Chapter 12 : Chlamydial Persistence Redux

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Chlamydial Persistence Redux, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap12-2.gif


The purpose of this chapter is to define what one do and do not know about chlamydial persistence with the goal of determining the extent of the role that persistence plays in chlamydial disease (if at all) and what one should do to better understand this chlamydial attribute. Out of , , , and ) causing infections in people, only two dominates: and . , which causes a form of malaria called malignant tertian malaria, is considered a major killer due to its capacity to modify the surface of infected erythrocytes such that they stick to each other and to the endothelial cells lining vessels and capillaries. may be one of only a very few bacterial pathogens that is more difficult to work with than . Environmental factors that trigger dormancy include starvation for nutrients and hypoxia. When these stress-related conditions are applied to , striking metabolic reprogramming occurs, including upregulation of stress response genes and downregulation of many central metabolism genes. Studies of persistent disease in mice indicate that persistence is a function of the capacity of the pathogen to survive in macrophages, and at least for nontyphoidal salmonellae, macrophage persistence contributes to increased disease severity in AIDS patients. The authors conclude that persistent forms may account for the insidious inflammation associated with upper genital tract disease in women, but have not been able to identify that persistent infections act as contributing factors to the disease.

Citation: Byrne G, Beatty W. 2012. Chlamydial Persistence Redux, p 265-284. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch12

Key Concept Ranking

Infectious Diseases
Bacterial Pathogenesis
Microbial Pathogenesis
Infectious Pathogens
Outer Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic diagram of the chlamydial developmental cycle. Red arrows indicate altered intracellular chlamydial development mediated by environmental factors. (A) Immunofluorescence images and schematic show mature serovar B inclusions with elementary bodies (EBs) in green (anti-OmcB), reticulate bodies (RBs) in red (anti-major outer membrane protein), and the inclusion membrane in orange (anti-incG). (B) Persistence in vitro in response to IFN-γ results in enlarged, aberrant RBs that can be maintained in this state for extended periods of time, with subsequent reversion to normal intracellular development. doi:10.1128/9781555817329.ch12.f1

Citation: Byrne G, Beatty W. 2012. Chlamydial Persistence Redux, p 265-284. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Chlamydial inclusions in intestinal enterocytes of naturally infected swine. (A) Lower-magnification electron micrograph showing both a typical inclusion (indicated by arrow) with an abundance of dense EBs and inclusions containing somewhat enlarged RBs (arrowheads). (B) Higher-magnification electron micrograph showing an inclusion containing typical EBs and RBs, in addition to enlarged, aberrant RBs (arrowheads). It is interesting that both normal and abnormal developmental forms are seen, as if persistence is a stochastic event for infecting the pig intestine. Images generously provided by Andreas Pospischil, University of Zurich. doi: 10.1128/9781555817329.ch12.f2

Citation: Byrne G, Beatty W. 2012. Chlamydial Persistence Redux, p 265-284. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Factors contributing to persistence of other microorganisms and potential correlates in . Attributes of other microorganisms are shown in upper panels, and potential correlates in are shown in the corresponding lower panels. Please see the text for details. doi:10.1128/9781555817329.ch12.f3

