1887

Chapter 11 : Immunopathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Immunopathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap11-2.gif

Abstract:

Infection of the ocular conjunctiva with leads to trachoma, which remains the commonest infectious cause of blindness worldwide. The majority of men and women with genital infections are asymptomatic. This chapter reviews data related to host, bacterial, and environmental factors that affect the complicated multidimensional process and how they relate to tipping the balance towards chronic disease development. Recognizing the significance of early inflammatory events in chlamydial pathogenesis, the murine model of genital tract infection was adapted to characterize the early chemokine and cytokine response and correlate it with the chlamydial developmental cycle in vivo. Researchers have begun to identify the cellular receptors involved in -induced stimulation of cytokine release. Toll-like receptors (TLRs) act as pathogen recognition receptors (PRRs) that enable cells to recognize conserved bacterial, viral, and fungal structural elements. The cellular paradigm makes no distinction between damage induced by professional innate immune cells (neutrophils and monocytes) and adaptive lymphocyte populations but assumes that both cell populations contribute to pathogenesis. Since the host cell response to bacteria is the inciting inflammatory event, increased and prolonged bacterial burden correlates directly with disease development. Pathogen-specific and environmental factors that promote infection and bacterial survival lead to enhanced disease. Plasmid-encoded factors and type III secretion effectors appear to be key bacterial virulence factors.

Citation: Darville T, O'Connell C. 2012. Immunopathogenesis, p 240-264. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch11

Key Concept Ranking

Tumor Necrosis Factor alpha
0.44902214
Type III Secretion System
0.42168328
0.44902214
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817329.chap11
1. Agrawal, T.,, R. Gupta,, R. Dutta,, P. Srivastava,, A. R. Bhengraj,, S. Salhan,, and A. Mittal. 2009. Protective or pathogenic immune response to genital chlamydial infection in women—a possible role of cytokine secretion profile of cervical mucosal cells. Clin. Immunol. 130:347354. PubMed CrossRef
2. Akira, S.,, and S. Sato. 2003. Toll-like receptors and their signaling mechanisms. Scand. J. Infect. Dis. 35:555562. PubMed
3. Ault, K. A.,, K. A. Kelly,, P. E. Ruther,, A. A. Izzo,, L. S. Izzo,, I. M. Sigar,, and K. H. Ramsey. 2002. Chlamydia trachomatis enhances the expression of matrix metalloproteinases in an in vitro model of the human fallopian tube infection. Am. J. Obstet. Gynecol. 187:13771383. PubMed CrossRef
4. Ault, K. A.,, O. W. Tawfik,, M. M. Smith-King,, J. Gunter,, and P. F. Terranova. 1996. Tumor necrosis factor-alpha response to infection with Chlamydia trachomatis in human fallopian tube organ culture. Am. J. Obstet. Gynecol. 175:12421245. PubMed
5. Bachmann, L. H.,, C. M. Richey,, K. Waites,, J. R. Schwebke,, and E. W. Hook III. 1999. Patterns of Chlamydia trachomatis testing and follow-up at a University Hospital Medical Center. Sex. Transm. Dis. 26:496499. PubMed
6. Baeten, J. M.,, P. M. Nyange,, B. A. Richardson,, L. Lavreys,, B. Chohan,, H. L. Martin, Jr.,, K. Mandaliya,, J. O. Ndinya-Achola,, J. J. Bwayo,, and J. K. Kreiss. 2001. Hormonal contraception and risk of sexually transmitted disease acquisition: results from a prospective study. Am. J. Obstet. Gynecol. 185:380385. PubMed CrossRef
7. Bai, H.,, J. Cheng,, X. Gao,, A. G. Joyee,, Y. Fan,, S. Wang,, L. Jiao,, Z. Yao,, and X. Yang. 2009. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J. Immunol. 183:58865895. PubMed CrossRef
8. Bailey, R.,, T. Duong,, R. Carpenter,, H. Whittle,, and D. Mabey. 1999. The duration of human ocular Chlamydia trachomatis infection is age dependent. Epidemiol. Infect. 123:479486. PubMed
9. Bakken, I. J.,, F. E. Skjeldestad,, and S. A. Nordbo. 2007. Chlamydia trachomatis infections increase the risk for ectopic pregnancy: a population-based, nested case-control study. Sex. Transm. Dis. 34:166169. PubMed CrossRef
10. Barr, E. L.,, S. Ouburg,, J. U. Igietseme,, S. A. Morre,, E. Okwandu,, F. O. Eko,, G. Ifere,, T. Belay,, Q. He,, D. Lyn,, G. Nwankwo,, J. Lillard,, C. M. Black,, and G. A. Ananaba. 2005. Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion. J. Microbiol. Immunol. Infect. 38:244254. PubMed
11. Bas, S.,, L. Neff,, M. Vuillet,, U. Spenato,, T. Seya,, M. Matsumoto,, and C. Gabay. 2008. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J. Immunol. 180:11581168. PubMed
12. Beagley, K. W.,, and C. M. Gockel. 2003. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol. 38:1322. PubMed CrossRef
13. Beatty, W. L.,, T. A. Belanger,, A. A. Desai,, R. P. Morrison,, and G. I. Byrne. 1994. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect. Immun. 62:37053711. PubMed
