1887

Chapter 10 : Immune Recognition and Host Cell Response during Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Immune Recognition and Host Cell Response during Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap10-2.gif

Abstract:

Innate immune cells possess multiple germ line-encoded receptors that have evolved to broadly distinguish between self and nonself. These receptors are called pathogen recognition receptors (PRRs), and they detect conserved structures called microbe-associated molecular patterns (MAMPs) that are present on microbes. Although there is a finite number of PRRs, they are used in various combinations to recognize different intracellular pathogens, and even different species of . infection leads to expression of beta interferon (IFN-β) and interleukin-10 (IL-10) in infected cells. This chapter reviews the various PRRs that recognize chlamydiae and the ensuing cellular signaling pathways that result in cytokine induction. Initially, there is recognition at the surface of the host cell, but the majority of recognition occurs intracellularly. The Toll-like receptors (TLRs) are responsible for the recognition of unique MAMPs, such as bacterial lipoprotein, which initiate an immediate cytokine response upon infection. The evolution of inflammatory pathway appears to be driven by viruses as the host cell incorporates multiple means of inducing IFN-β to limit viral replication. A number of studies described in the chapter used human or mouse cell lines or mouse macrophages but not primary cervical epithelial cells. Although cell lines and mouse macrophages provide clues about the specific use of receptors and signaling pathways, the results have to be confirmed with the cells that are infected in the natural host. Additional DNA sensors need to be discovered in the coming years and more will be learned about cell type-specific use of the TLRs.

Citation: Nagarajan U. 2012. Immune Recognition and Host Cell Response during Infection, p 217-239. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch10

Key Concept Ranking

Tumor Necrosis Factor alpha
0.41019148
0.41019148
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of the recognition of chlamydiae by TLR and NOD signaling pathways. TLR2 is the major TLR implicated in chlamydial recognition. TLR2 is normally expressed on the cell surface, but it has also been shown to localize in the vicinity of the chlamydial inclusion membrane. The specific chlamydial ligand recognized by TLR2 is not yet known. TLR4-mediated chlamydial recognition has been observed in the absence of TLR2 expression, and chlamydial Hsp60 is recognized as a TLR4 ligand. MyD88 is the common adaptor molecule for most TLRs and is necessary for TLR2/4-mediated activation of NF-κB and MAPK. This activation leads to expression of proinflammatory cytokine genes, which have been implicated in oviduct pathology during chlamydial genital infection. NOD1, an intracellular cytosolic receptor, also contributes to NF-κB activation by recognizing chlamydial peptidoglycan precursors. doi:10.1128/9781555817329.ch10.f1

Citation: Nagarajan U. 2012. Immune Recognition and Host Cell Response during Infection, p 217-239. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of inflammasome activation and caspase-1 activation during chlamydial infection. Cleavage of procaspase-1 to form active caspase-1 requires formation of the inflammasome. The inflammasome is a complex resulting from recognition of PRR or a danger signal by the NLRP proteins, the adaptor ASC and the procaspase-1. ASC is essential for the interaction of the pyrin (PYD) domain of NLRP with the CARD domain of procaspase-1. Of the NLRPs, NLRP3 recognizes ligands such as pore-forming toxins and danger signals like ATP, uric acid, or mitochondrial damage. NLRC4 recognizes the T3S apparatus and flagellin, AIM2 recognizes dsDNA, and NALP1b recognizes toxins such as Bacillus anthracis lethal toxin. During chlamydial infection, NLRP3 is involved in caspase-1 activation, but multiple NLRPs that are yet to be identified are likely activated. The chlamydial T3S apparatus contributes to caspase-1 activation, but the specific effectors and NLRP involved are not known. NLRC4 is not activated during chlamydial infection. doi:10.1128/9781555817329.ch10.f2

Citation: Nagarajan U. 2012. Immune Recognition and Host Cell Response during Infection, p 217-239. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of receptors engaged in IFN-β induction during chlamydial infection and the resulting signaling pathway. The adaptor molecule STING is involved in chlamydially induced IFN-β induction. DNA and RNA sensors DAI, IFI16, and RLRs, which function upstream of STING, do not contribute to IFN-β induction, but detection of chlamydial dicyclic nucleotide(s) has been implicated. STING activation leads to phosphorylation of IRF3 by the kinases TBK/IKKϵ. Phosphorylated IRF3 translocates to the nucleus, binds the IFN-β promoter, and initiates transcription cooperatively with p65 binding. NOD1 detection and signaling lead to NF-κB activation, which contributes to IFN-β induction. TLR3- and TRIF-mediated signaling has also been shown to contribute to IFN-β induction in mouse oviduct epithelial cells (dashed line/arrow).doi:10.1128/9781555817329.ch10.f3

