Chapter 6 : Genome Plasticity in and Its Relevance to Host-Pathogen Interactions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Genome Plasticity in and Its Relevance to Host-Pathogen Interactions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap06-2.gif


Genome plasticity in was first detected in serovar Typhi. It has been observed in a number of serovars since then. Mechanisms that can lead to alterations in the genome include changes at the single-nucleotide level, gene loss, and genome rearrangements. Genome rearrangements including inversions and translocations can lead to genome plasticity, contributing to the divergence of strains. pathogenicity islands (SPIs) are large regions of DNA, which are most likely acquired as a result of horizontal gene transfer (HGT) and are often associated with virulence. The virulence plasmids of strains contribute to the adaptation of the organism, and in some cases allow the transfer of genes. It appears that expansion of host range is linked to lateral gene transfer (LGT) of genes involved in host-pathogen interactions. A common theme for the variable regions between serovars was the diversity in sugar metabolism, highlighting the redundancy of these systems. The majority of coding regions unique to serovar Enteritidis encode prophage-related functions. Although the genome sequence of serovar Pullorum is found to be very similar to those of other serovars, the genetic arrangement was significantly different, with three major inversions and one translocation found between strains. Understanding the phenomenon of genome plasticity in this species is important to characterize the relationship between genetic variation and host adaptation, as well as the ability to cause a relatively minor gastrointestinal disease or a potentially life-threatening systemic fever.

Citation: Ferreira R, Buckner M, Finlay B. 2012. Genome Plasticity in and Its Relevance to Host-Pathogen Interactions, p 84-102. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch06

Key Concept Ranking

Mobile Genetic Elements
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic distribution of serovars, their hosts, and their pathological manifestations.

Citation: Ferreira R, Buckner M, Finlay B. 2012. Genome Plasticity in and Its Relevance to Host-Pathogen Interactions, p 84-102. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch06
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmed, A. M.,, A. I. Hussein,, and T. Shimamoto. 2007. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. J. Antimicrob. Chemother. 59:184190.
2. Amavisit, P.,, D. Lightfoot,, G. F. Browning,, and P. F. Markham. 2003. Variation between pathogenic serovars within Salmonella pathogenicity islands. J. Bacteriol. 185:36243635.
3. Baumler, A. J.,, A. J. Gilde,, R. M. Tsolis,, A. W. van der Velden,, B. M. Ahmer,, and F. Heffron. 1997. Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J. Bacteriol. 179:317322.
4. Bishop, A. L.,, S. Baker,, S. Jenks,, M. Fookes,, P. O. Gaora,, D. Pickard,, M. Anjum,, J. Farrar,, T. T. Hien,, A. Ivens,, and G. Dougan. 2005. Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J. Bacteriol. 187:24692482.
5. Blanc-Potard, A. B.,, and E. A. Groisman. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16:53765385.
6. Blanc-Potard, A. B.,, F. Solomon,, J. Kayser,, and E. A. Groisman. 1999. The SPI-3 pathogenicity island of Salmonella enterica. J. Bacteriol. 181:9981004.
7. Boyd, D.,, G. A. Peters,, A. Cloeckaert,, K. S. Boumedine,, E. Chaslus-Dancla,, H. Imberechts,, and M. R. Mulvey. 2001. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 183:57255732.
8. Boyd, E. F.,, F. S. Wang,, T. S. Whittam,, and R. K. Selander. 1996. Molecular genetic relationships of the salmonellae. Appl. Environ. Microbiol. 62:804808.
9. Browne, S. H.,, P. Hasegawa,, S. Okamoto,, J. Fierer,, and D. G. Guiney. 2008. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice. FEMS Immunol. Med. Microbiol. 52:194201.
10. Brussow, H.,, C. Canchaya,, and W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560602.
11. Bueno, S. M.,, C. A. Santiviago,, A. A. Murillo,, J. A. Fuentes,, A. N. Trombert,, P. I. Rodas,, P. Youderian,, and G. C. Mora. 2004. Precise excision of the large pathogenicity island, SPI7, in Salmonella enterica serovar Typhi. J. Bacteriol. 186: 32023213.
12. Chakravortty, D.,, I. Hansen-Wester,, and M. Hensel. 2002. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195: 11551166.
13. Chan, K.,, S. Baker,, C. C. Kim,, C. S. Detweiler,, G. Dougan,, and S. Falkow. 2003. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J. Bacteriol. 185:553563.