14. Beatty, W. L.,, G. I. Byrne,, and R. P. Morrison. 1993. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc. Natl. Acad. Sci. USA 90:39984002. PubMed
15. Belay, T.,, F. O. Eko,, G. A. Ananaba,, S. Bowers,, T. Moore,, D. Lyn,, and J. U. Igietseme. 2002. Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect. Immun. 70:844850. PubMed
16. Brade, L.,, S. Schramek,, U. Schade,, and H. Brade. 1986. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect. Immun. 54:568574. PubMed
17. Broadbent, A.,, P. Horner,, G. Wills,, A. Ling,, R. Carzaniga,, and M. McClure. 2011. HIV-1 does not significantly influence Chlamydia trachomatis serovar L2 replication in vitro. Microbes Infect. 13:575584. PubMed CrossRef
18. Buchholz, K. R.,, and R. S. Stephens. 2006. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell. Microbiol. 8:17681779. PubMed CrossRef
19. Buchholz, K. R.,, and R. S. Stephens. 2007. The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect. Immun. 75:59245929. PubMed CrossRef
20. Bulut, Y.,, E. Faure,, L. Thomas,, H. Karahashi,, K. S. Michelsen,, O. Equils,, S. G. Morrison,, R. P. Morrison,, and M. Arditi. 2002. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168:14351440. PubMed
21. Burton, M. J.,, R. L. Bailey,, D. Jeffries,, D. C. Mabey,, and M. J. Holland. 2004. Cytokine and fibrogenic gene expression in the conjunctivas of subjects from a Gambian community where trachoma is endemic. Infect. Immun. 72:73527356. PubMed CrossRef
22. Burton, M. J.,, S. N. Rajak,, J. Bauer,, H. A. Weiss,, S. B. Tolbert,, A. Shoo,, E. Habtamu,, A. Manjurano,, P. M. Emerson,, D. C. Mabey,, M. J. Holland,, and R. L. Bailey. 2011. Conjunctival transcriptome in scarring trachoma. Infect. Immun.79:499511. PubMed CrossRef
23. Cain, T. K.,, and R. G. Rank. 1995. Local Th1-like responses are induced by intravaginal infection of mice with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect. Immun. 63:17841789. PubMed
24. Caldwell, H. D.,, H. Wood,, D. Crane,, R. Bailey,, R. B. Jones,, D. Mabey,, I. Maclean,, Z. Mohammed,, R. Peeling,, C. Roshick,, J. Schachter,, A. W. Solomon,, W. E. Stamm,, R. J. Suchland,, L. Taylor,, S. K. West,, T. C. Quinn,, R. J. Belland,, and G. McClarty. 2003. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Investig. 111:17571769. PubMed CrossRef
25. Carlson, J. H.,, W. M. Whitmire,, D. D. Crane,, L. Wicke,, K. Virtaneva,, D. E. Sturdevant,, J. J. Kupko III,, S. F. Porcella,, N. Martinez-Orengo,, R. A. Heinzen,, L. Kari,, and H. D. Caldwell. 2008. The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect. Immun. 76:22732283. PubMed CrossRef
26. Chen, D.,, L. Lei,, C. Lu,, R. Flores,, M. P. DeLisa,, T. C. Roberts,, F. E. Romesberg,, and G. Zhong. 2010a. Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. Microbiology 156:30313040. PubMed CrossRef
27. Chen, L.,, L. Lei,, X. Chang,, Z. Li,, C. Lu,, X. Zhang,, Y. Wu,, I. T. Yeh,, and G. Zhong. 2010b. Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. J. Immunol. 184:26022610. PubMed CrossRef
28. Cheng, W.,, P. Shivshankar,, Z. Li,, L. Chen,, I. T. Yeh,, and G. Zhong. 2008. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect. Immun. 76:515522. PubMed CrossRef
29. Christian, J.,, J. Vier,, S. A. Paschen,, and G. Hacker. 2010. Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with chlamydiae. J. Biol. Chem. 285:4132041327. PubMed CrossRef
30. Cotter, T. W.,, K. H. Ramsey,, G. S. Miranpuri,, C. E. Poulsen,, and G. I. Byrne. 1997. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65:21452152. PubMed
31. Cruz, A.,, S. A. Khader,, E. Torrado,, A. Fraga,, J. E. Pearl,, J. Pedrosa,, A. M. Cooper,, and A. G. Castro. 2006. Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J. Immunol. 177:14161420. PubMed
32. Darville, T.,, C. W. Andrews, Jr.,, K. K. Laffoon,, W. Shymasani,, L. R. Kishen,, and R. G. Rank. 1997. Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect. Immun. 65:30653073. PubMed
33. Darville, T.,, C. W. Andrews, Jr.,, J. D. Sikes,, P. L. Fraley,, and R. G. Rank. 2001. Early local cytokine profiles in strains of mice with different outcomes from chlamydial genital tract infection. Infect. Immun. 69:35563561. PubMed CrossRef
34. Darville, T.,, K. K. Lafoon,, L. R. Kishen,, and R. G. Rank. 1995. Tumor necrosis factor-alpha activity in genital tract secretions of guinea pigs infected with chlamydiae. Infect. Immun. 63:46754681. PubMed
35. Darville, T.,, J. M. O’Neill,, C. W. Andrews, Jr.,, U. M. Nagarajan,, L. Stahl,, and D. M. Ojcius. 2003. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171:61876197. PubMed
36. Dawson, C. R.,, R. Marx,, T. Daghfous,, R. Juster,, and J. Schachter,. 1990. What clinical signs are critical in evaluating the intervention in trachoma?, p. 271278. In W. R. Bowie (ed.), Chlamydial Infections. Cambridge University Press, Cambridge, United Kingdom.
