 2009. Prevalence of the ica operon and insertion sequence IS 256 among Staphylococcus epidermidis prosthetic joint infection isolates. Eur. J. Clin. Microbiol. Infect. Dis. 28: 655 660.
41. Kozitskaya, S.,, S. H. Cho,, K. Dietrich,, R. Marre,, K. Naber,, and W. Ziebuhr. 2004. The bacterial insertion sequence element IS 256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect. Immun. 72: 1210 1215.
42. Kozitskaya, S.,, M. E. Olson,, P. D. Fey,, W. Witte,, K. Ohlsen,, and W. Ziebuhr. 2005. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J. Clin. Microbiol. 43: 4751 4757.
43. Kresken, M.,, D. Hafner,, F.-J. Schmitz,, and T. A. Wichelhaus. 2009. Resistenzsituation bei klinisch wichtigen Infektionserregern gegenüber Antibiotika in Deutschland und im mitteleuropäischen Raum. Antiinfectives Intelligence, Rheinbach, Germany. http://www .p-e-g.org/ag_resistenz/PEG-Studie-2007.pdf.
44. Kristian, S. A.,, T. A. Birkenstock,, U. Sauder,, D. Mack,, F. Götz,, and R. Landmann. 2008. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J. Infect. Dis. 197: 1028 1035.
45. Kuroda, M.,, A. Yamashita,, H. Hirakawa,, M. Kumano,, K. Morikawa,, M. Higashide,, A. Maruyama,, Y. Inose,, K. Matoba,, H. Toh,, S. Kuhara,, M. Hattori,, and T. Ohta. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl. Acad. Sci. USA 102: 13272 13277.
46. Lasa, I.,, and J. R. Penades. 2006. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 157: 99 107.
47. Lauria, F. N.,, and C. Angeletti. 2003. The impact of nosocomial infections on hospital care costs. Infection 31(Suppl. 2): 35 43.
48. Li, M.,, Y. Lai,, A. E. Villaruz,, D. J. Cha,, D. E. Sturdevant,, and M. Otto. 2007. Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. USA 104: 9469 9474.
49. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178: 175 183.
50. Mack, D.,, H. Rohde,, L. G. Harris,, A. P. Davies,, M. A. Horstkotte,, and J. K. Knobloch. 2006. Biofilm formation in medical device-related infection. Int. J. Artif. Organs 29: 343 359.
51. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725 774.
52. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger-Bächi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 1953 1959.
53. Maki, H.,, and K. Murakami. 1997. Formation of potent hybrid promoters of the mutant llm gene by IS 256 transposition in methicillin-resistant Staphylococcus aureus. J. Bacteriol. 179: 6944 6948.
54. Marraffini, L. A.,, and E. J. Sontheimer. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843 1845.
55. Marraffini, L. A.,, and E. J. Sontheimer. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463: 568 571.
56. Mehlin, C.,, C. M. Headley,, and S. J. Klebanoff. 1999. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J . Exp. Med. 189: 907 918.
57. Mempel, M.,, H. Feucht,, W. Ziebuhr,, M. Endres,, R. Laufs,, and L. Grüter. 1994. Lack of mecA transcription in slime-negative phase variants of methicillin-resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother. 38: 1251 1255.
58. Meyer, H. G.,, U. Wengler-Becker,, and S. G. Gatermann. 1996. The hemagglutinin of Staphylococcus saprophyticus is a major adhesin for uroepithelial cells. Infect. Immun. 64: 3893 3896.
59. Mongkolrattanothai, K.,, S. Boyle,, T. V. Murphy,, and R. S. Daum. 2004. Novel non- mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 1823 1836.
60. National Nosocomial Infections Surveillance System. 2004. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 32: 470485.
61. O’Gara, J. P. 2007. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 270: 179 188.
62. Ohlsen, K.,, M. Eckart,, C. Hüttinger,, and W. Ziebuhr,. 2006. Pathogenic staphylococci: lessons from comparative genomics, p. 175 210. In J. Hacker, and U. Dobrindt (ed.), Pathogenomics: Genome Analysis of Pathogenic Microbes. Wiley-VCH, Weinheim, Germany.
63. Otto, M. 2009. Bacterial sensing of antimicrobial peptides. Contrib. Microbiol. 16: 136 149.
64. Peschel, A.,, R. W. Jack,, M. Otto,, L. V. Collins,, P. Staubitz,, G. Nicholson,, H. Kalbacher,, W. F. Nieuwenhuizen,, G. Jung,, A. Tarkowski,, K. P. van Kessel,, and J. A. van Strijp. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193: 1067 1076.
65. Peschel, A.,, M. Otto,, R. W. Jack,, H. Kalbacher,, G. Jung,, and F. Götz. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274: 8405 8410.
66. Peschel, A.,, and H. G. Sahl. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4: 529 536.
67. Petrelli, D.,, C. Zampaloni,, S. D’Ercole,, M. Prenna,, P. Ballarini,, S. Ripa,, and L. A. Vitali. 2006. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur. J. Clin. Microbiol. Infect. Dis. 25: 773 781.
68. Rachid, S.,, K. Ohlsen,, W. Witte,, J. Hacker,, and W. Ziebuhr. 2000. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44: 3357 3363.
