1887

Chapter 13 : In Vivo Chlamydial Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

In Vivo Chlamydial Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap13-2.gif

Abstract:

This chapter briefly summarizes animal models and biomathematical models and addresses their potential uses. Although there is a wide spectrum of diseases caused by , the majority of animal model research has centered on models of genital infection; therefore, the focus of the chapter is on models of genital infections, but other models are discussed where relevant. The major application of animal models of chlamydial infection has been directed toward the characterization of the host response and the understanding of the mechanisms of protective immunity, all oriented toward the development of an effective vaccine. Perhaps the most intriguing biological characteristic of chlamydiae is their biphasic developmental cycle. Beginning with the morphologic appearance of the various stages of the cycle, there has been an immense amount of ultrastructural work performed in vitro to characterize the structure of reticulate bodies (RBs) and elementary bodies (EBs). Low-magnification pictures showed a strong acute inflammatory response with polymorphonuclear leukocytes (PMNs) often in the vicinity of infected cells. With the capabilities today to accumulate massive amounts of qualitative and quantitative data from many different components of host and pathogen physiology, it should be possible to construct biomathematical models that can then be used to evaluate hypotheses in silico.

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13

Key Concept Ranking

Tumor Necrosis Factor alpha
0.46111277
0.46111277
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Events occurring 24 hours and 30 hours after infection. (A) At 24 hours, multiple early inclusions containing one to a few RBs are seen. Some epithelial cells contain multiple inclusions. RBs are clearly dividing, and the proximity of inclusions suggests that the fusion process is under way (arrows). (B) Inclusion with multiple RBs at 30 hours after infection and PMNs (P) in contact with the infected epithelial host cell. Scale bars for both panels, 2 µm. doi:10.1128/9781555817329.ch13.f1

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Events at 36 hours after infection. (A) Multiple large mature inclusions are seen. In particular, one infected cell (arrow) is being detached from the epithelium with a PMN (P) directly in the space beneath the cell, giving the appearance of “pushing” the cell off of the epithelial surface; the PMN appears to have phagocytized numerous RBs. Nuclei (N) of the infected cells are visible. (B) Terminal infected cell with chlamydiae distributed in the cytosol. The cell appears to be in the process of being dislodged from the epithelial layer. Scale bars: panel A, 10 µm; panel B, 2 µm. doi:10.1128/9781555817329.ch13.f2

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

PMNs enter into the infected host epithelial cell to make direct contact with chlamydiae. At 42 hours after infection, the inclusion membrane is no longer visible and the intracellular PMN is in direct contact with chlamydiae. Note the projections from the PMNs touching the IBs or EBs (arrows). Scale bar: 2 µm. doi:10.1128/9781555817329.ch13.f3

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic in vivo development of . At 18 h, host cells containing internalized EBs are shown, with some in the process of becoming RBs. At 24 h, multiple small inclusions are present. At 30 h, fusion of inclusions has occurred and inclusions contain primarily RBs. At 36 h, inclusions have increased in size with ongoing differentiation of RBs into EBs. At 42 to 48 h, termination of the developmental cycle occurs by three specific mechanisms. (A) The inclusion membrane disintegrates, leaving organisms free in the cytosol. The cell is dislodged from the epithelial layer and breaks apart, allowing EBs to attach to uninfected cells. (B) PMNs attracted to the site effect detachment of the infected cell from the epithelial layer likely through the action of matrix-metalloprotease 9. In some cases, the host cell and inclusion are intact so that the entire cell becomes free in the lumen. Ultimately, the cell dies, releasing EBs at the same or a distant site. (C) The PMN may actually enter the host cell in “pursuit” of chlamydiae. The host cell will die as a result of the enzymes released by the PMN with release of EBs into the lumen. doi:10.1128/9781555817329.ch13.f4

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Inclusion at 42 hours after infection. Note that the majority of the RBs in this inclusion (arrow) are along the periphery of the inclusion adjacent to the inclusion membrane while the EBs are in the internal area. Scale bar: 10 µm. doi:10.1128/9781555817329.ch13.f5

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Stressed inclusions were observed in the cervix of a mouse depleted of PMNs by antibody treatment. Note the large aberrant RBs (AB) as well as packets of miniature RBs (black arrow). Also, the stressed inclusion is devoid of granular material representing glycogen accumulation. Lipid bodies (L) can be observed associated with the inclusion and apparently entering the inclusion. Scale bar: 2 µm. doi:10.1128/9781555817329.ch13.f6