Citation: Byrne G, Beatty W. 2012. Chlamydial Persistence Redux, p 265-284. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. AbdelRahman, Y. M.,, L. A. Rose,, and R. J. Belland. 2011. Developmental expression on non-coding RNAs in Chlamydia trachomatis during normal and persistent growth. Nucleic Acids Res. 39:18431854. PubMed CrossRef
2. Akers, J. C.,, and M. Tan. 2006. Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis. J. Bacteriol. 188:42364243. PubMed CrossRef
3. Baughn, R. E.,, and D. M. Musher. 2005. Secondary syphylitic lesions. Clin. Microbiol. Rev. 18:205216. PubMed CrossRef
4. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1994. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58:686699. PubMed
5. Byrne, G. I.,, L. K. Lehmann,, and G. L. Landry. 1986. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect. Immun. 53:347351. PubMed
6. Byrne, G. I.,, and D. Ojcius. 2004. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat. Rev. Microbiol. 2:802808. PubMed CrossRef
7. Caldwell, H. D.,, H. Wood,, D. Crane,, R. Bailey,, R. B. Jones,, D. Mabey,, I. MacLean,, Z. Mohammed,, R. Peeling,, C. Roshick,, J. Schachter,, A. W. Solomon,, W. E. Stamm,, R. L. Suchland,, L. Taylor,, S. K. West,, T. C. Quinn,, R. J. Belland,, and G. McClarty. 2003. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Investig. 111:17571769. PubMed CrossRef
8. Carlson, J. H.,, H. Wood,, C. Roshick,, H. D. Caldwell,, and G. McClarty. 2006. In vivo and in vitro studies of C. trachomatis TrpR:DNA interactions. Mol. Microbiol. 59:16781691. PubMed CrossRef
9. Carter, J. D.,, and A. P. Hudson. 2010. The evolving story of Chlamydia-induced reactive arthritis. Curr. Opin. Rheumatol. 22:424430. PubMed CrossRef
10. Chao, M. C.,, and E. J. Rubin. 2010. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol. 64:293311. PubMed CrossRef
11. Chen, N.,, A. Auliff,, K. Riekmann,, M. Gatton,, and Q. Cheng. 2007. Relapses of Plasmodium vivax result from clonal hypnozoites activated at predetermined intervals. J. Infect. Dis. 195:934941. PubMed CrossRef
12. Geisler, W. M. 2010. Duration of untreated, uncomplicated Chlamydia trachomatis genital infection and factors associated with chlamydia resolution: a review of human studies. J. Infect. Dis. 201(S2):S104S113. PubMed CrossRef
13. Gerard, H.,, J. Whittum-Hudson,, H. R. Schumacher,, and A. Hudson. 2004. Differential expression of three C. trachomatis hsp-60-encoding genes in active vs persistent infections. Microb. Pathog. 36:3539. PubMed
14. Goellner, S.,, E. Schubert,, E. Lieber-Tenorio,, H. Hotzel,, H. P. Saluz,, and K. Sache. 2006. Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Infect. Immun. 74:48014808. PubMed CrossRef
15. Gordon, M. A. 2008. Salmonella infections in immunocompromised adults. J. Infect. 56:413422. PubMed CrossRef
16. Hensel, M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36:10151023.
17. Hogan, R. J.,, S. A. Mathews,, S. Mukhopadhyay,, J. T. Summersgill,, and P. Timms. 2004. Chlamydial persistence: beyond the basic paradigm. Infect. Immun. 72:18431855. PubMed
18. Horn, M.,, A. Collingro,, S. Schmitz-Esser,, C. L. Beier,, U. Purkhold,, B. Fartmann,, P. Brandt,, G. J. Nyakatura,, M. Droege,, D. Frishman,, T. Rattei,, H.-W. Mewes,, and M. Wagner. 2004. Illuminating the evolutionary history of Chlamydia. Science 304:728730. PubMed CrossRef
19. Howe, D. K.,, and D. L. Sibley. 1995. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J. Infect. Dis. 172:15611566. PubMed CrossRef
20. Hower, S.,, K. Wolf,, and K. Fields. 2009. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol. Microbiol. 72:14231437. PubMed CrossRef
