1887

Chapter 4 : Genome Structure and Variability in Coagulase-Negative Staphylococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Genome Structure and Variability in Coagulase-Negative Staphylococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap04-2.gif

Abstract:

Coagulase-negative staphylococci (CoNS) are primarily commensals residing on the skin and mucosa of humans and animals. This chapter summarizes the most recent findings in the genomics of CoNS and discusses the mechanisms and factors contributing to the extraordinary flexibility of these pathogens. It first discusses fitness and virulence-associated factors of CoNS. All CoNS were found to be devoid of superantigen and toxin genes, but a number of genes and factors were identified which are associated with the commensal lifestyle and also the virulence of CoNS. An interesting finding of CoNS sequencing projects was that many of the species-and virulence-specific genes are located in a certain region of the staphylococcal genome around the chromosomal origin of replication. CoNS harbor a great diversity of mobile genetic elements which comprise, in addition to plasmids, mainly bacteriophages, genomic islands, transposons, and insertion sequence elements (IS). Horizontal gene transfer by mobile genetic elements has a major impact on enhancing the biological fitness of CoNS. Biofilm formation is a major pathomechanism of CoNS, notably in . Different mechanisms to modulate biofilm formation are indeed detectable during CoNS infections, and the process is therefore supposed to be critically involved in the establishment of device-associated infections. In most cases, hypervariability of biofilm formation was detected which was also accompanied by genome rearrangements, reflecting a significant flexibility of the staphylococcal genome during the infection process.

Citation: Ziebuhr W. 2012. Genome Structure and Variability in Coagulase-Negative Staphylococci, p 44-57. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch4

Key Concept Ranking

Mobile Genetic Elements
0.77571654
Bacteria and Archaea
0.62312466
Horizontal Gene Transfer
0.46815273
Bacterial Genetic Elements
0.4135569
0.77571654
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Dynamics of biofilm formation (BF) during device-related infections.