14. Chen, F.,, C. Poppe,, G. R. Liu,, Y. G. Li,, Y. H. Peng,, K. E. Sanderson,, R. N. Johnston,, and S. L. Liu. 2009. A genome map of Salmonella enterica serovar Agona: numerous insertions and deletions reflecting the evolutionary history of a human pathogen. FEMS Microbiol. Lett. 293:188195.
15. Chu, C.,, and C. H. Chiu. 2006. Evolution of the virulence plasmids of non-typhoid Salmonella and its association with antimicrobial resistance. Microbes Infect. 8:19311936.
16. Coombes, B. K.,, M. E. Wickham,, N. F. Brown,, S. Lemire,, L. Bossi,, W. W. Hsiao,, F. S. Brinkman,, and B. B. Finlay. 2005. Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar typhimurium with autonomous expression from its associated phage. J. Mol. Biol. 348:817830.
17. Craig, N. L. 1985. Site-specific inversion: enhancers, recombination proteins, and mechanism. Cell 41:649650.
18. Crosa, J. H.,, D. J. Brenner,, W. H. Ewing,, and S. Falkow. 1973. Molecular relationships among the Salmonelleae. J. Bacteriol. 115:307315.
19. De Groote, M. A.,, U. A. Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazquez-Torres,, Y. Xu,, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94:1399714001.
20. Dobrindt, U.,, and J. Hacker. 2001. Whole genome plasticity in pathogenic bacteria. Curr. Opin. Microbiol. 4:550557.
21. Dobrindt, U.,, B. Hochhut,, U. Hentschel,, and J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414424.
22. Doublet, B.,, D. Boyd,, M. R. Mulvey,, and A. Cloeckaert. 2005. The Salmonella genomic island 1 is an integrative mobilizable element. Mol. Microbiol. 55:19111924.
23. Doublet, B.,, G. R. Golding,, M. R. Mulvey,, and A. Cloeckaert. 2008. Secondary chromosomal attachment site and tandem integration of the mobilizable Salmonella genomic island 1. PLoS One 3:e2060.
24. Doublet, B.,, R. Lailler,, D. Meunier,, A. Brisabois,, D. Boyd,, M. R. Mulvey,, E. Chaslus-Dancla,, and A. Cloeckaert. 2003. Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica serovar Albany. Emerg. Infect. Dis. 9:585591.
25. Doublet, B.,, K. Praud,, F. X. Weill,, and A. Cloeckaert. 2009. Association of IS26-composite transposons and complex In4-type integrons generates novel multidrug resistance loci in Salmonella genomic island 1. J. Antimicrob. Chemother. 63: 282289.
26. Edsall, G.,, S. Gaines,, M. Landy,, W. D. Tigertt,, H. Sprintz,, R.-J. Trapani,, A. D. Mandel,, and A. S. Benenson. 1960. Studies on infection and immunity in experimental typhoid fever: typhoid fever in chimpanzees orally infected with Salmonella typhosa. J. Exp. Med. 112:143166.
27. Edwards, P. R.,, and D. W. Brunner. 1943. The occurence and distribution of Salmonella types in the United States. J. Infect. Dis. 72:5867.
28. Edwards, R. A.,, G. J. Olsen,, and S. R. Maloy. 2002. Comparative genomics of closely related salmonellae. Trends Microbiol. 10:9499.
29. Ellermeier, J. R.,, and J. M. Slauch. 2007. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr. Opin. Microbiol. 10: 2429.
30. Ewing, W. H. 1986. Edwards and Ewing’s Identification of the Enterobacteriaceae. Elsevier Science Publishing Co., Inc., New York, NY.
31. Fierer, J.,, and D. G. Guiney. 2001. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J. Clin. Investig. 107:775780.
32. Figueroa-Bossi, N.,, and L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:167176.
33. Figueroa-Bossi, N.,, S. Uzzau,, D. Maloriol,, and L. Bossi. 2001. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol. 39:260271.
34. Galan, J. E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell. Dev. Biol. 17:5386.
35. Garrity, G. M. 2001. Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag, New York, NY.
36. Ginocchio, C. C.,, K. Rahn,, R. C. Clarke,, and J. E. Galan. 1997. Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect. Immun. 65:12671272.
37. Hansen-Wester, I.,, and M. Hensel. 2002. Genome-based identification of chromosomal regions specific for Salmonella spp. Infect. Immun. 70:23512360.