37. Debattista, J.,, P. Timms,, and J. Allan. 2002. Reduced levels of gamma-interferon secretion in response to chlamydial 60 kDa heat shock protein amongst women with pelvic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol. Lett. 81:205210. PubMed
38. Deka, S.,, J. Vanover,, S. Dessus-Babus,, J. Whittimore,, M. K. Howett,, P. B. Wyrick,, and R. V. Schoborg. 2006. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell. Microbiol. 8:149162. PubMed CrossRef
39. Dhir, S. P.,, L. P. Agarwal,, R. Detels,, S. P. Wang,, and J. T. Grayston. 1967. Field trial of two bivalent trachoma vaccines in children of Punjab Indian villages. Am. J. Ophthalmol. 63(Suppl.):16391644. PubMed
40. Dubin, P. J.,, and J. K. Kolls. 2007. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 292:L519L528. PubMed CrossRef
41. Eckmann, L.,, M. F. Kagnoff,, and J. Fierer. 1993. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun. 61:45694574. PubMed
42. El-Asrar, A. M.,, K. Geboes,, S. A. Al-Kharashi,, A. A. Al-Mosallam,, L. Missotten,, L. Paemen,, and G. Opdenakker. 2000. Expression of gelatinase B in trachomatous conjunctivitis. Br. J. Ophthalmol. 84:8591. PubMed CrossRef
43. Eyerich, S.,, K. Eyerich,, A. Cavani,, and C. Schmidt-Weber. 2010. IL-17 and IL-22: siblings, not twins. Trends Immunol. 31:354361. PubMed CrossRef
44. Fichorova, R. N.,, A. O. Cronin,, E. Lien,, D. J. Anderson,, and R. R. Ingalls. 2002. Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of toll-like receptor 4-mediated signaling. J. Immunol. 168:24242432. PubMed
45. Fields, K. A.,, and T. Hackstadt. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38:10481060. PubMed CrossRef
46. Fukuda, E. Y.,, S. P. Lad,, D. P. Mikolon,, M. Iacobelli-Martinez,, and E. Li. 2005. Activation of lipid metabolism contributes to interleukin-8 production during Chlamydia trachomatis infection of cervical epithelial cells. Infect. Immun. 73:40174024. PubMed CrossRef
47. Gambhir, M.,, M. G. Basanez,, F. Turner,, J. Kumaresan,, and N. C. Grassly. 2007. Trachoma: transmission, infection, and control. Lancet Infect. Dis. 7:420427. PubMed CrossRef
48. Geisler, W. M.,, R. J. Suchland,, W. L. Whittington,, and W. E. Stamm. 2001. Quantitative culture of Chlamydia trachomatis: relationship of inclusion-forming units produced in culture to clinical manifestations and acute inflammation in urogenital disease. J. Infect. Dis. 184:13501354. PubMed CrossRef
49. Geisler, W. M.,, C. Wang,, S. G. Morrison,, C. M. Black,, C. I. Bandea,, and E. W. Hook III. 2008. The natural history of untreated Chlamydia trachomatis infection in the interval between screening and returning for treatment. Sex. Transm. Dis. 35:119123. PubMed CrossRef
50. Gervassi, A. L.,, P. Probst,, W. E. Stamm,, J. Marrazzo,, K. H. Grabstein,, and M. R. Alderson. 2003. Functional characterization of class Ia- and non-class Ia-restricted Chlamydia-reactive CD8+ T cell responses in humans. J. Immunol. 171:42784286. PubMed
51. Grassly, N. C.,, M. E. Ward,, S. Ferris,, D. C. Mabey,, and R. L. Bailey. 2008. The natural history of trachoma infection and disease in a Gambian cohort with frequent follow-up. PLoS Negl. Trop. Dis. 2:e341. PubMed CrossRef
52. Grayston, J. T.,, S. P. Wang,, L. J. Yeh,, and C. C. Kuo. 1985. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis. 7:717725. PubMed
53. Guan, Y.,, D. R. Ranoa,, S. Jiang,, S. K. Mutha,, X. Li,, J. Baudry,, and R. I. Tapping. 2010. Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. J. Immunol. 184:50945103. PubMed CrossRef
54. Guseva, N. V.,, S. T. Knight,, J. D. Whittimore,, and P. B. Wyrick. 2003. Primary cultures of female swine genital epithelial cells in vitro: a new approach for the study of hormonal modulation of Chlamydia infection. Infect. Immun. 71:47004710. PubMed
55. Haggerty, C. L.,, S. L. Gottlieb,, B. D. Taylor,, N. Low,, F. Xu,, and R. B. Ness. 2010. Risk of sequelae after Chlamydia trachomatis genital infection in women. J. Infect. Dis. 201(Suppl. 2):S134S155. PubMed CrossRef
56. Haggerty, C. L.,, R. B. Ness,, A. Amortegui,, S. L. Hendrix,, S. L. Hillier,, R. L. Holley,, J. Peipert,, H. Randall,, S. J. Sondheimer,, D. E. Soper,, R. L. Sweet,, and G. Trucco. 2003. Endometritis does not predict reproductive morbidity after pelvic inflammatory disease. Am. J. Obstet. Gynecol. 188:141148. PubMed CrossRef
57. Hart, K. M.,, A. J. Murphy,, K. T. Barrett,, C. R. Wira,, P. M. Guyre,, and P. A. Pioli. 2009. Functional expression of pattern recognition receptors in tissues of the human female reproductive tract. J. Reprod. Immunol. 80:3340. PubMed CrossRef
58. Hasan, U.,, C. Chaffois,, C. Gaillard,, V. Saulnier,, E. Merck,, S. Tancredi,, C. Guiet,, F. Briere,, J. Vlach,, S. Lebecque,, G. Trinchieri,, and E. E. Bates. 2005. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J. Immunol. 174:29422950. PubMed
59. Heine, H.,, S. Muller-Loennies,, L. Brade,, B. Lindner,, and H. Brade. 2003. Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur. J. Biochem. 270:440450. PubMed
60. Heinonen, P. K.,, and A. Miettinen. 1994. Laparoscopic study on the microbiology and severity of acute pelvic inflammatory disease. Eur. J. Obstet. Gynecol. Reprod. Biol. 57:8589. PubMed
61. Higgins, S. C.,, A. G. Jarnicki,, E. C. Lavelle,, and K. H. Mills. 2006. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J. Immunol. 177:79807989. PubMed
62. Hillis, S. D.,, R. Joesoef,, P. A. Marchbanks,, J. N. Wasserheit,, W. Cates, Jr.,, and L. Westrom. 1993. Delayed care of pelvic inflammatory disease as a risk factor for impaired fertility. Am. J. Obstet. Gynecol. 168:15031509. PubMed
63. Hillis, S. D.,, L. M. Owens,, P. A. Marchbanks,, L. E. Amsterdam,, and W. R. MacKenzie. 1997. Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am. J. Obstet. Gynecol. 176:103107. PubMed
64. Hook, E. W.,, and H. H. Handsfield,. 1999. Gonococcal infection in the adult, p. 451466. In K. Holmes,, P. F. Sparling,, P. A. Mardh,, S. M. Lemon,, W. E. Stamm,, and J. N. Wasserheit (ed.), Sexually Transmitted Diseases. McGraw-Hill Book Co., New York, NY.