Citation: Ziebuhr W. 2012. Genome Structure and Variability in Coagulase-Negative Staphylococci, p 44-57. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817213.chap4
1. Bader, M. W.,, S. Sanowar,, M. E. Daley,, A. R. Schneider,, U. Cho,, W. Xu,, R. E. Klevit,, H. Le Moual,, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461472.
2. Byrne, M. E.,, D. A. Rouch,, and R. A. Skurray. 1989. Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene 81:361367.
3. Cho, S. H.,, K. Naber,, J. Hacker,, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19:570575.
4. Christensen, G. D.,, L. M. Baddour,, B. M. Madison,, J. T. Parisi,, S. N. Abraham,, D. L. Hasty,, J. H. Lowrance,, J. A. Josephs,, and W. A. Simpson. 1990. Colonial morphology of staphylococci on Memphis agar: phase variation of slime production, resistance to beta-lactam antibiotics, and virulence. J. Infect. Dis. 161:11531169.
5. Christensen, G. D.,, W. A. Simpson,, J. J. Younger,, L. M. Baddour,, F. F. Barrett,, D. M. Melton,, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22:9961006.
6. Conlon, K.,, H. Humphreys,, and J. O’Gara. 2004. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J. Bacteriol. 186:62086219.
7. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
8. Couto, I.,, S. W. Wu,, A. Tomasz,, and H. de Lencastre. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J. Bacteriol. 185:645653.
9. Deighton, M.,, S. Pearson,, J. Capstick,, D. Spelman,, and R. Borland. 1992. Phenotypic variation of Staphylococcus epidermidis isolated from a patient with native valve endocarditis. J. Clin. Microbiol. 30:23852390.
10. Dettenkofer, M.,, S. Wenzler-Rottele,, R. Babikir,, H. Bertz,, W. Ebner,, E. Meyer,, H. Ruden,, P. Gastmeier,, and F. D. Daschner. 2005. Surveillance of nosocomial sepsis and pneumonia in patients with a bone marrow or peripheral blood stem cell transplant: a multicenter project. Clin. Infect. Dis. 40:926931.
11. Deveau, H.,, J. E. Garneau,, and S. Moineau. 2010. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64:475493.
12. Edmond, M. B.,, S. E. Wallace,, D. K. McClish,, M. A. Pfaller,, R. N. Jones,, and R. P. Wenzel. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29:239244.
13. Filee, J.,, P. Siguier,, and M. Chandler. 2007. Insertion sequence diversity in archaea. Microbiol. Mol. Biol. Rev. 71:121157.
14. Flückiger, U.,, M. Ulrich,, A. Steinhuber,, G. Döring,, D. Mack,, R. Landmann,, C. Goerke,, and C. Wolz. 2005. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect. Immun. 73:18111819.
15. Fournier, P. E.,, M. Drancourt,, and D. Raoult. 2007. Bacterial genome sequencing and its use in infectious diseases. Lancet Infect. Dis. 7:711723.
16. Frebourg, N. B.,, S. Lefebvre,, S. Baert,, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38:877880.
17. Galdbart, J. O.,, J. Allignet,, H. S. Tung,, C. Ryden,, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182:351355.
18. Galdbart, J. O.,, A. Morvan,, N. Desplaces,, and N. el Solh. 1999. Phenotypic and genomic variation among Staphylococcus epidermidis strains infecting joint prostheses. J. Clin. Microbiol. 37:13061312.
19. Gatermann, S.,, B. Kreft,, R. Marre,, and G. Wanner. 1992a. Identification and characterization of a surface-associated protein (Ssp) of Staphylococcus saprophyticus. Infect. Immun. 60:10551060.
20. Gatermann, S.,, H. G. Meyer,, and G. Wanner. 1992b. Staphylococcus saprophyticus hemagglutinin is a 160-kilodalton surface polypeptide. Infect. Immun. 60:41274132.
21. Gill, S. R.,, D. E. Fouts,, G. L. Archer,, E. F. Mongodin,, R. T. Deboy,, J. Ravel,, I. T. Paulsen,, J. F. Kolonay,, L. Brinkac,, M. Beanan,, R. J. Dodson,, S. C. Daugherty,, R. Madupu,, S. V. Angiuoli,, A. S. Durkin,, D. H. Haft,, J. Vamathevan,, H. Khouri,, T. Utterback,, C. Lee,, G. Dimitrov,, L. Jiang,, H. Qin,, J. Weidman,, K. Tran,, K. Kang,, I. R. Hance,, K. E. Nelson,, and C. M. Fraser. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187:24262438.