Citation: Nagarajan U. 2012. Immune Recognition and Host Cell Response during Infection, p 217-239. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817329.chap10
1. Abdul-Sater, A. A.,, E. Koo,, G. Hacker,, and D. M. Ojcius. 2009. Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J. Biol. Chem. 284:2678926796. PubMed CrossRef
2. Ablasser, A.,, F. Bauernfeind,, G. Hartmann,, E. Latz,, K. A. Fitzgerald,, and V. Hornung. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10:10651072. PubMed CrossRef
3. Amer, A.,, L. Franchi,, T. D. Kanneganti,, M. Body-Malapel,, N. Ozoren,, G. Brady,, S. Meshinchi,, R. Jagirdar,, A. Gewirtz,, S. Akira,, and G. Nunez. 2006. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281:3521735223. PubMed CrossRef
4. Bas, S.,, L. Neff,, M. Vuillet,, U. Spenato,, T. Seya,, M. Matsumoto,, and C. Gabay. 2008. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J. Immunol. 180:11581168. PubMed
5. Boyden, E. D.,, and W. F. Dietrich. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:240244. PubMed CrossRef
6. Buchholz, K. R.,, and R. S. Stephens. 2006. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell. Microbiol. 8:17681779. PubMed CrossRef
7. Buchholz, K. R.,, and R. S. Stephens. 2007. The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect. Immun. 75:59245929. PubMed CrossRef
8. Buchholz, K. R.,, and R. S. Stephens. 2008. The cytosolic pattern recognition receptor NOD1 induces inflammatory interleukin-8 during Chlamydia trachomatis infection. Infect. Immun. 76:31503155. PubMed CrossRef
9. Bulut, Y.,, E. Faure,, L. Thomas,, H. Karahashi,, K. S. Michelsen,, O. Equils,, S. G. Morrison,, R. P. Morrison,, and M. Arditi. 2002. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168:14351440. PubMed
10. Burian, K.,, V. Endresz,, J. Deak,, Z. Kormanyos,, A. Pal,, D. Nelson,, and D. P. Virok. 2010. Transcriptome analysis indicates an enhanced activation of adaptive and innate immunity by Chlamydia-infected murine epithelial cells treated with interferon gamma. J. Infect. Dis. 202:14051414. PubMed CrossRef
11. Buss, C.,, B. Opitz,, A. C. Hocke,, J. Lippmann,, V. van Laak,, S. Hippenstiel,, M. Krull,, N. Suttorp,, and J. Eitel. 2010. Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells. J. Immunol. 184:30723078. PubMed CrossRef
12. Cao, F.,, A. Castrillo,, P. Tontonoz,, F. Re,, and G. I. Byrne. 2007. Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect. Immun. 75:753759. PubMed CrossRef
13. Cerretti, D. P.,, L. T. Hollingsworth,, C. J. Kozlosky,, M. B. Valentine,, D. N. Shapiro,, S. W. Morris,, and N. Nelson. 1994. Molecular characterization of the gene for human interleukin-1 beta converting enzyme (IL1BC). Genomics 20:468473. PubMed CrossRef
14. Chaix, J.,, M. S. Tessmer,, K. Hoebe,, N. Fuseri,, B. Ryffel,, M. Dalod,, L. Alexopoulou,, B. Beutler,, L. Brossay,, E. Vivier,, and T. Walzer. 2008. Cutting edge: priming of NK cells by IL-18. J. Immunol. 181:16271631. PubMed
15. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Valvano,, S. J. Foster,, T. W. Mak,, G. Nunez,, and N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:702707. PubMed CrossRef
16. Chen, J. C.,, J. P. Zhang,, and R. S. Stephens. 1996. Structural requirements of heparin binding to Chlamydia trachomatis. J. Biol. Chem. 271:1113411140. PubMed CrossRef
17. Cheng, W.,, P. Shivshankar,, Z. Li,, L. Chen,, I. T. Yeh,, and G. Zhong. 2008. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect. Immun. 76:515522. PubMed CrossRef
18. Chin, A. I.,, P. W. Dempsey,, K. Bruhn,, J. F. Miller,, Y. Xu,, and G. Cheng. 2002. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416:190194. PubMed CrossRef
19. Christian, J.,, J. Vier,, S. A. Paschen,, and G. Hacker. 2010. Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with chlamydiae. J. Biol. Chem. 285:4132041327. PubMed CrossRef
20. Christie, P. J. 2001. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40:294305. PubMed CrossRef
21. Crimmins, G. T.,, A. A. Herskovits,, K. Rehder,, K. E. Sivick,, P. Lauer,, T. W. Dubensky, Jr., and D. A. Portnoy. 2008. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc. Natl. Acad. Sci. USA 105:1019110196. PubMed CrossRef
22. Daffis, S.,, M. A. Samuel,, B. C. Keller,, M. Gale, Jr.,, and M. S. Diamond. 2007. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog. 3:e106. PubMed CrossRef
23. Darville, T.,, J. M. O’Neill,, C. W. Andrews, Jr.,, U. M. Nagarajan,, L. Stahl,, and D. M. Ojcius. 2003. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171:61876197. PubMed