65. Hook, E. W., III,, C. Spitters,, C. A. Reichart,, T. M. Neumann,, and T. C. Quinn. 1994. Use of cell culture and a rapid diagnostic assay for Chlamydia trachomatis screening. JAMA 272:867870. PubMed
66. Hvid, M.,, A. Baczynska,, B. Deleuran,, J. Fedder,, H. J. Knudsen,, G. Christiansen,, and S. Birkelund. 2007. Interleukin-1 is the initiator of fallopian tube destruction during Chlamydia trachomatis infection. Cell. Microbiol. 9:27952803. PubMed CrossRef
67. Igietseme, J. U.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Moore,, T. Belay,, F. O. Eko,, D. Lyn,, and C. M. Black. 2000. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J. Immunol. 164:42124219. PubMed
68. Ingalls, R. R.,, P. A. Rice,, N. Qureshi,, K. Takayama,, J. S. Lin,, and D. T. Golenbock. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63:31253130. PubMed
69. Jayarapu, K.,, M. Kerr,, S. Ofner,, and R. M. Johnson. 2010. Chlamydia-specific CD4 T cell clones control Chlamydia muridarum replication in epithelial cells by nitric oxide-dependent and -independent mechanisms. J. Immunol. 185:69116920. PubMed CrossRef
70. Jha, R.,, P. Srivastava,, S. Salhan,, A. Finckh,, C. Gabay,, A. Mittal,, and S. Bas. 2011. Spontaneous secretion of interleukin-17 and -22 by human cervical cells in Chlamydia trachomatis infection. Microbes Infect. 13:167178. PubMed CrossRef
71. Jones, R. B.,, B. R. Ardery,, S. L. Hui,, and R. E. Cleary. 1982. Correlation between serum antichlamydial antibodies and tubal factor as a cause of infertility. Fertil. Steril. 38:553558. PubMed
72. Kari, L.,, W. M. Whitmire,, J. H. Carlson,, D. D. Crane,, N. Reveneau,, D. E. Nelson,, D. C. Mabey,, R. L. Bailey,, M. J. Holland,, G. McClarty,, and H. D. Caldwell. 2008. Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations. J. Infect. Dis. 197:449456. PubMed CrossRef
73. Karimi, O.,, S. Ouburg,, H. J. de Vries,, A. S. Pena,, J. Pleijster,, J. A. Land,, and S. A. Morré. 2009. TLR2 haplotypes in the susceptibility to and severity of Chlamydia trachomatis infections in Dutch women. Drugs Today 45(Suppl. B):6774. PubMed
74. Kelly, K. A.,, S. Natarajan,, P. Ruther,, A. Wisse,, M. H. Chang,, and K. A. Ault. 2001. Chlamydia trachomatis infection induces mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1, providing an immunologic link between the fallopian tube and other mucosal tissues. J. Infect. Dis. 184:885891. PubMed CrossRef
75. Khader, S. A.,, G. K. Bell,, J. E. Pearl,, J. J. Fountain,, J. Rangel-Moreno,, G. E. Cilley,, F. Shen,, S. M. Eaton,, S. L. Gaffen,, S. L. Swain,, R. M. Locksley,, L. Haynes,, T. D. Randall,, and A. M. Cooper. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8:369377. PubMed CrossRef
76. Kimani, J.,, I. W. Maclean,, J. J. Bwayo,, K. MacDonald,, J. Oyugi,, G. M. Maitha,, R. W. Peeling,, M. Cheang,, N. J. Nagelkerke,, F. A. Plummer,, and R. C. Brunham. 1996. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J. Infect. Dis. 173:14371444. PubMed CrossRef
77. Kinnunen, A. H.,, H. M. Surcel,, M. Lehtinen,, J. Karhukorpi,, A. Tiitinen,, M. Halttunen,, A. Bloigu,, R. P. Morrison,, R. Karttunen,, and J. Paavonen. 2002. HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis-related tubal factor infertility: a case-control study. Hum. Reprod. 17:20732078. PubMed CrossRef
78. Kiviat, N. B.,, M. Peterson,, E. Kinney-Thomas,, M. Tam,, W. E. Stamm,, and K. K. Holmes. 1985. Cytologic manifestations of cervical and vaginal infections. II. Confirmation of Chlamydia trachomatis infection by direct immunofluorescence using monoclonal antibodies. JAMA 253:9971000. PubMed
79. Koenders, M. I.,, J. K. Kolls,, B. Oppers-Walgreen,, B. L. van den,, L. A. Joosten,, J. R. Schurr,, P. Schwarzenberger,, W. B. Van Den Berg,, and E. Lubberts. 2005. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52:32393247. PubMed CrossRef
80. Kolls, J. K.,, and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21:467476. PubMed CrossRef
81. Lad, S. P.,, J. Li,, J. da Silva Correia,, Q. Pan,, S. Gadwal,, R. J. Ulevitch,, and E. Li. 2007a. Cleavage of p65/RelA of the NF-kappaB pathway by Chlamydia. Proc. Natl. Acad. Sci. USA 104:29332938. PubMed CrossRef
82. Lad, S. P.,, G. Yang,, D. A. Scott,, G. Wang,, P. Nair,, J. Mathison,, V. S. Reddy,, and E. Li. 2007b. Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response. J. Bacteriol. 189:66196625. PubMed CrossRef
83. Lapointe, T. K.,, P. M. O’Connor,, N. L. Jones,, D. Menard,, and A. G. Buret. 2010. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell. Microbiol. 12:692703. PubMed CrossRef