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817329.chap13
1. Alexander, E. R.,, and W.-T. Chiang. 1967. Infection of pregnant monkeys and their offspring with TRIC agents. Am. J. Ophthalmol. 53:11451153. PubMed
2. Barron, A. L.,, J. N. Pasley,, R. G. Rank,, H. J. White,, and R. E. Mrak. 1988. Chlamydial salpingitis in female guinea pigs receiving oral contra-ceptives. Sex. Transm. Dis. 15:169173. PubMed
3. Barron, A. L.,, H. J. White,, R. G. Rank,, B. L. Soloff,, and E. B. Moses. 1981. A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J. Infect. Dis. 143:6366. PubMed CrossRef
4. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1995. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect. Immun. 63:199205. PubMed
5. Bedson, S. P.,, and J. O. W. Bland. 1932. A morphological study of psittacosis virus, with the description of a developmental cycle. Br. J. Exp. Pathol. 13:461466.
6. Bernstein-Hanley, I.,, Z. R. Balsara,, W. Ulmer,, J. Coers,, M. N. Starnbach,, and W. F. Dietrich. 2006a. Genetic analysis of susceptibility to Chlamydia trachomatis in mouse. Genes Immun. 7:122129. PubMed CrossRef
7. Bernstein-Hanley, I.,, J. Coers,, Z. R. Balsara,, G. A. Taylor,, M. N. Starnbach,, and W. F. Dietrich. 2006b. The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc. Natl. Acad. Sci. USA 103:1409214097. PubMed CrossRef
8. Binet, R.,, A. K. Bowlin,, A. T. Maurelli,, and R. G. Rank. 2010. Impact of azithromycin resistant mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. Antimicrob. Agents Chemother. 54:10941101. PubMed CrossRef
9. Brunham, R. C.,, and D. Zhang. 1999. Transgene as vaccine for Chlamydia. Am. Heart J. 138:S519S522. PubMed
10. Byrne, G. I.,, and C. L. Faubion. 1982. Lymphokine-mediated microbistatic mechanisms restrict Chlamydia psittaci growth in macrophages. J. Immunol. 128:469474. PubMed
11. Byrne, G. I.,, L. E. Guagliardi,, R. E. Huebner,, and D. M. Paulnock. 1988. Immunomodulation and Chlamydia: immunosuppression and the protective immune response to C. psittaci in mice. Adv. Exp. Med. Biol. 239:343352. PubMed
12. Byrne, G. I.,, and D. A. Krueger. 1983. Lymphokine-mediated inhibition of Chlamydia replication in mouse fibroblasts is neutralized by anti-gamma interferon immunoglobulin. Infect. Immun. 42:11521158. PubMed
13. Byrne, G. I.,, and D. M. Ojcius. 2004. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat. Rev. Microbiol. 2:802808. PubMed CrossRef
14. Campbell, L. A.,, T. C. Moazed,, C. C. Kuo,, and J. T. Grayston. 1998. Preclinical models for Chlamydia pneumoniae and cardiovascular disease: hypercholesterolemic mice. Clin. Microbiol. Infect. 4(Suppl. 4):S23S32. PubMed
15. Chehade, M.,, and L. Mayer. 2005. Oral tolerance and its relation to food hypersensitivities. J Allergy Clin. Immunol. 115:312. PubMed CrossRef
16. Chen, W.,, and C. Kuo. 1980. A mouse model of pneumonitis induced by Chlamydia trachomatis: morphologic, microbiologic, and immunologic studies. Am. J. Pathol. 100:365382. PubMed
17. Conway, D. J.,, M. J. Holland,, R. L. Bailey,, A. E. Campbell,, O. S. Mahdi,, R. Jennings,, E. Mbena,, and D. C. Mabey. 1997. Scarring trachoma is associated with polymorphism in the tumor necrosis factor alpha (TNF-alpha) gene promoter and with elevated TNF-alpha levels in tear fluid. Infect. Immun. 65:10031006. PubMed
18. Cotter, T. W.,, G. S. Miranpuri,, K. H. Ramsey,, C. E. Poulsen,, and G. I. Byrne. 1997a. Reactivation of chlamydial genital tract infection in mice. Infect. Immun. 65:20672073. PubMed