24. Deng, L.,, C. Wang,, E. Spencer,, L. Yang,, A. Braun,, J. You,, C. Slaughter,, C. Pickart,, and Z. J. Chen. 2000. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351361. PubMed CrossRef
25. Derbigny, W. A.,, S. C. Hong,, M. S. Kerr,, M. Temkit,, and R. M. Johnson. 2007. Chlamydia muridarum infection elicits a beta interferon response in murine oviduct epithelial cells dependent on interferon regulatory factor 3 and TRIF. Infect. Immun. 75:12801290. PubMed CrossRef
26. Derbigny, W. A.,, R. M. Johnson,, K. S. Toomey,, S. Ofner,, and K. Jayarapu. 2011. The Chlamydia muridarum-induced IFN-beta response is TLR3-dependent in murine oviduct epithelial cells. J. Immunol. 185:66896697. PubMed CrossRef
27. Derbigny, W. A.,, M. S. Kerr,, and R. M. Johnson. 2005. Pattern recognition molecules activated by Chlamydia muridarum infection of cloned murine oviduct epithelial cell lines. J. Immunol. 175:60656075. PubMed
28. Dreher, D.,, M. Kok,, C. Obregon,, S. G. Kiama,, P. Gehr,, and L. P. Nicod. 2002. Salmonella virulence factor SipB induces activation and release of IL-18 in human dendritic cells. J. Leukoc. Biol. 72:743751. PubMed
29. Erridge, C.,, A. Pridmore,, A. Eley,, J. Stewart,, and I. R. Poxton. 2004. Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J. Med. Microbiol. 53:735740. PubMed CrossRef
30. Fan, T.,, H. Lu,, H. Hu,, L. Shi,, G. A. McClarty,, D. M. Nance,, A. H. Greenberg,, and G. Zhong. 1998. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187:487496. PubMed CrossRef
31. Fantuzzi, G.,, D. A. Reed,, and C. A. Dinarello. 1999. IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor. J. Clin. Investig. 104:761767. PubMed CrossRef
32. Faustin, B.,, L. Lartigue,, J. M. Bruey,, F. Luciano,, E. Sergienko,, B. Bailly-Maitre,, N. Volkmann,, D. Hanein,, I. Rouiller,, and J. C. Reed. 2007. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25:713724. PubMed CrossRef
33. Feldmann, J.,, A. M. Prieur,, P. Quartier,, P. Berquin,, S. Certain,, E. Cortis,, D. Teillac-Hamel,, A. Fischer,, and G. de Saint Basile. 2002. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71:198203. PubMed CrossRef
34. Feldmeyer, L.,, M. Keller,, G. Niklaus,, D. Hohl,, S. Werner,, and H. D. Beer. 2007. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr. Biol. 17:11401145. PubMed CrossRef
35. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao,, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496. PubMed CrossRef
36. Flannery, S.,, and A. G. Bowie. 2010. The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem. Pharmacol. 80:19811991. PubMed CrossRef
37. Fox, A.,, J. C. Rogers,, J. Gilbart,, S. Morgan,, C. H. Davis,, S. Knight,, and P. B. Wyrick. 1990. Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect. Immun. 58:835837. PubMed
38. Franchi, L.,, A. Amer,, M. Body-Malapel,, T. D. Kanneganti,, N. Ozoren,, R. Jagirdar,, N. Inohara,, P. Vandenabeele,, J. Bertin,, A. Coyle,, E. P. Grant,, and G. Nunez. 2006. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. 7:576582. PubMed CrossRef
39. Frendéus, B.,, C. Wachtler,, M. Hedlund,, H. Fischer,, P. Samuelsson,, M. Svensson,, and C. Svanborg. 2001. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol. Microbiol. 40:3751. PubMed CrossRef
40. Galle, M.,, P. Schotte,, M. Haegman,, A. Wullaert,, H. J. Yang,, S. Jin,, and R. Beyaert. 2008. The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. J. Cell. Mol. Med. 12:17671776. PubMed CrossRef
41. Ghayur, T.,, S. Banerjee,, M. Hugunin,, D. Butler,, L. Herzog,, A. Carter,, L. Quintal,, L. Sekut,, R. Talanian,, M. Paskind,, W. Wong,, R. Kamen,, D. Tracey,, and H. Allen. 1997. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386:619623. PubMed CrossRef
42. Girardin, S. E.,, I. G. Boneca,, J. Viala,, M. Chamaillard,, A. Labigne,, G. Thomas,, D. J. Philpott,, and P. J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:88698872. PubMed CrossRef
43. Greten, F. R.,, M. C. Arkan,, J. Bollrath,, L. C. Hsu,, J. Goode,, C. Miething,, S. I. Goktuna,, M. Neuenhahn,, J. Fierer,, S. Paxian,, N. Van Rooijen,, Y. Xu,, T. O’Cain,, B. B. Jaffee,, D. H. Busch,, J. Duyster,, R. M. Schmid,, L. Eckmann,, and M. Karin. 2007. NF-κB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130:918931. PubMed CrossRef
44. Hacker, H.,, V. Redecke,, B. Blagoev,, I. Kratchmarova,, L. C. Hsu,, G. G. Wang,, M. P. Kamps,, E. Raz,, H. Wagner,, G. Hacker,, M. Mann,, and M. Karin. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204207. PubMed CrossRef
45. Halle, A.,, V. Hornung,, G. C. Petzold,, C. R. Stewart,, B. G. Monks,, T. Reinheckel,, K. A. Fitzgerald,, E. Latz,, K. J. Moore,, and D. T. Golenbock. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9:857865. PubMed CrossRef
46. Hasegawa, M.,, Y. Fujimoto,, P. C. Lucas,, H. Nakano,, K. Fukase,, G. Nunez,, and N. Inohara. 2008. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J. 27:373383. PubMed CrossRef
47. He, X.,, S. Mekasha,, N. Mavrogiorgos,, K. A. Fitzgerald,, E. Lien,, and R. R. Ingalls. 2010. Inflammation and fibrosis during Chlamydia pneumoniae infection is regulated by IL-1 and the NLRP3/ASC inflammasome. J. Immunol. 184:57435754. PubMed CrossRef