69. Rice, L. B. 2006. Antimicrobial resistance in gram-positive bacteria. Am. J. Med. 119: S11 S19, discussion S62-S70.
70. Richards, M. J.,, J. R. Edwards,, D. H. Culver,, and R. P. Gaynes. 2000. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 21: 510 515.
71. Rogers, K. L.,, M. E. Rupp,, and P. D. Fey. 2008. The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl. Environ. Microbiol. 74: 6155 6157.
72. Rohde, H.,, C. Burdelski,, K. Bartscht,, M. Hussain,, F. Buck,, M. A. Horstkotte,, J. K. Knobloch,, C. Heilmann,, M. Herrmann,, and D. Mack. 2005. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55: 1883 1895.
73. Rosenstein, R.,, C. Nerz,, L. Biswas,, A. Resch,, G. Raddatz,, S. C. Schuster,, and F. Götz. 2009. Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300. Appl. Environ. Microbiol. 75: 811 822.
74. Rousseau, C.,, M. Gonnet,, M. Le Romancer,, and J. Nicolas. 2009. CRISPI: a CRISPR interactive database. Bioinformatics 25: 3317 3318.
75. Rupp, M. E.,, and G. L. Archer. 1994. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19: 231 243.
76. Siguier, P.,, J. Filee,, and M. Chandler. 2006. Insertion sequences in prokaryotic genomes. Curr. Opin. Microbiol. 9: 526 531.
77. Szabados, F.,, B. Kleine,, A. Anders,, M. Kaase,, T. Sakinc,, I. Schmitz,, and S. Gatermann. 2008. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol. Lett. 285: 163 169.
78. Takeuchi, F.,, S. Watanabe,, T. Baba,, H. Yuzawa,, T. Ito,, Y. Morimoto,, M. Kuroda,, L. Cui,, M. Takahashi,, A. Ankai,, S. Baba,, S. Fukui,, J. C. Lee,, and K. Hiramatsu. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187: 7292 7308.
79. Tormo, M. A.,, E. Knecht,, F. Götz,, I. Lasa,, and J. R. Penades. 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151: 2465 2475.
80. Tse, H.,, H. W. Tsoi,, S. P. Leung,, S. K. Lau,, P. C. Woo,, and K. Y. Yuen. 2010. Complete genome sequence of Staphylococcus lugdunensis strain HKU09-01. J. Bacteriol. 192: 1471 1472.
81. Van Eldere, J.,, W. E. Peetermans,, M. Struelens,, A. Deplano,, and H. Bobbaers. 2000. Polyclonal staphylococcal endocarditis caused by genetic variability. Clin. Infect. Dis. 31: 24 30.
82. Vuong, C.,, M. Durr,, A. B. Carmody,, A. Peschel,, S. J. Klebanoff,, and M. Otto. 2004. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell. Microbiol. 6: 753 759.
83. Vuong, C.,, J. M. Voyich,, E. R. Fischer,, K. R. Braughton,, A. R. Whitney,, F. R. DeLeo,, and M. Otto. 2004. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6: 269 275.
84. Wang, R.,, K. R. Braughton,, D. Kretschmer,, T. H. Bach,, S. Y. Queck,, M. Li,, A. D. Kennedy,, D. W. Dorward,, S. J. Klebanoff,, A. Peschel,, F. R. DeLeo,, and M. Otto. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13: 1510 1514.
85. Watanabe, S.,, T. Ito,, Y. Morimoto,, F. Takeuchi,, and K. Hiramatsu. 2007. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435. J. Bacteriol. 189: 2921 2925.
86. Weisser, M.,, S. M. Schoenfelder,, C. Orasch,, C. Arber,, A. Gratwohl,, R. Frei,, M. Eckart,, U. Flückiger,, and W. Ziebuhr. 2010. Hypervariability of biofilm formation and oxacillin resistance in a Staphylococcus epidermidis strain causing persistent severe infection in an immunocompromised patient. J. Clin. Microbiol. 48: 2407 2412.
87. Wisplinghoff, H.,, T. Bischoff,, S. M. Tallent,, H. Seifert,, R. P. Wenzel,, and M. B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39: 309 317.
88. Zhang, Y. Q.,, S. X. Ren,, H. L. Li,, Y. X. Wang,, G. Fu,, J. Yang,, Z. Q. Qin,, Y. G. Miao,, W. Y. Wang,, R. S. Chen,, Y. Shen,, Z. Chen,, Z. H. Yuan,, G. P. Zhao,, D. Qu,, A. Danchin,, and Y. M. Wen. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49: 1577 1593.
89. Ziebuhr, W.,, K. Dietrich,, M. Trautmann,, and M. Wilhelm. 2000. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int. J. Med. Microbiol. 290: 115 120.
90. Ziebuhr, W.,, C. Heilmann,, F. Götz,, P. Meyer,, K. Wilms,, E. Straube,, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster ( ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890 896.
91. Ziebuhr, W.,, S. Hennig,, M. Eckart,, H. Kraenzler,, C. Batzilla,, and S. Kozitskaya. 2006. Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Agents 28( Suppl. 1): S14 S20.
92. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Loessner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS 256. Mol. Microbiol. 32: 345 356.

Tables

Generic image for table
TABLE 1

Genomic islands detected in coagulase-negative staphylococcal genomes

Citation: Ziebuhr W. 2012. Genome Structure and Variability in Coagulase-Negative Staphylococci, p 44-57. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error