19. Cotter, T. W.,, K. H. Ramsey,, G. S. Miranpuri,, C. E. Poulsen,, and G. I. Byrne. 1997b. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65:21452152. PubMed
20. Darougar, S.,, M. A. Monnickendam,, H. El-Sheikh,, J. D. Treharne,, R. M. Woodland,, and B. R. Jones,. 1977. Animal models for the study of chlamydial infections of the eye and genital tract, p. 186198. In D. Hobson, and K. K. Holmes (ed.), Nongonococcal Urethritis and Related Infections. American Society for Microbiology, Washington, DC.
21. Darville, T., 2006. Innate immunity, p. 339364. In P. M. Bavoil, and P. B. Wyrick (ed.), Chlamydia: Genomics and Pathogenesis. Horizon Bioscience, Norfolk, United Kingdom.
22. Darville, T.,, C. W. Andrews, Jr.,, K. K. Laffoon,, W. Shymasani,, L. R. Kishen,, and R. G. Rank. 1997. Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect. Immun. 65:30653073. PubMed
23. Darville, T.,, C. W. Andrews, Jr.,, J. D. Sikes,, P. L. Fraley,, L. Braswell,, and R. G. Rank. 2001. Mouse strain-dependent chemokine regulation of the genital tract T helper cell type 1 immune response. Infect. Immun. 69:74197424. PubMed CrossRef
24. Darville, T.,, and T. Hiltke. 2010. Pathogenesis of Chlamydia trachomatis genital infection: an overview. J. Infect. Dis. 201(Suppl. 2):S114S125.
25. Darville, T.,, J. M. O’Neill,, C. W. Andrews, Jr.,, U. M. Nagarajan,, L. Stahl,, and D. M. Ojcius. 2003. Toll-Like receptor-2, but not toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171:61876197.
26. de la Maza, L.,, S. Pal,, A. Khamesipour,, and E. M. Peterson. 1994. Intravaginal inoculation of mice with the Chlamydia trachomatis mouse pneumonitis biovar results in infertility. Infect. Immun. 62:20942097. PubMed
27. Digiacomo, R. F.,, J. L. Gale,, S. P. Wang,, and M. D. Kiviat. 1975. Chlamydial infection of the male baboon urethra. Br. J. Vener. Dis. 51:310313. PubMed
28. Doughri, A. M.,, J. Storz,, and K. P. Altera. 1972. Mode of entry and release of Chlamydiae in infections of intestinal epithelial cells. J. Infect. Dis. 126:652657. PubMed CrossRef
29. Feng, D.,, J. A. Nagy,, K. Pyne,, H. F. Dvorak,, and A. M. Dvorak. 1998. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187:903915. PubMed CrossRef
30. Gordon, F. B.,, G. Freeman,, and J. M. Clampit. 1938. A pneumonia-producing filtrable agent from stock mice. Proc. Soc. Exp. Biol. Med. 39:450453.
31. Grayston, J. T.,, S. P. Wang,, L. J. Yeh,, and C. C. Kuo. 1985. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis. 7:717725. PubMed
32. Hackstadt, T.,, M. A. Scidmore-Carlson,, E. I. Shaw,, and E. R. Fischer. 1999. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1:119130. PubMed CrossRef
33. Hsia, R.,, H. Ohayon,, P. Gounon,, A. Dautry-Varsat,, and P. M. Bavoil. 2000. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis. Microbes Infect. 2:761772. PubMed
34. Hybiske, K.,, and R. S. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 104:1143011435. PubMed CrossRef
35. Igietseme, J. U.,, J. L. Portis,, and L. L. Perry. 2001. Inflammation and clearance of Chlamydia trachomatis in enteric and nonenteric mucosae. Infect. Immun. 69:18321840. PubMed CrossRef
36. Imtiaz, M. T.,, J. H. Schripsema,, I. M. Sigar,, J. N. Kasimos,, and K. H. Ramsey. 2006. Inhibition of matrix metalloproteinases protects mice from ascending infection and chronic disease manifestations resulting from urogenital Chlamydia muridarum infection. Infect. Immun. 74:55135521. PubMed CrossRef