48. He, X.,, A. Nair,, S. Mekasha,, J. Alroy,, C. M. O’Connell,, and R. R. Ingalls. 2011. Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS ONE 6:e20846. PubMed CrossRef
49. Heil, F.,, P. Ahmad-Nejad,, H. Hemmi,, H. Hochrein,, F. Ampenberger,, T. Gellert,, H. Dietrich,, G. Lipford,, K. Takeda,, S. Akira,, H. Wagner,, and S. Bauer. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33:29872997. PubMed CrossRef
50. Herbst-Kralovetz, M. M.,, A. J. Quayle,, M. Ficarra,, S. Greene,, W. A. Rose,, R. Chesson,, R. A. Spagnuolo,, and R. B. Pyles. 2008. Quantification and comparison of Toll-like receptor expression and responsiveness in primary and immortalized human female lower genital tract epithelia. Am. J. Reprod. Immunol. 59:212224. PubMed CrossRef
51. Hersh, D.,, D. M. Monack,, M. R. Smith,, N. Ghori,, S. Falkow,, and A. Zychlinsky. 1999. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96:23962401. PubMed CrossRef
52. Hilbi, H.,, J. E. Moss,, D. Hersh,, Y. Chen,, J. Arondel,, S. Banerjee,, R. A. Flavell,, J. Yuan,, P. J. Sansonetti,, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273:3289532900. PubMed CrossRef
53. Hiscott, J.,, J. Marois,, J. Garoufalis,, M. D’Addario,, A. Roulston,, I. Kwan,, N. Pepin,, J. Lacoste,, H. Nguyen,, G. Bensi, et al. 1993. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol. Cell. Biol. 13:62316240. PubMed CrossRef
54. Hoebe, K.,, X. Du,, P. Georgel,, E. Janssen,, K. Tabeta,, S. O. Kim,, J. Goode,, P. Lin,, N. Mann,, S. Mudd,, K. Crozat,, S. Sovath,, J. Han,, and B. Beutler. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743748. PubMed CrossRef
55. Hoffman, H. M.,, J. L. Mueller,, D. H. Broide,, A. A. Wanderer,, and R. D. Kolodner. 2001. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29:301305. PubMed CrossRef
56. Hornung, V.,, A. Ablasser,, M. Charrel-Dennis,, F. Bauernfeind,, G. Horvath,, D. R. Caffrey,, E. Latz,, and K. A. Fitzgerald. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514518. PubMed CrossRef
57. Hornung, V.,, J. Ellegast,, S. Kim,, K. Brzozka,, A. Jung,, H. Kato,, H. Poeck,, S. Akira,, K. K. Conzelmann,, M. Schlee,, S. Endres,, and G. Hartmann. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994997. PubMed CrossRef
58. Hvid, M.,, A. Baczynska,, B. Deleuran,, J. Fedder,, H. J. Knudsen,, G. Christiansen,, and S. Birkelund. 2007. Interleukin-1 is the initiator of Fallopian tube destruction during Chlamydia trachomatis infection. Cell. Microbiol. 9:27952803. PubMed CrossRef
59. Igietseme, J. U.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Moore,, T. Belay,, F. O. Eko,, D. Lyn,, and C. M. Black. 2000. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J. Immunol. 164:42124219. PubMed
60. Ingalls, R.,, P. Rice,, N. Qureshi,, K. Takayama,, J. Lin,, and D. Golenbock. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63:31253130. PubMed
61. Ishikawa, H.,, and G. N. Barber. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674678. PubMed CrossRef
62. Ishikawa, H.,, Z. Ma,, and G. N. Barber. 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788792. PubMed CrossRef
63. Jin, M. S.,, and J.-O. Lee. 2008. Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182191. PubMed CrossRef
64. Johnson, R. M. 2004. Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection include interleukin-12-p70 secretion. Infect. Immun. 72:39513960. PubMed CrossRef
65. Jorgensen, I.,, M. M. Bednar,, V. Amin,, B. K. Davis,, J. P. Ting,, D. G. McCafferty,, and R. H. Valdivia. 2011. The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 10:2132. PubMed CrossRef
66. Kagami, S.,, T. Kakinuma,, H. Saeki,, Y. Tsunemi,, H. Fujita,, K. Sasaki,, K. Nakamura,, T. Takekoshi,, M. Kishimoto,, H. Mitsui,, M. Komine,, A. Asahina,, and K. Tamaki. 2005. Increased serum CCL28 levels in patients with atopic dermatitis, psoriasis vulgaris and bullous pemphigoid. J. Investig. Dermatol. 124:10881090. PubMed CrossRef
67. Kanneganti, T. D.,, M. Body-Malapel,, A. Amer,, J. H. Park,, J. Whitfield,, L. Franchi,, Z. F. Taraporewala,, D. Miller,, J. T. Patton,, N. Inohara,, and G. Nunez. 2006a. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281:3656036568. PubMed CrossRef
68. Kanneganti, T. D.,, N. Ozoren,, M. Body-Malapel,, A. Amer,, J. H. Park,, L. Franchi,, J. Whitfield,, W. Barchet,, M. Colonna,, P. Vandenabeele,, J. Bertin,, A. Coyle,, E. P. Grant,, S. Akira,, and G. Nunez. 2006b. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233236. PubMed CrossRef
69. Kato, H.,, O. Takeuchi,, E. Mikamo-Satoh,, R. Hirai,, T. Kawai,, K. Matsushita,, A. Hiiragi,, T. S. Dermody,, T. Fujita,, and S. Akira. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205:16011610. PubMed CrossRef
70. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis, E. Sousa,, Y. Matsuura,, T. Fujita,, and S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105. PubMed CrossRef