84. Leese, H. J.,, J. I. Tay,, J. Reischl,, and S. J. Downing. 2001. Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction 121:339346. PubMed CrossRef
85. Li, Z.,, D. Chen,, Y. Zhong,, S. Wang,, and G. Zhong. 2008. The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect. Immun. 76:34153428. PubMed CrossRef
86. Liang, S. C.,, X. Y. Tan,, D. P. Luxenberg,, R. Karim,, K. Dunussi-Joannopoulos,, M. Collins,, and L. A. Fouser. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203:22712279. PubMed CrossRef
87. Lichtenwalner, A. B.,, D. L. Patton,, W. C. Van Voorhis,, Y. T. Sweeney,, and C. C. Kuo. 2004. Heat shock protein 60 is the major antigen which stimulates delayed-type hypersensitivity reaction in the macaque model of Chlamydia trachomatis salpingitis. Infect. Immun 72:11591161. PubMed CrossRef
88. Manor, E.,, and I. Sarov. 1988. Inhibition of Chlamydia trachomatis replication in HEp-2 cells by human monocyte-derived macrophages. Infect. Immun. 56:32803284. PubMed
89. Matsumoto, A.,, H. Izutsu,, N. Miyashita,, and M. Ohuchi. 1998. Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J. Clin. Microbiol. 36:30133019. PubMed
90. McClarty, G.,, and R. S. Stephens,. 1999. Chlamydial metabolism as inferred from the complete genome sequence, p. 69100. In R. S. Stephens (ed.), Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. American Society for Microbiology, Washington, DC.
91. Miller, W. C.,, C. A. Ford,, M. Morris,, M. S. Handcock,, J. L. Schmitz,, M. M. Hobbs,, M. S. Cohen,, K. M. Harris,, and J. R. Udry. 2004. Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA 291:22292236. PubMed CrossRef
92. Mitchell, C.,, J. Hitti,, K. Paul,, K. Agnew,, S. E. Cohn,, A. E. Luque,, and R. Coombs. 2011. Cervicovaginal shedding of HIV type 1 is related to genital tract inflammation independent of changes in vaginal microbiota. AIDS Res. Hum. Retrovir. 27:3539. PubMed CrossRef
93. Molano, M.,, C. J. Meijer,, E. Weiderpass,, A. Arslan,, H. Posso,, S. Franceschi,, M. Ronderos,, N. Munoz,, and A. J. van den Brule. 2005. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J. Infect. Dis. 191:907916. PubMed CrossRef
94. Morré, S. A.,, L. S. Murillo,, C. A. Bruggeman,, and A. S. Pena. 2003. The role that the functional Asp299Gly polymorphism in the toll-like receptor-4 gene plays in susceptibility to Chlamydia trachomatis-associated tubal infertility. J. Infect. Dis. 187:341342. PubMed CrossRef
95. Morrison, C. S.,, A. N. Turner,, and L. B. Jones. 2009. Highly effective contraception and acquisition of HIV and other sexually transmitted infections. Best Pract. Res. Clin. Obstet. Gynaecol. 23:263284. PubMed CrossRef
96. Morrison, R. P.,, K. Feilzer,, and D. B. Tumas. 1995. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect. Immun. 63:46614668. PubMed
97. Morrison, R. P.,, K. Lyng,, and H. D. Caldwell. 1989. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J. Exp. Med. 169:663675. PubMed
98. Morrison, S. G.,, and R. P. Morrison. 2005. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 175:75367542. PubMed
99. Morrison, S. G.,, H. Su,, H. D. Caldwell,, and R. P. Morrison. 2000. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infect. Immun. 68:69796987. PubMed CrossRef
100. Murillo, L. S.,, J. A. Land,, J. Pleijster,, C. A. Bruggeman,, A. S. Pena,, and S. A. Morré. 2003. Interleukin-1B (IL-1B) and interleukin-1 receptor antagonist (IL-1RN) gene polymorphisms are not associated with tubal pathology and Chlamydia trachomatis-related tubal factor subfertility. Hum. Reprod. 18:23092314. PubMed CrossRef
101. Murthy, A. K.,, J. P. Chambers,, P. A. Meier,, G. Zhong,, and B. P. Arulanandam. 2007. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect. Immun. 75:666676. PubMed CrossRef
102. Murthy, A. K.,, W. Li,, B. K. Chaganty,, S. Kamalakaran,, M. N. Guentzel,, J. Seshu,, T. G. Forsthuber,, G. Zhong,, and B. P. Arulanandam. 2011. TNF-α production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect. Immun. 79:29282935. PubMed CrossRef
103. Nagarajan, U. M.,, J. Sikes,, D. Prantner,, C. W. Andrews, Jr.,, L. Frazer,, A. Goodwin,, J. N. Snowden,, and T. Darville. 2011. MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution. Infect. Immun. 79:486498. PubMed CrossRef
104. Natividad, A.,, G. Cooke,, M. J. Holland,, M. J. Burton,, H. M. Joof,, K. Rockett,, D. P. Kwiatkowski,, D. C. Mabey,, and R. L. Bailey. 2006. A coding polymorphism in matrix metalloproteinase 9 reduces risk of scarring sequelae of ocular Chlamydia trachomatis infection. BMC Med. Genet. 7:40. PubMed CrossRef