37. Ito, J. I., Jr.,, J. M. Lyons,, and L. P. Airo-Brown. 1990. Variation in virulence among oculogenital serovars of Chlamydia trachomatis in experimental genital tract infection. Infect. Immun. 58:20212023. PubMed
38. Jacobs, N. F., Jr.,, E. S. Arum,, and S. J. Kraus. 1978. Experimental infection of the chimpanzee urethra and pharynx with Chlamydia trachomatis. Sex. Transm. Dis. 5:132136. PubMed
39. Johnson, A. P.,, C. M. Hetherington,, M. F. Osborn,, B. J. Thomas,, and D. Taylor-Robinson. 1980. Experimental infection of the marmoset genital tract with Chlamydia trachomatis. Br. J. Exp. Pathol. 61:291295. PubMed
40. Kari, L.,, W. M. Whitmire,, J. H. Carlson,, D. D. Crane,, N. Reveneau,, D. E. Nelson,, D. C. Mabey,, R. L. Bailey,, M. J. Holland,, G. McClarty,, and H. D. Caldwell. 2008. Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations. J. Infect. Dis. 197:449456. PubMed CrossRef
41. Karr, H. V. 1943. Study of a latent pneumotropic virus of mice. J. Infect. Dis. 72:108116.
42. Kaukoranta-Tolvanen, S.-S. E.,, A. L. Laurila,, P. Saikku,, M. Leinonen,, L. Liesirova,, and K. Laitinen. 1993. Experimental infection of Chlamydia pneumoniae in mice. Microb. Pathog. 15:293302. PubMed CrossRef
43. Kazdan, J. J.,, J. Schachter,, and M. Okumoto. 1967. Inclusion conjunctivitis in the guinea pig. Am. J. Opthalmol. 64:116124.
44. Kelly, K. A., 2006. T lymphocyte trafficking to the female reproductive mucosa, p. 413434. In P. M. Bavoil, and P. B. Wyrick (ed.), Chlamydia: Genomics and Pathogenesis. Horizon Biosciences, Norfolk, United Kingdom.
45. Kinghorn, G. R.,, and M. A. Waugh. 1981. Oral contraceptive use and prevalence of infection with Chlamydia trachomatis in women. Br. J. Vener. Dis. 57:187190. PubMed
46. Kuo, C.,, and W. J. Chen. 1980. A mouse model of Chlamydia trachomatis pneumonitis. J. Infect. Dis. 141:198202. PubMed CrossRef
47. Laitinen, K.,, A. L. Laurila,, M. Leinonen,, and P. Saikku. 1996. Reactivation of Chlamydia pneumoniae infection in mice by cortisone treatment. Infect. Immun. 64:14881490. PubMed
48. Malinverni, R.,, C. Kuo,, L. A. Campbell,, and J. T. Grayston. 1995. Reactivation of Chlamydia pneumoniae lung infection in mice by cortisone. J. Infect. Dis. 172:593594. PubMed CrossRef
49. Mallet, D. G.,, K.-J. Heymer,, R. G. Rank,, and D. P. Wilson. 2009. Chlamydial infection and spatial ascension of the female genital tract: a novel hybrid cellular automata and continuum mathematical model. FEMS Immunol. Med. Microbiol. 57:173182. PubMed CrossRef
50. Matsumoto, A., 1988. Structural characteristics of chlamydial bodies, p. 2145. In A. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, FL.
51. Matsumoto, A.,, H. Bessho,, K. Uehira,, and T. Suda. 1991. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J. Electron. Microsc. (Tokyo) 40:356363. PubMed
52. Maxion, H. K.,, W. Liu,, M. H. Chang,, and K. A. Kelly. 2004. The infecting dose of Chlamydia muridarum modulates the innate immune response and ascending infection. Infect. Immun. 72:63306340. PubMed CrossRef
53. Miyairi, I.,, O. S. Mahdi,, S. P. Ouellette,, R. J. Belland,, and G. I. Byrne. 2006. Different growth rates of Chlamydia trachomatis biovars reflect pathotype. J. Infect. Dis. 194:350357. PubMed CrossRef
54. Miyairi, I.,, K. H. Ramsey,, and D. L. Patton. 2010. Duration of untreated chlamydial genital infection and factors associated with clearance: review of animal studies. J. Infect. Dis. 201(Suppl. 2):S96S103. PubMed CrossRef