71. Kawai, T.,, and S. Akira. 2006. TLR signaling. Cell Death Differ. 13:816825.
72. Kim, Y. G.,, J. H. Park,, M. H. Shaw,, L. Franchi,, N. Inohara,, and G. Nunez. 2008. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 28:246257. PubMed CrossRef
73. Kuida, K.,, J. A. Lippke,, G. Ku,, M. W. Harding,, D. J. Livingston,, M. S. Su,, and R. A. Flavell. 1995. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:20002003. PubMed CrossRef
74. Lad, S. P.,, J. Li,, J. da Silva Correia,, Q. Pan,, S. Gadwal,, R. J. Ulevitch,, and E. Li. 2007. Cleavage of p65/RelA of the NF-κB pathway by Chlamydia. Proc. Natl. Acad. Sci. USA 104:29332938. PubMed CrossRef
75. Lamkanfi, M.,, R. K. Malireddi,, and T. D. Kanneganti. 2009. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 284:2057420581. PubMed CrossRef
76. Latz, E.,, A. Schoenemeyer,, A. Visintin,, K. A. Fitzgerald,, B. G. Monks,, C. F. Knetter,, E. Lien,, N. J. Nilsen,, T. Espevik,, and D. T. Golenbock. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5:190198. PubMed CrossRef
77. Lilo, S.,, Y. Zheng,, and J. B. Bliska. 2008. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect. Immun. 76:39113923. PubMed CrossRef
78. Lu, H.,, C. Shen,, and R. C. Brunham. 2000. Chlamydia trachomatis infection of epithelial cells induces the activation of caspase-1 and release of mature IL-18. J. Immunol. 165:14631469. PubMed
79. Mariathasan, S.,, K. Newton,, D. M. Monack,, D. Vucic,, D. M. French,, W. P. Lee,, M. Roose-Girma,, S. Erickson,, and V. M. Dixit. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213218. PubMed CrossRef
80. Mariathasan, S.,, D. S. Weiss,, K. Newton,, J. McBride,, K. O’Rourke,, M. Roose-Girma,, W. P. Lee,, Y. Weinrauch,, D. M. Monack,, and V. M. Dixit. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228232. PubMed CrossRef
81. Martin, M. U.,, and H. Wesche. 2002. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta 1592:265280. PubMed
82. Martinon, F.,, K. Burns,, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10:417426. PubMed CrossRef
83. Martinon, F.,, V. Petrilli,, A. Mayor,, A. Tardivel,, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237241. PubMed CrossRef
84. Martinon, F.,, and J. Tschopp. 2004. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561574. PubMed CrossRef
85. Matsumoto, M.,, K. Funami,, M. Tanabe,, H. Oshiumi,, M. Shingai,, Y. Seto,, A. Yamamoto,, and T. Seya. 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171:31543162. PubMed
86. McCoy, A. J.,, N. E. Adams,, A. O. Hudson,, C. Gilvarg,, T. Leustek,, and A. T. Maurelli. 2006. l,l-Diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc. Natl. Acad. Sci. USA 103:1790917914. PubMed CrossRef
87. McCoy, A. J.,, and A. T. Maurelli. 2005. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity. Mol. Microbiol. 57:4152. PubMed CrossRef
88. McWhirter, S. M.,, R. Barbalat,, K. M. Monroe,, M. F. Fontana,, M. Hyodo,, N. T. Joncker,, K. J. Ishii,, S. Akira,, M. Colonna,, Z. J. Chen,, K. A. Fitzgerald,, Y. Hayakawa,, and R. E. Vance. 2009. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206:18991911. PubMed CrossRef
89. Meixenberger, K.,, F. Pache,, J. Eitel,, B. Schmeck,, S. Hippenstiel,, H. Slevogt,, P. N’Guessan,, M. Witzenrath,, M. G. Netea,, T. Chakraborty,, N. Suttorp,, and B. Opitz. 2010. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J. Immunol. 184:922930. PubMed CrossRef
90. Miao, E. A.,, C. M. Alpuche-Aranda,, M. Dors,, A. E. Clark,, M. W. Bader,, S. I. Miller,, and A. Aderem. 2006. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. 7:569575. PubMed CrossRef
91. Miao, E. A.,, R. K. Ernst,, M. Dors,, D. P. Mao,, and A. Aderem. 2008. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl. Acad. Sci. USA 105:25622567. PubMed CrossRef
92. Miao, E. A.,, D. P. Mao,, N. Yudkovsky,, R. Bonneau,, C. G. Lorang,, S. E. Warren,, I. A. Leaf,, and A. Aderem. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. USA 107:30763080. PubMed CrossRef
93. Nagarajan, U. M.,, D. M. Ojcius,, L. Stahl,, R. G. Rank,, and T. Darville. 2005. Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent on MyD88. J. Immunol. 175:450460. PubMed