105. Natividad, A.,, T. C. Freeman,, D. Jeffries,, M. J. Burton,, D. C. Mabey,, R. L. Bailey,, and M. J. Holland. 2010. Human conjunctival transcriptome analysis reveals the prominence of innate defense in Chlamydia trachomatis infection. Infect. Immun. 78:48954911. PubMed CrossRef
106. Natividad, A.,, N. Hanchard,, M. J. Holland,, O. S. Mahdi,, M. Diakite,, K. Rockett,, O. Jallow,, H. M. Joof,, D. P. Kwiatkowski,, D. C. Mabey,, and R. L. Bailey. 2007. Genetic variation at the TNF locus and the risk of severe sequelae of ocular Chlamydia trachomatis infection in Gambians. Genes Immun. 8:288295. PubMed CrossRef
107. Natividad, A.,, J. Wilson,, O. Koch,, M. J. Holland,, K. Rockett,, N. Faal,, O. Jallow,, H. M. Joof,, M. J. Burton,, N. D. Alexander,, D. P. Kwiatkowski,, D. C. Mabey,, and R. L. Bailey. 2005. Risk of trachomatous scarring and trichiasis in Gambians varies with SNP haplotypes at the interferon-gamma and interleukin-10 loci. Genes Immun. 6:332340 PubMed CrossRef
108. Neff, L.,, S. Daher,, P. Muzzin,, U. Spenato,, F. Gulacar,, C. Gabay,, and S. Bas. 2007. Molecular characterization and subcellular localization of macrophage infectivity potentiator, a Chlamydia trachomatis lipoprotein. J. Bacteriol. 189:47394748. PubMed CrossRef
109. Ness, R. B.,, D. E. Soper,, R. L. Holley,, J. Peipert,, H. Randall,, R. L. Sweet,, S. J. Sondheimer,, S. L. Hendrix,, A. Amortegui,, G. Trucco,, D. C. Bass,, and S. F. Kelsey. 2001. Hormonal and barrier contraception and risk of upper genital tract disease in the PID Evaluation and Clinical Health (PEACH) study. Am. J. Obstet. Gynecol. 185:121127. PubMed CrossRef
110. Ness, R. B.,, D. E. Soper,, H. E. Richter,, H. Randall,, J. F. Peipert,, D. B. Nelson,, D. Schubeck,, S. G. McNeeley,, W. Trout,, D. C. Bass,, K. Hutchison,, K. Kip,, and R. C. Brunham. 2008. Chlamydia antibodies, chlamydia heat shock protein, and adverse sequelae after pelvic inflammatory disease: the PID Evaluation and Clinical Health (PEACH) Study. Sex. Transm. Dis. 35:129135. PubMed CrossRef
111. O'Connell, C. M.,, Y. M. Abdelrahman,, E. Green,, H. K. Darville,, K. Saira,, B. Smith,, T. Darville,, A. M. Scurlock,, C. R. Meyer,, and R. J. Belland. 2011. TLR2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect. Immun. 79:10441056. PubMed CrossRef
112. O’Connell, C. M.,, R. R. Ingalls,, C. W. Andrews, Jr.,, A. M. Skurlock,, and T. Darville. 2007. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J. Immunol. 179:40274034. PubMed
113. O’Connell, C. M.,, I. A. Ionova,, A. J. Quayle,, A. Visintin,, and R. R. Ingalls. 2006. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281:16521659. PubMed CrossRef
114. O’Connell, C. M.,, and K. M. Nicks. 2006. A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152:16011607. PubMed CrossRef
115. Ohashi, K.,, V. Burkart,, S. Flohe,, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164:558561. PubMed
116. Ouburg, S.,, J. Spaargaren,, J. E. den Hartog,, J. A. Land,, J. S. Fennema,, J. Pleijster,, A. S. Pena,, and S. A. Morre. 2005. The CD14 functional gene polymorphism -260 C > T is not involved in either the susceptibility to Chlamydia trachomatis infection or the development of tubal pathology. BMC Infect. Dis. 5:114. PubMed CrossRef
117. Patton, D. L.,, D. E. Moore,, L. R. Spadoni,, M. R. Soules,, S. A. Halbert,, and S. P. Wang. 1989. A comparison of the fallopian tube's response to overt and silent salpingitis. Obstet. Gynecol. 73:622630. PubMed
118. Peeling, R. W.,, J. Kimani,, F. Plummer,, I. Maclean,, M. Cheang,, J. Bwayo,, and R. C. Brunham. 1997. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J. Infect. Dis. 175:11531158. PubMed CrossRef
119. Perry, L. L.,, K. Feilzer,, and H. D. Caldwell. 1997. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J. Immunol. 158:33443352. PubMed
120. Perry, L. L.,, H. Su,, K. Feilzer,, R. Messer,, S. Hughes,, W. Whitmire,, and H. D. Caldwell. 1999. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-γ -mediated inhibition. J. Immunol. 162:35413548. PubMed
121. Pioli, P. A.,, E. Amiel,, T. M. Schaefer,, J. E. Connolly,, C. R. Wira,, and P. M. Guyre. 2004. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect. Immun. 72:57995806. PubMed CrossRef
122. Prantner, D.,, T. Darville,, J. D. Sikes,, C. W. Andrews, Jr.,, H. Brade,, R. G. Rank,, and U. M. Nagarajan. 2009. Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect. Immun. 77:53345346. PubMed CrossRef