55. Miyairi, I.,, V. R. Tatireddigari,, O. S. Mahdi,, L. A. Rose,, R. J. Belland,, L. Lu,, R. W. Williams,, and G. I. Byrne. 2007. The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J. Immunol. 179:18141824. PubMed
56. Moazed, T. C.,, C. Kuo,, J. T. Grayston,, and L. A. Campbell. 1997. Murine models of Chlamydia pneumoniae infection and atherosclerosis. J. Infect. Dis. 175:883890. PubMed CrossRef
57. Moller, B. R.,, and P. A. Mardh. 1980a. Experimental epididymitis and urethritis in grivet monkeys provoked by Chlamydia trachomatis. Fertil. Steril. 34:275279. PubMed
58. Moller, B. R.,, and P. A. Mardh. 1980b. Experimental salpingitis in grivet monkeys by Chlamydia trachomatis. Modes of spread of infection to the Fallopian tubes. Acta Pathol. Microbiol. Scand. 88:107114. PubMed
59. Monnickendam, M. A.,, S. Darougar,, J. D. Treharne,, and A. M. Tilbury. 1980a. Development of chronic conjunctivitis with scarring and pannus, resembling trachoma, in guinea pigs. Br. J. Ophthalmol. 64:284290. PubMed CrossRef
60. Monnickendam, M. A.,, S. Darougar,, J. D. Treharne,, and A. M. Tilbury. 1980b. Guinea pig inclusion conjunctivitis as a model for the study of trachoma: clinical, microbiological, serological, and cytological studies of primary infection. Br. J. Ophthalmol. 64:279283. PubMed CrossRef
61. Morrison, R. P.,, and H. D. Caldwell. 2002. Immunity to murine chlamydial genital infection. Infect. Immun. 70:27412751. PubMed CrossRef
62. Mount, D. T.,, P. E. Bigazzi,, and A. L. Barron. 1972. Infection of genital tract and transmission of ocular infection to newborns by the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 5:921926. PubMed
63. Mount, D. T.,, P. E. Bigazzi,, and A. L. Barron. 1973. Experimental genital infection of male guinea pigs with the agent of guinea pig inclusion conjunctivitis and transmission to females. Infect. Immun. 8:925930. PubMed
64. Murdin, A. D.,, P. Dunn,, R. Sodoyer,, J. Wang,, J. Caterini,, R. C. Brunham,, L. Aujame,, and R. Oomen. 2000. Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis. 181(Suppl. 3):S544S551. PubMed CrossRef
65. Murray, E. S. 1964. Guinea pig inclusion conjunctivitis. I. Isolation and identification as a member of the Psittacosis-Lymphogranuloma-Trachoma group. J. Infect. Dis. 114:112. PubMed CrossRef
66. Neeper, I. D.,, D. L. Patton,, and C.-C. Kuo. 1990. Cinematographic observations of growth cycles of Chlamydia trachomatis in primary cultures of human amniotic cells. Infect. Immun. 58:20422047. PubMed
67. Nigg, C. 1942. An unidentified virus which produces pneumonia and systemic infection in mice. Science 95:4950. PubMed CrossRef
68. Ojcius, D. M.,, P. Souque,, J. L. Perfettini,, and A. Dautry-Varsat. 1998. Apoptosis of epithelial cells and macrophages due to infection with the obligate intracellular pathogen Chlamydia psittaci. J. Immunol. 161:42204226. PubMed
69. Pal, S.,, E. M. Peterson,, and L. M. de la Maza. 2004. New murine model for the study of Chlamydia trachomatis genitourinary tract infections in males. Infect. Immun. 72:42104216. PubMed CrossRef
70. Pasley, J. N.,, R. G. Rank,, A. J. Hough, Jr.,, C. Cohen,, and A. L. Barron. 1985a. Effects of various doses of estradiol on chlamydial genital infection in ovariectomized guinea pigs. Sex. Transm. Dis. 12:813. PubMed
71. Pasley, J. N.,, R. G. Rank,, A. J. Hough, Jr.,, C. Cohen,, and A. L. Barron. 1985b. Absence of progesterone effects on chlamydial genital infection in female guinea pigs. Sex. Transm. Dis. 12:156158. PubMed