38. Haraga, A.,, M. B. Ohlson,, and S. I. Miller. 2008. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6:5366.
39. Hensel, M., 2005. Pathogenicity islands and virulence of Salmonella enterica, p. 146167. In P. Mastroeni, and D. Maskell (ed.), Salmonella Infections: Clinical, Immunological and Molecular Aspects. Cambridge University Press, Cambridge, United Kingdom.
40. Hensel, M.,, T. Nikolaus,, and C. Egelseer. 1999. Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol. Microbiol. 31:489498.
41. Hensel, M.,, J. E. Shea,, A. J. Baumler,, C. Gleeson,, F. Blattner,, and D. W. Holden. 1997. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J. Bacteriol. 179:11051111.
42. Ho, T. D.,, N. Figueroa-Bossi,, M. Wang,, S. Uzzau,, L. Bossi,, and J. M. Slauch. 2002. Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184:52345239.
43. Hochmann, H.,, S. Pust,, G. von Figura,, K. Aktories,, and H. Barth. 2006. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177: characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 45:12711277.
44. Holt, K. E.,, N. R. Thomson,, J. Wain,, G. C. Langridge,, R. Hasan,, Z. A. Bhutta,, M. A. Quail,, H. Norbertczak,, D. Walker,, M. Simmonds,, B. White,, N. Bason,, K. Mungall,, G. Dougan,, and J. Parkhill. 2009. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 10:36.
45. Hu, Q.,, B. Coburn,, W. Deng,, Y. Li,, X. Shi,, Q. Lan,, B. Wang,, B. K. Coombes,, and B. B. Finlay. 2008. Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. J. Clin. Microbiol. 46:13301336.
46. Iqbal, M.,, V. J. Philbin,, G. S. Withanage,, P. Wigley,, R. K. Beal,, M. J. Goodchild,, P. Barrow,, I. McConnell,, D. J. Maskell,, J. Young,, N. Bumstead,, Y. Boyd,, and A. L. Smith. 2005. Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar Typhimurium. Infect. Immun. 73:23442350.
47. Kado, C. I. 2009. Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. Mol. Plant Pathol. 10:143150.
48. Kaiser, D. 2000. Bacterial motility: how do pili pull? Curr. Biol. 10:R777R780.
49. Kelly, B. G.,, A. Vespermann,, and D. J. Bolton. 2009. Gene transfer events and their occurrence in selected environments. Food Chem. Toxicol. 47:978983.
50. Kidgell, C.,, U. Reichard,, J. Wain,, B. Linz,, M. Torpdahl,, G. Dougan,, and M. Achtman. 2002. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect. Genet. Evol. 2: 3945.
51. Kilger, G.,, and P. A. Grimont. 1993. Differentiation of Salmonella phase 1 flagellar antigen types by restriction of the amplified fliC gene. J. Clin. Microbiol. 31:11081110.
52. Kingsley, R. A.,, and A. J. Baumler. 2002a. Pathogenicity islands and host adaptation of Salmonella serovars. Curr. Top. Microbiol. Immunol. 264:6787.
53. Kingsley, R. A.,, and A. J. Baumler,. 2002b. Pathogenicity islands and host adaptation of Salmonella serovars, p. 6787. In J. Hacker, and J. B. Kaper (ed.), Pathogenicity Islands and the Evolution of Pathogenic Microbes, vol. 1. Springer-Verlag, New York, NY.
54. Kingsley, R. A.,, K. van Amsterdam,, N. Kramer,, and A. J. Baumler. 2000. The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect. Immun. 68:27202727.
55. Klumpp, J.,, and T. M. Fuchs. 2007. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153:12071220.
56. Knodler, L. A.,, J. Celli,, W. D. Hardt,, B. A. Vallance,, C. Yip,, and B. B. Finlay. 2002. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 43:10891103.
57. Knodler, L. A.,, and O. Steele-Mortimer. 2005. The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Mol. Biol. Cell 16:41084123.
58. Koser, S. A. 1968. Vitamin Requirements of Bacteria and Yeast. Charles C Thomas, Springfield, IL.
59. Krishnakumar, R.,, B. Kim,, E. A. Mollo,, J. A. Imlay,, and J. M. Slauch. 2007. Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 189:43434352.
60. Kropinski, A. M.,, A. Sulakvelidze,, P. Konczy,, and C. Poppe. 2007. Salmonella phages and prophages—genomics and practical aspects. Methods Mol. Biol. 394:133175.