123. Punnonen, R.,, P. Terho,, V. Nikkanen,, and O. Meurman. 1979. Chlamydial serology in infertile women by immunofluorescence. Fertil. Steril. 31:656659. PubMed
124. Ramsey, K. H.,, I. M. Sigar,, S. V. Rana,, J. Gupta,, S. M. Holland,, and G. I. Byrne. 2001. Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Infect. Immun. 69:73747379. PubMed CrossRef
125. Ramsey, K. H.,, I. M. Sigar,, J. H. Schripsema,, N. Shaba,, and K. P. Cohoon. 2005. Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect. Immun. 73:69626973. PubMed CrossRef
126. Rank, R. G.,, A. K. Bowlin,, R. L. Reed,, and T. Darville. 2003. Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect. Immun. 71:61486154. PubMed CrossRef
127. Rank, R. G.,, C. Dascher,, A. K. Bowlin,, and P. M. Bavoil. 1995a. Systemic immunization with Hsp60 alters the development of chlamydial ocular disease. Investig. Ophthalmol. Vis. Sci. 36:13441351. PubMed
128. Rank, R. G.,, H. M. Lacy,, A. Goodwin,, J. Sikes,, J. Whittimore,, P. B. Wyrick,, and U. M. Nagarajan. 2010. Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect. Immun. 78:536544. PubMed CrossRef
129. Rank, R. G.,, M. M. Sanders,, and D. L. Patton. 1995b. Increased incidence of oviduct pathology in the guinea pig after repeat vaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis. J. Sex. Transm. Dis. 22:4854. PubMed
130. Rasmussen, S. J.,, L. Eckmann,, A. J. Quayle,, L. Shen,, Y. X. Zhang,, D. J. Anderson,, J. Fierer,, R. S. Stephens,, and M. F. Kagnoff. 1997. Secretion of proinflammatory cytokines byepithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Investig. 99:7787. PubMed CrossRef
131. Ravel, J.,, P. Gajer,, Z. Abdo,, G. M. Schneider,, S. S. Koenig,, S. L. McCulle,, S. Karlebach,, R. Gorle,, J. Russell,, C. O. Tacket,, R. M. Brotman,, C. C. Davis,, K. Ault,, L. Peralta,, and L. J. Forney. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108(Suppl. 1):46804687. PubMed CrossRef
132. Roth, A.,, P. Konig,, G. van Zandbergen,, M. Klinger,, T. Hellwig-Burgel,, W. Daubener,, M. K. Bohlmann,, and J. Rupp. 2010. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo. Proc. Natl. Acad. Sci. USA 107:1950219507. PubMed CrossRef
133. Russell, M.,, T. Darville,, K. Chandra-Kuntal,, B. Smith,, C. W. Andrews, Jr.,, and C. M. O’Connell. 2011. Infectivity acts as in vivo selection for maintenance of the chlamydial cryptic plasmid. Infect. Immun. 79:98107. PubMed CrossRef
134. Schaefer, T. M.,, J. V. Fahey,, J. A. Wright,, and C. R. Wira. 2005. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J. Immunol. 174:9921002. PubMed
135. Scriba, T. J.,, B. Kalsdorf,, D. A. Abrahams,, F. Isaacs,, J. Hofmeister,, G. Black,, H. Y. Hassan,, R. J. Wilkinson,, G. Walzl,, S. J. Gelderbloem,, H. Mahomed,, G. D. Hussey,, and W. A. Hanekom. 2008. Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J. Immunol. 180:19621970. PubMed
136. Scurlock, A. M.,, L. C. Frazer,, C. W. Andrews, Jr.,, C. M. O’Connell,, I. P. Foote,, S. L. Bailey,, K. Chandra-Kuntal,, J. K. Kolls,, and T. Darville. 2010. IL-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect. Immun. 79:13491362. PubMed CrossRef
137. Shah, A. A.,, J. H. Schripsema,, M. T. Imtiaz,, I. M. Sigar,, J. Kasimos,, P. G. Matos,, S. Inouye,, and K. H. Ramsey. 2005. Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex. Transm. Dis. 32:4956. PubMed
138. Shao, R.,, S. X. Zhang,, B. Weijdegard,, S. Zou,, E. Egecioglu,, A. Norstrom,, M. Brannstrom,, and H. Billig. 2010. Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights. Mol. Hum. Reprod. 16:907915. PubMed CrossRef
139. Shemer-Avni, Y.,, D. Wallach,, and I. Sarov. 1988. Inhibition of Chlamydia trachomatis growth by recombinant tumor necrosis factor. Infect. Immun. 56:25032506. PubMed
140. Skwor, T. A.,, B. Atik,, R. P. Kandel,, H. K. Adhikari,, B. Sharma,, and D. Dean. 2008. Role of secreted conjunctival mucosal cytokine and chemokine proteins in different stages of trachomatous disease. PLoS Negl. Trop. Dis. 2:e264. PubMed CrossRef
141. Stephens, R. S. 2003. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11:4451. PubMed
142. Su, H.,, K. Feilzer,, H. D. Caldwell,, and R. P. Morrison. 1997. Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect. Immun. 65:19931999. PubMed
143. Su, H.,, G. McClarty,, F. Dong,, G. M. Hatch,, Z. K. Pan,, and G. Zhong. 2004. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279:94099416. PubMed CrossRef