72. Patton, D. L., 1992. Microbiology and pathology of pelvic inflammatory disease, p. 2333. In G. S. Berger, and L. V. Westrom (ed.), Pelvic Inflammatory Disease. Raven Press, Ltd., New York, NY.
73. Patton, D. L.,, S. A. Halbert,, C. C. Kuo,, S. P. Wang,, and K. K. Holmes. 1983. Host response to primary Chlamydia trachomatis infection of the fallopian tube in pig-tailed monkeys. Fertil. Steril. 40:829840. PubMed
74. Patton, D. L.,, C.-C. Kuo,, S.-P. Wang,, and S. A. Halbert. 1987a. Distal tubal obstruction induced by repeated Chlamydia trachomatis salpingeal infection in pig-tailed macaques. J. Infect. Dis. 155:12921299. PubMed CrossRef
75. Patton, D. L.,, C.-C. Kuo,, S.-P. Wang,, R. M. Brenner,, M. D. Sternfeld,, S. A. Morse,, and R. C. Barnes. 1987b. Chlamydial infection of subcutaneous fimbrial transplants in cynomolgus and rhesus monkeys. J. Infect. Dis. 155:229235. PubMed CrossRef
76. Patton, D. L.,, and H. R. Taylor. 1986. The histopathology of experimental trachoma: ultrastructural changes in the conjunctival epithelium. J. Infect. Dis. 153:870878. PubMed CrossRef
77. Perry, L. L.,, and S. Hughes. 1999. Chlamydial colonization of multiple mucosae following infection by any mucosal route. Infect. Immun. 67:36863689. PubMed
78. Phillips, D. M.,, and C. A. Burillo. 1998. Ultrastructure of the murine cervix following infection with Chlamydia trachomatis. Tissue Cell 30:446452. PubMed
79. Phillips, D. M.,, C. E. Swenson,, and J. Schachter. 1984. Ultrastructure of Chlamydia trachomatis infection of the mouse oviduct. J. Ultrastruct. Res. 88:244256. PubMed
80. Pospischil, A.,, N. Borel,, E. H. Chowdhury,, and F. Guscetti. 2009. Aberrant chlamydial developmental forms in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis. Vet. Microbiol. 135:147156. PubMed CrossRef
81. Qiu, H.,, S. Wang,, J. Yang,, Y. Fan,, A. G. Joyee,, X. Han,, L. Jiao,, and X. Yang. 2005. Resistance to chlamydial lung infection is dependent on major histocompatibility complex as well as non-major histocompatibility complex determinants. Immunology 116:499506. PubMed CrossRef
82. Ramsey, K. H., 2006, Alternative mechanisms of pathogenesis, p. 435473. In P. M. Bavoil, and P. B. Wyrick (ed.), Chlamydia: Genomics and Pathogenesis. Horizon Bioscience, Norfolk, United Kingdom.
83. Ramsey, K. H.,, I. M. Sigar,, J. H. Schripsema,, C. J. Denman,, A. K. Bowlin,, G. S. A. Myers,, and R. G. Rank. 2009. Strain and virulence diversity in the mouse pathogen Chlamydia muridarum. Infect. Immun. 77:32843293. PubMed CrossRef
84. Rank, R. G., 1988. Role of the immune response, p. 217234. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, FL.
85. Rank, R. G., 1994. Animal models for urogenital infections, p. 8392. In V. L. Clark, and P. M. Bavoil (ed.), Bacterial Pathogenesis. Part A. Identification and Regulation of Virulence Factors, vol. 235. Academic Press, San Diego, CA.
86. Rank, R. G., 1999. Models of immunity, p. 239295. In R. S. Stephens (ed.), Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. American Society for Microbiology, Washington, DC.
87. Rank, R. G., 2007. Chlamydial diseases, p. 325348. In J. G. Fox et al. (ed.), The Mouse in Biomedical Research, 2nd ed. Elsevier, New York, NY.
88. Rank, R. G., 2009. Chlamydia, p. 845868. In A. Barret, and L. Stanberry (ed.), Vaccines for Biodefense and Emerging and Neglected Diseases. Elsevier, Oxford, United Kingdom.
89. Rank, R. G.,, and A. L. Barron,. 1982. Prolonged genital infection by GPIC agent associated with immunosuppression following treatment with estradiol, p. 391394. In P.-A. Mardh et al. (ed.), Chlamydial Infections. Elsevier Biomedical Press, New York, NY.