21. Hunter, J. 1818. Treatise on Venereal Disease, 2nd ed. Sherwood, Neely, and Jones, London, United Kingdom.
22. Ieven, M. M.,, and V. Y. Hoymans. 2005. Involvement of Chlamydia pneumoniae in atherosclerosis: more evidence for lack of evidence. J. Clin. Microbiol. 43:1924. PubMed CrossRef
23. Imwong, M.,, G. Snounou,, S. Pukrittayakamee,, N. Tanomsing,, J. R. Kim,, A. Nandy,, J. P. Guthmann,, F. Nosten,, J. Carlton,, S. Looareesuwan,, S. Nair,, D. Sudimack,, N. P. J. Day,, T. J. C. Anderson,, and N. J. White. 2007. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J. Infect. Dis. 195:927933. PubMed CrossRef
24. Kimani, J.,, I. W. Maclean,, J. J. Bwayo,, K. MacDonald,, J. Oyugi,, G. M. Maitha,, R. W. Peeling,, M. Cheang,, N. J. D. Nagelkerke,, F. A. Plummer,, and R. C. Brunham. 1996. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J. Infect. Dis. 173:14371444. PubMed CrossRef
25. Kumar, A.,, J. C. Toleda,, R. P. Patel,, J. R. Lancaster, Jr.,, and A. J. Steyn. 2007. Mycobacterium tuberculosis DosS is a redo sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA 104:1156811574. PubMed CrossRef
26. LaFond, R. E.,, and S. A. Lukehart. 2006. Biological basis for syphilis. Clin. Microbiol. Rev. 19:2949. PubMed CrossRef
27. Lavollay, M.,, M. Arthur,, M. Fourgeaud,, L. Dubost,, A. M. N. Veziris,, D. Blanot,, L. Gutmann,, and J.-L. Mainardi. 2008. The peptidoglycan of stationary phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190:43604366. PubMed CrossRef
28. Lee, C. K.,, and J. W. Moulder. 1981. Persistent infection of mouse fibroblasts (McCoy cells) with a trachoma strain of Chlamydia trachomatis. Infect. Immun. 32:822829. PubMed
29. Lenart, J.,, A. A. Anderson,, and D. D. Rockey. 2001. Growth and development of tetracycline-resistant Chlamydia suis. Antimicrob. Agents Chemother. 42:21982203. PubMed CrossRef
30. Lin, P. L.,, and J. L. Flynn. 2010. Understanding latent tuberculosis: a moving target. J. Immunol. 185:1522. PubMed CrossRef
31. Mahoney, J. B.,, and B. K. Coombes. 2001. Chlamydia pneumoniae and atherosclerosis: does the evidence support a causal or contributory role? FEMS Microbiol. Lett. 197:19. PubMed
32. Mathews, S.,, C. George,, C. Flegg,, D. Stenzel,, and P. Timms. 2001. Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-gamma treated cultures of Chlamydia pneumoniae. Microb. Pathog. 30:337345. PubMed CrossRef
33. Matsumoto, A.,, and G. P. Manire. 1970. Electron microscopic observations on the effect of penicillin on the morphology of Chlamydia psittaci. J. Bacteriol. 101:278285. PubMed
34. Maurer, A. P.,, A. Mehlitz,, H. J. Mollenkopf,, and T. F. Meyer. 2007. Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron-depleted mediated persistence. PLoS Pathog. 3:e83. PubMed CrossRef
35. McCormack, W. M.,, S. Alpert,, D. E. McComb,, R. L. Nichols,, Z. Semine,, and S. H. Zinner. 1979. Fifteen-month follow-up study of women infected with C. trachomatis. N. Engl. J. Med. 300:123125. PubMed CrossRef
36. Mitel, S.,, N. J. Miller,, E. R. Fischer,, and T. Hackstadt. 2010. Specific chlamydial inclusion membrane proteins associated with active Src family kinases in microdomains that interact with the host microtubule network. Cell. Microbiol. 12:12351249. PubMed CrossRef
37. Monack, D. M.,, D. M. Bouley,, and S. Falkow. 2004a. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFN-γ neutralization. J. Exp. Med. 199:231241. PubMed CrossRef
38. Monack, D. M.,, A. Mueller,, and S. Falkow. 2004b. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2:747765. PubMed CrossRef