22. Goossens, H. 2005. European status of resistance in nosocomial infections. Chemotherapy 51:177181.
23. Götz, F. 1990. Staphylococcus carnosus: a new host organism for gene cloning and protein production. Soc. Appl. Bacteriol. Symp. Ser. 19:49S53S.
24. Gu, J.,, H. Li,, M. Li,, C. Vuong,, M. Otto,, Y. Wen,, and Q. Gao. 2005. Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J. Hosp. Infect. 61:342348.
25. Hancock, R. E.,, and H. G. Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24:15511557.
26. Hanssen, A. M.,, and J. U. Ericson Sollid. 2006. SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol. 46:820.
27. Hanssen, A. M.,, G. Kjeldsen,, and J. U. Sollid. 2004. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48:285296.
28. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20:10831091.
29. Hennig, S.,, S. Nyunt Wai,, and W. Ziebuhr. 2007. Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate. Int. J. Med. Microbiol. 297:117122.
30. Hennig, S.,, and W. Ziebuhr. 2008. A transposase-independent mechanism gives rise to precise excision of IS256 from insertion sites in Staphylococcus epidermidis. J. Bacteriol. 190:14881490.
31. Hope, R.,, D. M. Livermore,, G. Brick,, M. Lillie,, and R. Reynolds. 2008. Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001-06. J. Antimicrob. Chemother. 62(Suppl. 2):ii65ii74.
32. Horvath, P.,, and R. Barrangou. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167170.
33. Hugonnet, S.,, H. Sax,, P. Eggimann,, J. C. Chevrolet,, and D. Pittet. 2004. Nosocomial bloodstream infection and clinical sepsis. Emerg. Infect. Dis. 10:7681.
34. Hussain, M.,, M. Herrmann,, C. von Eiff,, F. Perdreau-Remington,, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65:519524.
35. Karginov, F. V.,, and G. J. Hannon. 2010. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37:719.
36. Katayama, Y.,, F. Takeuchi,, T. Ito,, X. X. Ma,, Y. Ui-Mizutani,, I. Kobayashi,, and K. Hiramatsu. 2003. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 185:27112722.
37. Kobayashi, I.,, A. Nobusato,, N. Kobayashi-Takahashi,, and I. Uchiyama. 1999. Shaping the genome—restriction-modification systems as mobile genetic elements. Curr. Opin. Genet. Dev. 9:649656.
38. Kocianova, S.,, C. Vuong,, Y. Yao,, J. M. Voyich,, E. R. Fischer,, F. R. DeLeo,, and M. Otto. 2005. Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Investig. 115:688694.
39. Kong, K. F.,, C. Vuong,, and M. Otto. 2006. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol. 296:133139.
40. Koskela, A.,, A. Nilsdotter-Augustinsson,, L. Persson,, and B. Soderquist. 2009. Prevalence of the ica operon and insertion sequence IS256 among Staphylococcus epidermidis prosthetic joint infection isolates. Eur. J. Clin. Microbiol. Infect. Dis. 28:655660.
41. Kozitskaya, S.,, S. H. Cho,, K. Dietrich,, R. Marre,, K. Naber,, and W. Ziebuhr. 2004. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect. Immun. 72:12101215.
42. Kozitskaya, S.,, M. E. Olson,, P. D. Fey,, W. Witte,, K. Ohlsen,, and W. Ziebuhr. 2005. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J. Clin. Microbiol. 43:47514757.
43. Kresken, M.,, D. Hafner,, F.-J. Schmitz,, and T. A. Wichelhaus. 2009. Resistenzsituation bei klinisch wichtigen Infektionserregern gegenüber Antibiotika in Deutschland und im mitteleuropäischen Raum. Antiinfectives Intelligence, Rheinbach, Germany. http://www .p-e-g.org/ag_resistenz/PEG-Studie-2007.pdf.
44. Kristian, S. A.,, T. A. Birkenstock,, U. Sauder,, D. Mack,, F. Götz,, and R. Landmann. 2008. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J. Infect. Dis. 197:10281035.
45. Kuroda, M.,, A. Yamashita,, H. Hirakawa,, M. Kumano,, K. Morikawa,, M. Higashide,, A. Maruyama,, Y. Inose,, K. Matoba,, H. Toh,, S. Kuhara,, M. Hattori,, and T. Ohta. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl. Acad. Sci. USA 102:1327213277.