90. Rank, R. G.,, A. K. Bowlin,, R. L. Reed,, and T. Darville. 2003. Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect. Immun. 71:61486154. PubMed CrossRef
91. Rank, R. G.,, C. Dascher,, A. K. Bowlin,, and P. M. Bavoil. 1995a. Systemic immunization with Hsp60 alters the development of chlamydial ocular disease. Investig. Ophthalmol. Vis. Sci. 36:13441351. PubMed
92. Rank, R. G.,, A. J. Hough, Jr.,, R. F. Jacobs,, C. Cohen,, and A. L. Barron. 1985. Chlamydial pneumonitis induced in newborn guinea pigs. Infect. Immun. 48:153158. PubMed
93. Rank, R. G.,, H. M. Lacy,, A. Goodwin,, J. Sikes,, J. Whittimore,, P. B. Wyrick,, and U. M. Nagarajan. 2010. Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect. Immun. 78:536544. PubMed CrossRef
94. Rank, R. G.,, and M. M. Sanders. 1992. Pathogenesis of endometritis and salpingitis in a guinea pig model of chlamydial genital infection. Am. J. Pathol. 140:927936. PubMed
95. Rank, R. G.,, M. M. Sanders,, and A. T. Kidd. 1993. Influence of the estrous cycle on the development of upper genital tract pathology as a result of chlamydial infection in the guinea pig model of pelvic inflammatory disease. Am. J. Pathol. 142:12911296. PubMed
96. Rank, R. G.,, M. M. Sanders,, and D. L. Patton. 1995b. Increased incidence of oviduct pathology in the guinea pig after repeat vaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis. J. Sex. Transm. Dis. 22:4854. PubMed
97. Rank, R. G.,, H. J. White,, A. J. Hough,, J. N. Pasley,, and A. L. Barron. 1982. Effect of estradiol on chlamydial genital infection of female guinea pigs. Infect. Immun. 38:699705. PubMed
98. Rank, R. G.,, J. Whittimore,, A. K. Bowlin,, S. Dessus-Babus,, and P. B. Wyrick. 2008. Chlamydiae and polymorphonuclear leukocytes: unlikely allies in the spread of chlamydial infection. FEMS Immunol. Med. Microbiol. 54:104113. PubMed CrossRef
99. Rank, R. G.,, J. Whittimore,, A. K. Bowlin,, and P. B. Wyrick. 2011. The intimate relationship between polymorphonuclear leukocytes and the chlamydial developmental cycle: an in vivo ultrastructural analysis. Infect. Immun. 79:32913301. PubMed CrossRef
100. Rank, R. G.,, and J. Whittum-Hudson. 2010. Protective immunity to chlamydial genital infection: evidence from animal studies. J. Infect. Dis. 201(Suppl. 2):S168S177. PubMed CrossRef
101. Ripa, K. T.,, B. R. Mller,, P. A. Mardh,, E. A. Freundt,, and F. Melsen. 1979. Experimental acute salpingitis in grivet monkeys provoked by Chlamydia trachomatis. Acta Pathol. Microbiol. Scand. B 87:6570. PubMed
102. Schmeer, N.,, R. Weiss,, M. Reinacher,, H. Krauss,, and M. Karo. 1985. Verlauf einer Chlamydien-bedingten “Meerschweinschen-Einschlusskoerperchen-Konjunktivitis” in einer Versuchstierhaltung. Z. Versuchstierkunde 27:233240. PubMed
103. Soloff, B. L.,, R. G. Rank,, and A. L. Barron. 1982. Ultrastructural studies of chlamydial infection in guinea pig urogenital tract. J. Comp. Pathol. 92:547558. PubMed
104. Soloff, B. L.,, R. G. Rank,, and A. L. Barron. 1985. Electron microscopic observations concerning the in vivo uptake and release of the agent of guinea pig inclusion conjunctivitis (Chlamydia psittaci) in guinea pig exocervix. J. Comp. Pathol. 95:335344. PubMed
105. Stephens, R. S. 2003. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11:4451. PubMed
106. Swanson, J.,, D. A. Eschenbach,, E. R. Alexander,, and K. K. Holmes. 1975. Light and electron microscopic study of Chlamydia trachomatis infection of the uterine cervix. J. Infect. Dis. 131:678687. PubMed CrossRef