61. Le Minor, L. 1988. Typing of Salmonella species. Eur. J. Clin. Microbiol. Infect. Dis. 7:214218.
62. Le Minor, L.,, and J. Bockemuhl. 1988. 1987 supplement (no. 31) to the schema of Kauffmann-White. Ann. Inst. Pasteur Microbiol. 139:331335. (In French.)
63. LeMinor, L.,, and J. Bockemuhl. 1984. Supplement No. XXVII (1983 to the Kauffmann-White scheme. Ann. Microbiol. (Paris) 135B:4551. (In French.)
64. Li, J.,, N. H. Smith,, K. Nelson,, P. B. Crichton,, D. C. Old,, T. S. Whittam,, and R. K. Selander. 1993. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J. Med. Microbiol. 38:129139.
65. Liu, G. R.,, W. Q. Liu,, R. N. Johnston,, K. E. Sanderson,, S. X. Li,, and S. L. Liu. 2006. Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol. Biol. Evol. 23:365371.
66. Liu, G. R.,, A. Rahn,, W. Q. Liu,, K. E. Sanderson,, R. N. Johnston,, and S. L. Liu. 2002. The evolving genome of Salmonella enterica serovar Pullorum. J. Bacteriol. 184:26262633.
67. Liu, S. L.,, A. Hessel,, and K. E. Sanderson. 1993. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc. Natl. Acad. Sci. USA 90: 68746878.
68. Liu, S. L.,, and K. E. Sanderson. 1995a. Genomic cleavage map of Salmonella typhi Ty2. J. Bacteriol. 177:50995107.
69. Liu, S. L.,, and K. E. Sanderson. 1996. Highly plastic chromosomal organization in Salmonella typhi. Proc. Natl. Acad. Sci. USA 93:1030310308.
70. Liu, S. L.,, and K. E. Sanderson. 1995b. Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. Sci. USA 92:10181022.
71. Liu, S. L.,, and K. E. Sanderson. 1995c. The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J. Bacteriol. 177:65856592.
72. Liu, S. L.,, A. B. Schryvers,, K. E. Sanderson,, and R. N. Johnston. 1999. Bacterial phylogenetic clusters revealed by genome structure. J. Bacteriol. 181:67476755.
73. Liu, W. Q.,, Y. Feng,, Y. Wang,, Q. H. Zou,, F. Chen,, J. T. Guo,, Y. H. Peng,, Y. Jin,, Y. G. Li,, S. N. Hu,, R. N. Johnston,, G. R. Liu,, and S. L. Liu. 2009. Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS ONE 4:e4510.
74. Liu, W. Q.,, G. R. Liu,, J. Q. Li,, G. M. Xu,, D. Qi,, X. Y. He,, J. Deng,, F. M. Zhang,, R. N. Johnston,, and S. L. Liu. 2007. Diverse genome structures of Salmonella paratyphi C. BMC Genomics 8:290.
75. Marcus, S. L.,, J. H. Brumell,, C. G. Pfeifer,, and B. B. Finlay. 2000. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect. 2:145156.
76. Matsui, H.,, C. M. Bacot,, W. A. Garlington,, T. J. Doyle,, S. Roberts,, and P. A. Gulig. 2001. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J. Bacteriol. 183:46524658.
77. McClelland, M.,, K. E. Sanderson,, S. W. Clifton,, P. Latreille,, S. Porwollik,, A. Sabo,, R. Meyer,, T. Bieri,, P. Ozersky,, M. McLellan,, C. R. Harkins,, C. Wang,, C. Nguyen,, A. Berghoff,, G. Elliott,, S. Kohlberg,, C. Strong,, F. Du,, J. Carter,, C. Kremizki,, D. Layman,, S. Leonard,, H. Sun,, L. Fulton,, W. Nash,, T. Miner,, P. Minx,, K. Delehaunty,, C. Fronick,, V. Magrini,, M. Nhan,, W. Warren,, L. Florea,, J. Spieth,, and R. K. Wilson. 2004. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 36:12681274.
78. McClelland, M.,, K. E. Sanderson,, J. Spieth,, S. W. Clifton,, P. Latreille,, L. Courtney,, S. Porwollik,, J. Ali,, M. Dante,, F. Du,, S. Hou,, D. Layman,, S. Leonard,, C. Nguyen,, K. Scott,, A. Holmes,, N. Grewal,, E. Mulvaney,, E. Ryan,, H. Sun,, L. Florea,, W. Miller,, T. Stoneking,, M. Nhan,, R. Waterston,, and R. K. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852856.
79. Miao, E. A.,, C. A. Scherer,, R. M. Tsolis,, R. A. Kingsley,, L. G. Adams,, A. J. Baumler,, and S. I. Miller. 1999. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34:850864.