144. Swanson, A. F.,, R. A. Ezekowitz,, A. Lee,, and C. C. Kuo. 1998. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect. Immun. 66:16071612. PubMed
145. Sweet, R. L.,, M. Blankfort-Doyle,, M. O. Robbie,, and J. Schachter. 1986. The occurrence of chlamydial and gonococcal salpingitis during the menstrual cycle. JAMA 255:20622065. PubMed
146. Sziller, I.,, O. Babula,, A. Ujhazy,, B. Nagy,, P. Hupuczi,, Z. Papp,, I. M. Linhares,, W. J. Ledger,, and S. S. Witkin. 2007. Chlamydia trachomatis infection, fallopian tube damage and a mannose-binding lectin codon 54 gene polymorphism. Hum. Reprod. 22:18611865. PubMed CrossRef
147. Tjiam, K. H.,, G. H. Zeilmaker,, A. T. Alberda,, B. Y. van Heijst,, J. C. de Roo,, A. A. Polak-Vogelzang,, T. van Joost,, E. Stolz,, and F. Michel. 1985. Prevalence of antibodies to Chlamydia trachomatis, Neisseria gonorrhoeae, and Mycoplasma hominis in infertile women. Genitourin. Med. 61:175178. PubMed
148. Toye, B.,, C. Laferriäre,, P. Claman,, P. Jessamine,, and R. Peeling. 1993. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J. Infect. Dis. 168:12361240. PubMed
149. Tseng, C. T.,, and R. G. Rank. 1998. Role of NK cells in early host response to chlamydial genital infection. Infect. Immun. 66:58675875. PubMed
150. Vanover, J.,, J. Kintner,, J. Whittimore,, and R. V. Schoborg. 2010. Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence. Microbiology 156:12941302. PubMed CrossRef
151. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1996. Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with Chlamydia trachomatis. J. Infect. Dis. 174:647650. PubMed CrossRef
152. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1997. Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect. Immun. 65:21752182. PubMed
153. Vender, J.,, and J. W. Moulder. 1967. Initial step in catabolism of glucose by the meningopneumonitis agent. J. Bacteriol. 94:867869. PubMed
154. Vonck, R. A.,, T. Darville,, C. M. O’Connell,, and A. E. Jerse. 2011. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect. Immun. 79:15661577. PubMed CrossRef
155. Wang, S. P.,, J. T. Grayston,, and E. R. Alexander. 1967. Trachoma vaccine studies in monkeys. Am. J. Ophthalmol. 63(Suppl.):16151630. PubMed
156. Watkins, N. G.,, W. J. Hadlow,, A. B. Moos,, and H. D. Caldwell. 1986. Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial- conjunctivitis in guinea pigs. Proc. Natl. Acad. Sci. USA 83:74807484. PubMed
157. Werner, G. T.,, and D. K. Sareen. 1977. Trachoma in Punjab: a study of the prevalence and of mass treatment. Trop. Geogr. Med. 29:135140. PubMed
158. West, S. K.,, B. Munoz,, H. Mkocha,, Y. H. Hsieh,, and M. C. Lynch. 2001. Progression of active trachoma to scarring in a cohort of Tanzanian children. Ophthalmic Epidemiol. 8:137144. PubMed
159. Wiesenfeld, H. C.,, R. P. Heine,, M. A. Krohn,, S. L. Hillier,, A. A. Amortegui,, M. Nicolazzo,, and R. L. Sweet. 2002. Association between elevated neutrophil defensin levels and endometritis. J. Infect. Dis. 186:792797. PubMed CrossRef
160. Wiesenfeld, H. C.,, R. L. Sweet,, R. B. Ness,, M. A. Krohn,, A. J. Amortegui,, and S. L. Hillier. 2005. Comparison of acute and subclinical pelvic inflammatory disease. Sex. Transm. Dis. 32:400405. PubMed
161. Woolridge, R. L.,, J. T. Grayston,, I. H. Chang,, C. Y. Yang,, and K. H. Cheng. 1967. Long-term follow-up of the initial (1959-1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol. 63(Suppl.):16501655. PubMed
162. Wyrick, P. B.,, S. T. Knight,, T. R. Paul,, R. G. Rank,, and C. S. Barbier. 1999. Persistent chlamydial envelope antigens in antibiotic-exposed infected cells trigger neutrophil chemotaxis. J. Infect. Dis. 179:954966. PubMed CrossRef
163. Zhang, B.,, S. Ye,, S. M. Herrmann,, P. Eriksson,, M. de Maat,, A. Evans,, D. Arveiler,, G. Luc,, F. Cambien,, A. Hamsten,, H. Watkins,, and A. M. Henney. 1999. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99:17881794. PubMed CrossRef
164. Zheng, Y.,, P. A. Valdez,, D. M. Danilenko,, Y. Hu,, S. M. Sa,, Q. Gong,, A. R. Abbas,, Z. Modrusan,, N. Ghilardi,, F. J. de Sauvage,, and W. Ouyang. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14:282289. PubMed CrossRef
165. Zhong, G. 2009. Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends Microbiol. 17:467474. PubMed CrossRef
166. Zhong, G.,, P. Fan,, H. Ji,, F. Dong,, and Y. Huang. 2001. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193:935942. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error