94. Nagarajan, U. M.,, D. Prantner,, J. D. Sikes,, C. W. Andrews, Jr.,, A. M. Goodwin,, S. Nagarajan,, and T. Darville. 2008. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect. Immun. 76:46424648. PubMed CrossRef
95. Nagarajan, U. M.,, J. Sikes,, D. Prantner,, C. W. Andrews, Jr.,, L. Frazer,, A. Goodwin,, J. N. Snowden,, and T. Darville. 2011. MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution. Infect. Immun. 79:486498. PubMed CrossRef
96. Nagarajan, U. M.,, J. D. Sikes,, L. Yeruva,, and D. Prantner. 2012. Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection. J. Immunol. 188:28662875. PubMed CrossRef
97. Naiki, Y.,, K. S. Michelsen,, N. W. Schroder,, R. Alsabeh,, A. Slepenkin,, W. Zhang,, S. Chen,, B. Wei,, Y. Bulut,, M. H. Wong,, E. M. Peterson,, and M. Arditi. 2005. MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia. J. Biol. Chem. 280:2924229249. PubMed CrossRef
98. Nedwin, G. E.,, S. L. Naylor,, A. Y. Sakaguchi,, D. Smith,, J. Jarrett-Nedwin,, D. Pennica,, D. V. Goeddel,, and P. W. Gray. 1985. Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res. 13:63616373. PubMed CrossRef
99. Netea, M. G.,, B. J. Kullberg,, J. M. Galama,, A. F. Stalenhoef,, C. A. Dinarello,, and J. W. Van der Meer. 2002. Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. Eur. J. Immunol. 32:11881195. PubMed CrossRef
100. O’Connell, C. M.,, Y. M. AbdelRahman,, E. Green,, H. K. Darville,, K. Saira,, B. Smith,, T. Darville,, A. M. Scurlock,, C. R. Meyer,, and R. J. Belland. 2011. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect. Immun. 79:10441056. PubMed CrossRef
101. O’Connell, C. M.,, R. R. Ingalls,, C. W. Andrews, Jr.,, A. M. Scurlock,, and T. Darville. 2007. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J. Immunol. 179:40274034. PubMed
102. O’Connell, C. M.,, I. A. Ionova,, A. J. Quayle,, A. Visintin,, and R. R. Ingalls. 2006. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281:16521659. PubMed CrossRef
103. Ohmori, Y.,, S. Fukumoto,, and T. A. Hamilton. 1995. Two structurally distinct kappa B sequence motifs cooperatively control LPS-induced KC gene transcription in mouse macrophages. J. Immunol. 155:35933600. PubMed
104. Ohmori, Y.,, and T. A. Hamilton. 1995. The interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-gamma and TNF-alpha. J. Immunol. 154:52355244. PubMed
105. Opitz, B.,, S. Forster,, A. C. Hocke,, M. Maass,, B. Schmeck,, S. Hippenstiel,, N. Suttorp,, and M. Krull. 2005. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. 96:319326. PubMed CrossRef
106. Ozoren, N.,, J. Masumoto,, L. Franchi,, T. D. Kanneganti,, M. Body-Malapel,, I. Erturk,, R. Jagirdar,, L. Zhu,, N. Inohara,, J. Bertin,, A. Coyle,, E. P. Grant,, and G. Nunez. 2006. Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J. Immunol. 176:43374342. PubMed
107. Patin, D.,, J. Bostock,, D. Blanot,, D. Mengin-Lecreulx,, and I. Chopra. 2009. Functional and biochemical analysis of the Chlamydia trachomatis ligase MurE. J. Bacteriol. 191:74307435. PubMed CrossRef
108. Prantner, D.,, T. Darville,, and U. M. Nagarajan. 2010. Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. J. Immunol. 184:25512560. PubMed CrossRef
109. Prantner, D.,, T. Darville,, J. D. Sikes,, C. W. Andrews, Jr.,, H. Brade,, R. G. Rank,, and U. M. Nagarajan. 2009. Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect. Immun. 77:53345346. PubMed CrossRef
110. Prantner, D.,, and U. M. Nagarajan. 2009. Role for the chlamydial type III secretion apparatus in host cytokine expression. Infect. Immun. 77:7684. PubMed CrossRef
111. Prebeck, S.,, C. Kirschning,, S. Durr,, C. da Costa,, B. Donath,, K. Brand,, V. Redecke,, H. Wagner,, and T. Miethke. 2001. Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J. Immunol. 167:33163323. PubMed
112. Qiu, H.,, Y. Fan,, A. G. Joyee,, S. Wang,, X. Han,, H. Bai,, L. Jiao,, N. Van Rooijen,, and X. Yang. 2008. Type I IFNs enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local macrophages. J. Immunol. 181:20922102. PubMed