80. Mulvey, M. R.,, D. A. Boyd,, A. B. Olson,, B. Doublet,, and A. Cloeckaert. 2006. The genetics of Salmonella genomic island 1. Microbes Infect. 8:19151922.
81. Nanassy, O. Z.,, and K. T. Hughes. 1998. In vivo identification of intermediate stages of the DNA inversion reaction catalyzed by the Salmonella Hin recombinase. Genetics 149:16491663.
82. Ochman, H.,, and E. A. Groisman. 1996. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 64:54105412.
83. Ochman, H.,, J. G. Lawrence,, and E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299304.
84. Pallen, M. J.,, and B. W. Wren. 2007. Bacterial pathogenomics. Nature 449:835842.
85. Parkhill, J.,, G. Dougan,, K. D. James,, N. R. Thomson,, D. Pickard,, J. Wain,, C. Churcher,, K. L. Mungall,, S. D. Bentley,, M. T. Holden,, M. Sebaihia,, S. Baker,, D. Basham,, K. Brooks,, T. Chillingworth,, P. Connerton,, A. Cronin,, P. Davis,, R. M. Davies,, L. Dowd,, N. White,, J. Farrar,, T. Feltwell,, N. Hamlin,, A. Haque,, T. T. Hien,, S. Holroyd,, K. Jagels,, A. Krogh,, T. S. Larsen,, S. Leather,, S. Moule,, P. O’Gaora,, C. Parry,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead,, and B. G. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848852.
86. Popoff, M. Y.,, J. Bockemuhl,, and L. L. Gheesling. 2004. Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res. Microbiol. 155:568570.
87. Popoff, M. Y.,, and L. Le Minor. 1992. Antigenic Formulas of the Salmonella Serovars. Institut Pasteur, Paris, France.
88. Popoff, M. Y.,, and L. Le Minor. 1997. Antigenic Formulas of the Salmonella Serovars. WHO Collaborating Center for Reference and Research on Salmonella, Institut Pasteur, Paris, France.
89. Porwollik, S.,, E. F. Boyd,, C. Choy,, P. Cheng,, L. Florea,, E. Proctor,, and M. McClelland. 2004. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J. Bacteriol. 186:58835898.
90. Porwollik, S.,, and M. McClelland. 2003. Lateral gene transfer in Salmonella. Microbes Infect. 5:977989.
91. Porwollik, S.,, R. M. Wong,, and M. McClelland. 2002. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99:89568961.
92. Reen, F. J.,, E. F. Boyd,, S. Porwollik,, B. P. Murphy,, D. Gilroy,, S. Fanning,, and M. McClelland. 2005. Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. Appl. Environ. Microbiol. 71:16161625.
93. Sanderson, K. E.,, and S. L. Liu. 1998. Chromosomal rearrangements in enteric bacteria. Electrophoresis 19:569572.
94. Santos, R. L.,, R. M. Tsolis,, A. J. Baumler,, and L. G. Adams. 2003. Pathogenesis of Salmonella-induced enteritis. Braz. J. Med. Biol. Res. 36:312.
95. Schmidt, H.,, and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17:1456.
96. Selander, R. K.,, P. Beltran,, N. H. Smith,, R. Helmuth,, F. A. Rubin,, D. J. Kopecko,, K. Ferris,, B. D. Tall,, A. Cravioto,, and J. M. Musser. 1990. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect. Immun. 58:22622275.
97. Shelobolina, E. S.,, S. A. Sullivan,, K. R. O’Neill,, K. P. Nevin,, and D. R. Lovley. 2004. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate-and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov. Appl. Environ. Microbiol. 70:29592965.
98. Slominski, B.,, J. Calkiewicz,, P. Golec,, G. Wegrzyn,, and B. Wrobel. 2007. Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of Salmonella enterica serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria. Microbiology 153:18841896.
99. Sojka, W. J.,, and H. I. Field.1970. Salmonellosis in England and Wales 1958-1967. Vet. Bull. 40:515531
100. Sojka, W. J.,, and C. Wray. 1975. Incidence of Salmonella infection in animals in England and Wales 1968-1973. Vet. Rec. 96:280284.
101. Solano, C.,, B. Garcia,, J. Valle,, C. Berasain,, J. M. Ghigo,, C. Gamazo,, and I. Lasa. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43:793808.