39. Montoya, J. G.,, and O. Liesenfeld. 2004. Toxoplasmosis. Lancet 363:19651976.
40. Moulder, J. W.,, N. J. Levy,, and L. P. Shulman. 1980. Persistent infection of mouse fibroblasts (L cells) with Chlamydia psittaci: evidence for a cryptic chlamydial form. Infect. Immun. 30:874883. PubMed
41. O’Regan, A. W.,, C. Castro,, S. A. Lukehart,, J. M. Kasznica,, P. A. Rice,, and M. F. Joyce-Brady. 2002. Barking up the wrong tree? Use of polymerase chain reaction to diagnose syphylitic aortitis. Thorax 57:917918. PubMed CrossRef
42. Oriel, J. D.,, and G. L. Ridgway. 1982a. Genital infection by Chlamydia trachomatis. Curr. Topics Infect. Dis. 2:4152.
43. Oriel, J. D.,, and G. L. Ridgway. 1982b. Genital infection by Chlamydia trachomatis. Curr. Top. Infect. Dis. 2:5367.
44. Ouellette, S. P.,, T. P. Hatch,, Y. M. AbdelRahman,, L. A. Rose,, R. J. Belland,, and G. I. Byrne. 2006. Global transcriptional up-regulation in the absence of increased translation in Chlamydia during IFN-γ-mediated host cell tryptophan starvation. Mol. Microbiol. 62:13871401.
45. Papp, J. R.,, and P. E. Shewen. 1996. Localization of chronic Chlamydia psittaci infection in the reproductive tract of sheep. J. Infect. Dis. 174:12961302. PubMed CrossRef
46. Papp, J. R.,, and P. E. Shewen. 1997. Chlamydia psittaci infection in sheep: a paradigm for human reproductive tract infection. J. Reprod. Immunol. 34:185202. PubMed
47. Peng, K.,, and D. M. Monack. 2010. Indoleamine 2,3-dioxygenase 1 is a lung-specific innate immune defense mechanism that inhibits growth of Francisella tularensis tryptophan auxotrophs. Infect. Immun. 78:27232733. PubMed CrossRef
48. Pfefferkorn, E. R.,, M. Eckel,, and S. Rebhun. 1986. Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan. Mol. Biochem. Parasitol. 20:215224. PubMed
49. Pospischil, A.,, N. Borel,, E. H. Chowdury,, and F. Guscetti. 2009. Aberrant chlamydial developmental forms in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis. Vet. Microbiol. 135:147156. PubMed CrossRef
50. Ramage, H. R.,, L. E. Connolly,, and J. S. Cox. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5:e1000767. PubMed CrossRef
51. Regan, M. J.,, B. J. Wood,, Y. H. Hsieh,, M. L. Theodore,, T. C. Quinn,, D. B. Hellman,, R. Green,, C. A. Gaydos,, and J. H. Stone. 2002. Temporal arteritis and Chlamydia pneumoniae. Failure to detect the organism by polymerase chain reaction in ninety cases and ninety controls. Arthritis Rheum. 46:10561060. PubMed
52. Reinhold, P.,, E. Liebler-Tenorio,, S. Sattler,, and K. Sachse. 2011. Recurrence of Chlamydia suis infection in pigs after short-term antimicrobial treatment. Vet. J. 187:405407. PubMed CrossRef
53. Reinhold, P.,, K. Sachse,, and B. Kaltenboeck. 2011. Chlamydiaceae in cattle: commensals, trigger organisms, or pathogens? Vet. J. 189:257267. doi:10.1016/j.tvjl.2010.09.003. PubMed CrossRef
54. Richmond, S. J.,, A. L. Hilton,, and S. K. R. Clarke. 1972. Chlamydial infection. Role of Chlamydia sub-group A in non-gonococcal and post-gonococcal urethritis. Br. J. Vener. Dis. 48:437444. PubMed
55. Rustad, T. R.,, M. I. Harrell,, R. Liao,, and D. R. Sherman. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3:e1502. PubMed CrossRef
56. Schoborg, R. V. 2011. Chlamydia persistence—a tool to dissect Chlamydia-host cell interactions. Microbes Infect. 13:649662. PubMed CrossRef