113. Rank, R. G.,, H. M. Lacy,, A. Goodwin,, J. Sikes,, J. Whittimore,, P. B. Wyrick,, and U. M. Nagarajan. 2010. Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect. Immun. 78:536544. PubMed CrossRef
114. Rasmussen, S. J.,, L. Eckmann,, A. J. Quayle,, L. Shen,, Y. X. Zhang,, D. J. Anderson,, J. Fierer,, R. S. Stephens,, and M. F. Kagnoff. 1997. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Investig. 99:7787. PubMed CrossRef
115. Reiling, N.,, S. Ehlers,, and C. Holscher. 2008. MyDths and un-TOLLed truths: sensor, instructive and effector immunity to tuberculosis. Immunol. Lett. 116:1523. PubMed CrossRef
116. Robinson, D.,, K. Shibuya,, A. Mui,, F. Zonin,, E. Murphy,, T. Sana,, S. B. Hartley,, S. Menon,, R. Kastelein,, F. Bazan,, and A. O’Garra. 1997. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFκB. Immunity 7:571581. PubMed CrossRef
117. Rodriguez, N.,, R. Lang,, N. Wantia,, C. Cirl,, T. Ertl,, S. Dürr,, H. Wagner,, and T. Miethke. 2008. Induction of iNOS by Chlamydophila pneumoniae requires MyD88-dependent activation of JNK. J. Leukoc. Biol. 84:15851593. PubMed CrossRef
118. Sabbah, A.,, T. H. Chang,, R. Harnack,, V. Frohlich,, K. Tominaga,, P. H. Dube,, Y. Xiang,, and S. Bose. 2009. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 10:10731080. PubMed CrossRef
119. Saha, S. K.,, E. M. Pietras,, J. Q. He,, J. R. Kang,, S. Y. Liu,, G. Oganesyan,, A. Shahangian,, B. Zarnegar,, T. L. Shiba,, Y. Wang,, and G. Cheng. 2006. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25:32573263. PubMed CrossRef
120. Sasu, S.,, D. LaVerda,, N. Qureshi,, D. T. Golenbock,, and D. Beasley. 2001. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ. Res. 89:244250. PubMed CrossRef
121. Seth, R. B.,, L. Sun,, C. K. Ea,, and Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669682. PubMed CrossRef
122. Shao, W.,, G. Yeretssian,, K. Doiron,, S. N. Hussain,, and M. Saleh. 2007. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282:3632136329. PubMed CrossRef
123. Soulat, D.,, A. Bauch,, S. Stockinger,, G. Superti-Furga,, and T. Decker. 2006. Cytoplasmic Listeria monocytogenes stimulates IFN-beta synthesis without requiring the adapter protein MAVS. FEBS Lett. 580:23412346. PubMed CrossRef
124. Srinivasula, S. M.,, J.-L. Poyet,, M. Razmara,, P. Datta,, Z. Zhang,, and E. S. Alnemri. 2002. The PYRIN-CARD protein ASC is an activating adaptor for Caspase-1. J. Biol. Chem. 277:2111921122. PubMed CrossRef
125. Steevels, T. A. M.,, and L. Meyaard. 2011. Immune inhibitory receptors: essential regulators of phagocyte function. Eur. J. Immunol. 41:575587. PubMed CrossRef
126. Stetson, D. B.,, and R. Medzhitov. 2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93103. PubMed CrossRef
127. Sutterwala, F. S.,, L. A. Mijares,, L. Li,, Y. Ogura,, B. I. Kazmierczak,, and R. A. Flavell. 2007. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204:32353245. PubMed CrossRef
128. Suzuki, T.,, L. Franchi,, C. Toma,, H. Ashida,, M. Ogawa,, Y. Yoshikawa,, H. Mimuro,, N. Inohara,, C. Sasakawa,, and G. Nunez. 2007. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3:e111. PubMed CrossRef
129. Tabeta, K.,, P. Georgel,, E. Janssen,, X. Du,, K. Hoebe,, K. Crozat,, S. Mudd,, L. Shamel,, S. Sovath,, J. Goode,, L. Alexopoulou,, R. A. Flavell,, and B. Beutler. 2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101:35163521. PubMed CrossRef
130. Takaoka, A.,, Z. Wang,, M. K. Choi,, H. Yanai,, H. Negishi,, T. Ban,, Y. Lu,, M. Miyagishi,, T. Kodama,, K. Honda,, Y. Ohba,, and T. Taniguchi. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501505. PubMed CrossRef
131. Takeda, K.,, T. Kaisho,, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335376. PubMed CrossRef
132. Tapping, R. I.,, S. Akashi,, K. Miyake,, P. J. Godowski,, and P. S. Tobias. 2000. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165:57805787. PubMed
133. Terra, J. K.,, C. K. Cote,, B. France,, A. L. Jenkins,, J. A. Bozue,, S. L. Welkos,, S. M. LeVine,, and K. A. Bradley. 2010. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J. Immunol. 184:1720. PubMed CrossRef