102. Sood, S.,, A. Kapil,, N. Dash,, B. K. Das,, V. Goel,, and P. Seth. 1999. Paratyphoid fever in India: an emerging problem. Emerg. Infect. Dis. 5:483484.
103. Stanley, T. L.,, C. D. Ellermeier,, and J. M. Slauch. 2000. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer’s patches. J. Bacteriol. 182:44064413.
104. Su, L. H.,, and C. H. Chiu. 2007. Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med. J. 30:210219.
105. Thomson, N. R.,, D. J. Clayton,, D. Windhorst,, G. Vernikos,, S. Davidson,, C. Churcher,, M. A. Quail,, M. Stevens,, M. A. Jones,, M. Watson,, A. Barron,, A. Layton,, D. Pickard,, R. A. Kingsley,, A. Bignell,, L. Clark,, B. Harris,, D. Ormond,, Z. Abdellah,, K. Brooks,, I. Cherevach,, T. Chillingworth,, J. Woodward,, H. Norberczak,, A. Lord,, C. Arrowsmith,, K. Jagels,, S. Moule,, K. Mungall,, M. Sanders,, S. Whitehead,, J. A. Chabalgoity,, D. Maskell,, T. Humphrey,, M. Roberts,, P. A. Barrow,, G. Dougan,, and J. Parkhill. 2008. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 18:16241637.
106. Tsolis, R. M.,, L. G. Adams,, M. J. Hantman,, C. A. Scherer,, T. Kimbrough,, R. A. Kingsley,, T. A. Ficht,, S. I. Miller,, and A. J. Baumler. 2000. SspA is required for lethal Salmonella enterica serovar Typhimurium infections in calves but is not essential for diarrhea. Infect. Immun. 68:31583163.
107. Tsolis, R. M.,, S. M. Townsend,, E. A. Miao,, S. I. Miller,, T. A. Ficht,, L. G. Adams,, and A. J. Baumler. 1999. Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67: 63856393.
108. Uzzau, S.,, D. J. Brown,, T. Wallis,, S. Rubino,, G. Leori,, S. Bernard,, J. Casadesus,, D. J. Platt,, and J. E. Olsen. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect. 125:229255.
109. van Asten, A. J.,, and J. E. van Dijk. 2005. Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol. Med. Microbiol. 44:251259.
110. Varma, J. K.,, K. D. Greene,, J. Ovitt,, T. J. Barrett,, F. Medalla,, and F. J. Angulo. 2005. Hospitalization and antimicrobial resistance in Salmonella outbreaks, 1984-2002. Emerg. Infect. Dis. 11:943946.
111. Vazquez-Torres, A.,, J. Jones-Carson,, P. Mastroeni,, H. Ischiropoulos,, and F. C. Fang. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192:227236.
112. Virgilio, R.,, and A. M. Cordano. 1981. Naturally occurring prototrophic strains of Salmonella typhi. Can. J. Microbiol. 27:12721275.
113. Wigley, P.,, A. Berchieri, Jr.,, K. L. Page,, A. L. Smith,, and P. A. Barrow. 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69:78737879.
114. Wong, K. K.,, M. McClelland,, L. C. Stillwell,, E. C. Sisk,, S. J. Thurston,, and J. D. Saffer. 1998. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar Typhimurium LT2. Infect. Immun. 66: 33653371.
115. Wray, C.,, W. J. Sojka,, and J. C. Bell. 1981. Salmonella infection in horses in England and Wales, 1973 to 1979. Vet. Rec. 109:398401.
116. Wu, K. Y.,, G. R. Liu,, W. Q. Liu,, A. Q. Wang,, S. Zhan,, K. E. Sanderson,, R. N. Johnston,, and S. L. Liu. 2005. The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare rearrangements. J. Bacteriol. 187:47204727.
117. Yang, B.,, J. Zheng,, E. W. Brown,, S. Zhao,, and J. Meng. 2009. Characterisation of antimicrobial resistance-associated integrons and mismatch repair gene mutations in Salmonella serotypes. Int. J. Antimicrob. Agents 33:120124.
118. Zhang, Y.,, W. M. Higashide,, B. A. McCormick,, J. Chen,, and D. Zhou. 2006. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62:786793.
119. Zhou, D.,, W. D. Hardt,, and J. E. Galan. 1999. Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect. Immun. 67:19741981.


Generic image for table

Genetic regions found within genomes

Citation: Ferreira R, Buckner M, Finlay B. 2012. Genome Plasticity in and Its Relevance to Host-Pathogen Interactions, p 84-102. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch06

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error