46. Lasa, I.,, and J. R. Penades. 2006. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 157:99107.
47. Lauria, F. N.,, and C. Angeletti. 2003. The impact of nosocomial infections on hospital care costs. Infection 31(Suppl. 2):3543.
48. Li, M.,, Y. Lai,, A. E. Villaruz,, D. J. Cha,, D. E. Sturdevant,, and M. Otto. 2007. Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. USA 104:94699474.
49. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178:175183.
50. Mack, D.,, H. Rohde,, L. G. Harris,, A. P. Davies,, M. A. Horstkotte,, and J. K. Knobloch. 2006. Biofilm formation in medical device-related infection. Int. J. Artif. Organs 29:343359.
51. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62:725774.
52. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger-Bächi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:19531959.
53. Maki, H.,, and K. Murakami. 1997. Formation of potent hybrid promoters of the mutant llm gene by IS256 transposition in methicillin-resistant Staphylococcus aureus. J. Bacteriol. 179:69446948.
54. Marraffini, L. A.,, and E. J. Sontheimer. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:18431845.
55. Marraffini, L. A.,, and E. J. Sontheimer. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568571.
56. Mehlin, C.,, C. M. Headley,, and S. J. Klebanoff. 1999. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J. Exp. Med. 189:907918.
57. Mempel, M.,, H. Feucht,, W. Ziebuhr,, M. Endres,, R. Laufs,, and L. Grüter. 1994. Lack of mecA transcription in slime-negative phase variants of methicillin-resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother. 38:12511255.
58. Meyer, H. G.,, U. Wengler-Becker,, and S. G. Gatermann. 1996. The hemagglutinin of Staphylococcus saprophyticus is a major adhesin for uroepithelial cells. Infect. Immun. 64:38933896.
59. Mongkolrattanothai, K.,, S. Boyle,, T. V. Murphy,, and R. S. Daum. 2004. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:18231836.
60. National Nosocomial Infections Surveillance System. 2004. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 32:470485.
61. O’Gara, J. P. 2007. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 270:179188.
62. Ohlsen, K.,, M. Eckart,, C. Hüttinger,, and W. Ziebuhr,. 2006. Pathogenic staphylococci: lessons from comparative genomics, p. 175210. In J. Hacker, and U. Dobrindt (ed.), Pathogenomics: Genome Analysis of Pathogenic Microbes. Wiley-VCH, Weinheim, Germany.
63. Otto, M. 2009. Bacterial sensing of antimicrobial peptides. Contrib. Microbiol. 16:136149.
64. Peschel, A.,, R. W. Jack,, M. Otto,, L. V. Collins,, P. Staubitz,, G. Nicholson,, H. Kalbacher,, W. F. Nieuwenhuizen,, G. Jung,, A. Tarkowski,, K. P. van Kessel,, and J. A. van Strijp. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193:10671076.
65. Peschel, A.,, M. Otto,, R. W. Jack,, H. Kalbacher,, G. Jung,, and F. Götz. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274:84058410.
66. Peschel, A.,, and H. G. Sahl. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4:529536.
67. Petrelli, D.,, C. Zampaloni,, S. D’Ercole,, M. Prenna,, P. Ballarini,, S. Ripa,, and L. A. Vitali. 2006. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur. J. Clin. Microbiol. Infect. Dis. 25:773781.
68. Rachid, S.,, K. Ohlsen,, W. Witte,, J. Hacker,, and W. Ziebuhr. 2000. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44:33573363.
69. Rice, L. B. 2006. Antimicrobial resistance in gram-positive bacteria. Am. J. Med. 119:S11S19, discussion S62-S70.
70. Richards, M. J.,, J. R. Edwards,, D. H. Culver,, and R. P. Gaynes. 2000. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 21:510515.
71. Rogers, K. L.,, M. E. Rupp,, and P. D. Fey. 2008. The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl. Environ. Microbiol. 74:61556157.
72. Rohde, H.,, C. Burdelski,, K. Bartscht,, M. Hussain,, F. Buck,, M. A. Horstkotte,, J. K. Knobloch,, C. Heilmann,, M. Herrmann,, and D. Mack. 2005. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55:18831895.