134. Thirumalai, K.,, K. S. Kim,, and A. Zychlinsky. 1997. IpaB, a Shigella flexneri invasin, colocalizes with interleukin-1 beta-converting enzyme in the cytoplasm of macrophages. Infect. Immun. 65:787793. PubMed
135. Thornberry, N. A.,, H. G. Bull,, J. R. Calaycay,, K. T. Chapman,, A. D. Howard,, M. J. Kostura,, D. K. Miller,, S. M. Molineaux,, J. R. Weidner,, J. Aunins, et al. 1992. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768774. PubMed CrossRef
136. Ting, J. P. Y.,, S. B. Willingham,, and D. T. Bergstralh. 2008. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8:372379. PubMed CrossRef
137. Toshchakov, V.,, B. W. Jones,, P. Y. Perera,, K. Thomas,, M. J. Cody,, S. Zhang,, B. R. Williams,, J. Major,, T. A. Hamilton,, M. J. Fenton,, and S. N. Vogel. 2002. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3:392398. PubMed CrossRef
138. Travassos, L. H.,, S. E. Girardin,, D. J. Philpott,, D. Blanot,, M. A. Nahori,, C. Werts,, and I. G. Boneca. 2004. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5:10001006. PubMed CrossRef
139. Trumstedt, C.,, E. Eriksson,, A. M. Lundberg,, T. B. Yang,, Z. Q. Yan,, H. Wigzell,, and M. E. Rottenberg. 2007. Role of IRAK4 and IRF3 in the control of intracellular infection with Chlamydia pneumoniae. J. Leukoc. Biol. 81:15911598. PubMed CrossRef
140. Tseng, P. H.,, A. Matsuzawa,, W. Zhang,, T. Mino,, D. A. Vignali,, and M. Karin. 2010. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat. Immunol. 11:7075. PubMed CrossRef
141. Unterholzner, L.,, S. E. Keating,, M. Baran,, K. A. Horan,, S. B. Jensen,, S. Sharma,, C. M. Sirois,, T. Jin,, E. Latz,, T. S. Xiao,, K. A. Fitzgerald,, S. R. Paludan,, and A. G. Bowie. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11:9971004. PubMed CrossRef
142. Vance, R. E. 2010. Inflammasome activation: how macrophages watch what they eat. Cell Host Microbe 7:35. PubMed CrossRef
143. Vignola, M. J.,, D. F. Kashatus,, G. A. Taylor,, C. M. Counter,, and R. H. Valdivia. 2010. cPLA2 regulates the expression of type I interferons and intracellular immunity to Chlamydia trachomatis. J. Biol. Chem. 285:2162521635. PubMed CrossRef
144. Wathelet, M. G.,, C. H. Lin,, B. S. Parekh,, L. V. Ronco,, P. M. Howley,, and T. Maniatis. 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol. Cell 1:507518. PubMed CrossRef
145. Welter-Stahl, L.,, D. M. Ojcius,, J. Viala,, S. Girardin,, W. Liu,, C. Delarbre,, D. Philpott,, K. A. Kelly,, and T. Darville. 2006. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell. Microbiol. 8:10471057. PubMed CrossRef
146. Widmer, U.,, K. R. Manogue,, A. Cerami,, and B. Sherry. 1993. Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J. Immunol. 150:49965012. PubMed
147. Wolf, K.,, H. J. Betts,, B. Chellas-Gery,, S. Hower,, C. N. Linton,, and K. A. Fields. 2006. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol. Microbiol. 61:15431555. PubMed CrossRef
148. Woodward, J. J.,, A. T. Iavarone,, and D. A. Portnoy. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:17031705. PubMed CrossRef
149. Yamamoto, M.,, S. Sato,, H. Hemmi,, K. Hoshino,, T. Kaisho,, H. Sanjo,, O. Takeuchi,, M. Sugiyama,, M. Okabe,, K. Takeda,, and S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640643. PubMed CrossRef
150. Yang, P.,, H. An,, X. Liu,, M. Wen,, Y. Zheng,, Y. Rui,, and X. Cao. 2010. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat. Immunol. 11:487494. PubMed CrossRef
151. Yao, S. Y.,, A. Ljunggren-Rose,, C. W. Stratton,, W. M. Mitchell,, and S. Sriram. 2001. Regulation by IFN-beta of inducible nitric oxide synthase and interleukin-12/p40 in murine macrophages cultured in the presence of Chlamydia pneumoniae antigens. J. Interferon Cytokine Res. 21:137146. PubMed CrossRef
152. Yaraei, K.,, L. A. Campbell,, X. Zhu,, W. C. Liles,, C.-c. Kuo,, and M. E. Rosenfeld. 2005. Effect of Chlamydia pneumoniae on cellular ATP content in mouse macrophages: role of Toll-like receptor 2. Infect. Immun. 73:43234326. PubMed CrossRef
153. Zhong, B.,, Y. Yang,, S. Li,, Y. Y. Wang,, Y. Li,, F. Diao,, C. Lei,, X. He,, L. Zhang,, P. Tien,, and H. B. Shu. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538550. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error