57. Shaw, A. C.,, G. Christiansen,, P. Roepstorff,, and S. Birkelund. 2000. Genetic differences in the Chlamydia trachomatis tryptophan synthase a-subunit can explain variations in serovar pathogenesis. Microbes Infect. 2:581592. PubMed
58. Shleeva, M. O.,, G. V. Mukamolova,, M. Young,, H. D. Williams,, and A. S. Kaprelyants. 2004. Formation of “non-culturable” cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology 150:16871697. PubMed CrossRef
59. Singh, A. E.,, and B. Romanowski. 1999. Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin. Microbiol. Rev. 12:187209. PubMed
60. Sinnott, C. R.,, and A. J. Teall. 1987. Persistent gallbladder carriage of Salmonella typhi. Lancet i:976. PubMed CrossRef
61. Soete, M.,, D. Camus,, and J. F. Dubremetz. 1994. Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Exp. Parasitol. 78:361370. PubMed
62. Song, Z.,, P. Brassard,, and J. M. Brophy. 2008. A meta-analysis of antibiotic use for the secondary prevention of cardiovascular diseases. Can. J. Cardiol. 24:391395. PubMed
63. Stern, L. C. 1875. Papyros Ebers: Das hermetische Buch uber die Arzeneimittel der alten Agypter in hieratischer Schrift, herausgegeben mit Inhaltsangabe und Einleitung versehen von Georg Ebers, mit Heiroglyphisch-Lateinischem Gloisser von Ludwig Stern, mit Unterstutzung des Koniglich Sachsischen Cultusministerium, 2. G Ebers ed., Leipzig, Germany.
64. Sullivan, W. J., Jr.,, A. T. Smith,, and B. R. Joyce. 2009. Understanding mechanisms of differentiation and a role in the pathogenesis of Toxoplasma gondii: a review. Mem. Inst. Oswaldo Cruz 104:155161. PubMed
65. Tan, C.,, R.-C. Hsia,, H. Shou,, C. Haggerty,, C. Gaydos,, D. Dean,, A. Scurlock,, D. P. Wilson,, and P. M. Bavoil. 2009. Chlamydia trachomatis-infected patients display variable antibody profiles against the nine-member polymorphic membrane protein family. Infect. Immun. 77:32183226. PubMed CrossRef
66. Taylor, H. R. 2008. Trachoma, a Blinding Scourge from the Bronze Age to the Twenty-First Century. Haddington Press, South Yarra, Australia.
67. Townes, J. M. 2010. Reactive arthritis after enteric infections in the United States: the problem of definition. Clin. Infect. Dis. 50:247254.
68. Voskuil, M. I.,, K. C. Visconti,, and G. K. Schoolnik. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 84:218227. PubMed CrossRef
69. Watson, C.,, and N. J. Alp. 2008. Role of Chlamydia pneumoniae in atherosclerosis. Clin. Sci. 114:509531. PubMed CrossRef
70. Wayne, L. G.,, and C. D. Sohaskey. 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55:139163. PubMed CrossRef
71. Weiss, L. M.,, and K. Kim. 2000. The development and biology of bradyzoites of Toxoplasma gondii. Front. Biosci. 5:391405. PubMed
72. Wells, T. N. C.,, J. N. Burrows,, and J. K. Baird. 2010. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination. Trends Parasitol. 26:145151. PubMed CrossRef
73. Wilson, B. A.,, A. A. Salyers,, D. D. Whitt,, and M. E. Winkler. 2011. Bacterial Pathogenesis: a Molecular Approach, 3rd ed. ASM Press, Washington, DC.
74. Wood, H.,, C. Fehlner-Gardner,, J. Berry,, E. Fischer,, B. Graham,, T. Hackstadt,, C. Roshick,, and G. McClarty. 2003. Regulation of tryptophan synthase gene expression in Chlamydia trachomatis. Mol. Microbiol. 49:13471359. PubMed CrossRef
75. Wyrick, P. B. 2010. Chlamydia persistence in vitro: an overview. J. Infect. Dis. 201(S2):S88-S95. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error