73. Rosenstein, R.,, C. Nerz,, L. Biswas,, A. Resch,, G. Raddatz,, S. C. Schuster,, and F. Götz. 2009. Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300. Appl. Environ. Microbiol. 75:811822.
74. Rousseau, C.,, M. Gonnet,, M. Le Romancer,, and J. Nicolas. 2009. CRISPI: a CRISPR interactive database. Bioinformatics 25:33173318.
75. Rupp, M. E.,, and G. L. Archer. 1994. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19:231243.
76. Siguier, P.,, J. Filee,, and M. Chandler. 2006. Insertion sequences in prokaryotic genomes. Curr. Opin. Microbiol. 9:526531.
77. Szabados, F.,, B. Kleine,, A. Anders,, M. Kaase,, T. Sakinc,, I. Schmitz,, and S. Gatermann. 2008. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol. Lett. 285:163169.
78. Takeuchi, F.,, S. Watanabe,, T. Baba,, H. Yuzawa,, T. Ito,, Y. Morimoto,, M. Kuroda,, L. Cui,, M. Takahashi,, A. Ankai,, S. Baba,, S. Fukui,, J. C. Lee,, and K. Hiramatsu. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187:72927308.
79. Tormo, M. A.,, E. Knecht,, F. Götz,, I. Lasa,, and J. R. Penades. 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:24652475.
80. Tse, H.,, H. W. Tsoi,, S. P. Leung,, S. K. Lau,, P. C. Woo,, and K. Y. Yuen. 2010. Complete genome sequence of Staphylococcus lugdunensis strain HKU09-01. J. Bacteriol. 192:14711472.
81. Van Eldere, J.,, W. E. Peetermans,, M. Struelens,, A. Deplano,, and H. Bobbaers. 2000. Polyclonal staphylococcal endocarditis caused by genetic variability. Clin. Infect. Dis. 31:2430.
82. Vuong, C.,, M. Durr,, A. B. Carmody,, A. Peschel,, S. J. Klebanoff,, and M. Otto. 2004. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell. Microbiol. 6:753759.
83. Vuong, C.,, J. M. Voyich,, E. R. Fischer,, K. R. Braughton,, A. R. Whitney,, F. R. DeLeo,, and M. Otto. 2004. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6:269275.
84. Wang, R.,, K. R. Braughton,, D. Kretschmer,, T. H. Bach,, S. Y. Queck,, M. Li,, A. D. Kennedy,, D. W. Dorward,, S. J. Klebanoff,, A. Peschel,, F. R. DeLeo,, and M. Otto. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13:15101514.
85. Watanabe, S.,, T. Ito,, Y. Morimoto,, F. Takeuchi,, and K. Hiramatsu. 2007. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435. J. Bacteriol. 189:29212925.
86. Weisser, M.,, S. M. Schoenfelder,, C. Orasch,, C. Arber,, A. Gratwohl,, R. Frei,, M. Eckart,, U. Flückiger,, and W. Ziebuhr. 2010. Hypervariability of biofilm formation and oxacillin resistance in a Staphylococcus epidermidis strain causing persistent severe infection in an immunocompromised patient. J. Clin. Microbiol. 48:24072412.
87. Wisplinghoff, H.,, T. Bischoff,, S. M. Tallent,, H. Seifert,, R. P. Wenzel,, and M. B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39:309317.
88. Zhang, Y. Q.,, S. X. Ren,, H. L. Li,, Y. X. Wang,, G. Fu,, J. Yang,, Z. Q. Qin,, Y. G. Miao,, W. Y. Wang,, R. S. Chen,, Y. Shen,, Z. Chen,, Z. H. Yuan,, G. P. Zhao,, D. Qu,, A. Danchin,, and Y. M. Wen. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49:15771593.
89. Ziebuhr, W.,, K. Dietrich,, M. Trautmann,, and M. Wilhelm. 2000. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int. J. Med. Microbiol. 290:115120.
90. Ziebuhr, W.,, C. Heilmann,, F. Götz,, P. Meyer,, K. Wilms,, E. Straube,, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65:890896.
91. Ziebuhr, W.,, S. Hennig,, M. Eckart,, H. Kraenzler,, C. Batzilla,, and S. Kozitskaya. 2006. Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Agents 28(Suppl. 1):S14S20.
92. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Loessner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32:345356.

Tables

Generic image for table
TABLE 1

Genomic islands detected in coagulase-negative staphylococcal genomes

Citation: Ziebuhr W. 2012. Genome Structure and Variability in Coagulase-Negative Staphylococci, p 44-57. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error