107. Sweet, R. L.,, M. Blankfort-Doyle,, M. O. Robbie,, and J. Schachter. 1986. The occurrence of chlamydial and gonococcal salpingitis during the menstrual cycle. JAMA 255:20622065. PubMed
108. Taylor, H. R. 1985. Ocular models of chlamydial infection. Rev. Infect. Dis. 7:737740. PubMed
109. Taylor, H. R.,, R. A. Prendergast,, C. R. Dawson,, J. Schachter,, and A. M. Silverstein. 1981. An animal model for cicatrizing trachoma. Investig. Ophthalmol. Vis. Sci. 21:422433. PubMed
110. Tseng, C. K.,, and R. G. Rank. 1998. Role of NK cells in the early host response to chlamydial genital infection. Infect. Immun. 66:58675875. PubMed
111. Tuffrey, M.,, F. Alexander,, and D. Taylor-Robinson. 1990. Severity of salpingitis in mice after primary and repeated inoculation with a human strain of Chlamydia trachomatis. J. Exp. Pathol. 71:403410. PubMed
112. Tuffrey, M.,, and D. Taylor-Robinson. 1981. Progesterone as a key factor in the development of a mouse model for genital-tract infection with Chlamydia trachomatis. FEMS Microbiol. Lett. 12:111115.
113. Vonck, R. A.,, T. Darville,, C. M. O’Connell,, and A. E. Jerse. 2011. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect. Immun. 79:15661577. PubMed CrossRef
114. Wang, Y.,, U. Nagarajan,, L. Hennings,, A. K. Bowlin,, and R. G. Rank. 2010. Local host response to chlamydial urethral infection in male guinea pigs. Infect. Immun. 78:16701681. PubMed CrossRef
115. Ward, M. E., 1988. The chlamydial developmental cycle, p. 7196. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Inc., Boca Raton, FL.
116. Washington, A. E.,, S. Gove,, J. Schachter,, and R. L. Sweet. 1985. Oral contraceptives, Chlamydia trachomatis infection, and pelvic inflammatory disease. A word of caution about protection. JAMA 253:22462250. PubMed
117. Williams, D. M.,, T. Kung,, and J. Schachter,. 1986. Immunity to the mouse pneumonitis agent (murine Chlamydia trachomatis), p. 465468. In D. Oriel et al. (ed.), Chlamydial Infections. Cambridge University Press, Cambridge, United Kingdom.
118. Williams, D. M.,, J. Schachter,, J. J. Coalson,, and B. Grubbs. 1984. Cellular immunity to the mouse pneumonitis agent. J. Infect. Dis. 149:630639. PubMed CrossRef
119. Wilson, D. P.,, A. K. Bowlin,, P. M. Bavoil,, and R. G. Rank. 2009. Ocular pathology elicited by Chlamydia and the predictive value of quantitative modeling. J. Infect. Dis. 199:17801789. PubMed CrossRef
120. Wilson, D. P.,, P. Timms,, D. L. McElwain,, and P. M. Bavoil. 2006. Type III secretion, contact-dependent model for the intracellular development of Chlamydia. Bull. Math. Biol. 68:161178. PubMed CrossRef
121. Wolner-Hanssen, P.,, D. L. Patton,, W. E. Stamm,, and K. K. Holmes,. 1986. Severe salpingitis in pig-tailed macaques after repeated cervical infections followed by a single tubal inoculation with Chlamydia trachomatis, p. 371374. In D. Oriel et al. (ed.), Chlamydia infections. Cambridge University Press, New York, NY.
122. Yang, Y. S.,, C. C. Kuo,, and W. J. Chen. 1983. Reactivation of Chlamydia trachomatis lung infection in mice by cortisone. Infect. Immun. 39:655658. PubMed
123. Yang, Z.-P.,, C.-C. Kuo,, and J. T. Grayston. 1993. A mouse model of Chlamydia pneumoniae strain TWAR pneumonitis. Infect. Immun. 61:20372040. PubMed

Tables

Generic image for table
TABLE 1

Major animal models

Citation: Rank R. 2012. In Vivo Chlamydial Infection, p 285-310. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error