1887

Chapter 14 : Vaccine: Progress and Challenges

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Vaccine: Progress and Challenges, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap14-2.gif

Abstract:

The accumulated body of evidence has provided important guiding principles for vaccine development. They are: (i) whole-organism vaccine preparations may be efficacious, as animal studies and the trachoma trials have suggested; (ii) a multisub-unit component vaccine should likely include combinations of serovar/biovar-specific protective antigens; and (iii) the prevention of pathological sequelae and the reduction of the incidence of infection should be the driving forces in vaccine development. Live chlamydial infections induce the best protective immunity in both humans and mice when compared to immunization with either dead organisms or component antigens. In a gel electrophoresis and immunoblotting approach, chlamydial antigens derived from purified organisms or -infected cells are subjected to two-dimensional gel electrophoresis (2D-GE) and then probed with sera from -seropositive humans. Chlamydial proteins are labeled during growth with radioactive amino acids, and individual antigens from lysed chlamydial organisms or -infected cells that are recognized by patient sera are first immunoprecipitated and then resolved using 2D-GE. A genome expression library screen for immunogenicity followed by DNA immunization has been used to identify four housekeeping genes that induced robust protective immunity against lung infection in mice. Collectively, contemporary technologies have enabled considerable progress in vaccine development in the recent past, but several issues remain to be addressed before advancing the identified antigens into human clinical trials.

Citation: Murthy A, Arulanandam B, Zhong G. 2012. Vaccine: Progress and Challenges, p 311-333. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch14

Key Concept Ranking

Major Histocompatibility Complex
0.4641133
Tumor Necrosis Factor alpha
0.43557698
0.4641133
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Scheme for vaccine candidate identification and evaluation. doi:10.1128/9781555817329.ch14.f1

Citation: Murthy A, Arulanandam B, Zhong G. 2012. Vaccine: Progress and Challenges, p 311-333. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Classification scheme showing a -infected cell and four classes of chlamydial antigens that are potential vaccine candidates. doi:10.1128/9781555817329.ch14.f2

Citation: Murthy A, Arulanandam B, Zhong G. 2012. Vaccine: Progress and Challenges, p 311-333. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817329.chap14
1. Bannantine, J. P.,, and D. D. Rockey. 1999. Use of primate model system to identify Chlamydia trachomatis protein antigens recognized uniquely in the context of infection. Microbiology 145:20772085. PubMed CrossRef
2. Batteiger, B. E. 1996. The major outer membrane protein of a single Chlamydia trachomatis serovar can possess more than one serovar-specific epitope. Infect. Immun. 64:542547. PubMed
3. Berry, L. J.,, D. K. Hickey,, K. A. Skelding,, S. Bao,, A. M. Rendina,, P. M. Hansbro,, C. M. Gockel,, and K. W. Beagley. 2004. Transcutaneous immunization with combined cholera toxin and CpG adjuvant protects against Chlamydia muridarum genital tract infection. Infect. Immun. 72:10191028. PubMed CrossRef
4. Bietti, G.,, and G. H. Werner. 1967. Trachoma: Prevention and Treatment. Charles C Thomas, Springfield, IL.
5. Brade, L.,, S. Schramek,, U. Schade,, and H. Brade. 1986. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect. Immun. 54:568574. PubMed
6. Brunham, R. C.,, C. C. Kuo,, L. Cles,, and K. K. Holmes. 1983. Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect. Immun. 39:14911494. PubMed
7. Brunham, R. C.,, R. Peeling,, I. Maclean,, M. L. Kosseim,, and M. Paraskevas. 1992. Chlamydia trachomatis-associated ectopic pregnancy: serologic and histologic correlates. J. Infect. Dis. 165:10761081. PubMed
8. Brunham, R. C.,, and R. W. Peeling. 1994. Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect. Agents Dis. 3:218233. PubMed
9. Brunham, R. C.,, and M. L. Rekart. 2008. The arrested immunity hypothesis and the epidemiology of chlamydia control. Sex. Transm. Dis. 35:5354. PubMed CrossRef
10. Brunham, R. C.,, and J. Rey-Ladino. 2005. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol. 5:149161. PubMed CrossRef
11. Bunk, S.,, I. Susnea,, J. Rupp,, J. T. Summersgill,, M. Maass,, W. Stegmann,, A. Schrattenholz,, A. Wendel,, M. Przybylski,, and C. Hermann. 2008. Immunoproteomic identification and serological responses to novel Chlamydia pneumoniae antigens that are associated with persistent C. pneumoniae infections. J. Immunol. 180:54905498. PubMed
12. Byrne, G. I.,, R. S. Stephens,, G. Ada,, H. D. Caldwell,, H. Su,, R. P. Morrison,, B. Van der Pol,, P. Bavoil,, L. Bobo,, and S. Everson. 1993. Workshop on in vitro neutralization of Chlamydia trachomatis: summary of proceedings. J. Infect. Dis. 168:415420. PubMed CrossRef
13. Caldwell, H. D.,, C. C. Kuo,, and G. E. Kenny. 1975a. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. I. Antigenic heterogeneity between C. trachomatis and C. psittaci. J. Immunol. 115:963968. PubMed
14. Caldwell, H. D.,, C. C. Kuo,, and G. E. Kenny. 1975b. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. II. A trachoma-LGV-specific antigen. J. Immunol. 115:969975. PubMed
15. Caldwell, H. D.,, and L. J. Perry. 1982. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. Infect. Immun. 38:745754. PubMed
16. Chaganty, B. K.,, A. K. Murthy,, S. J. Evani,, W. Li,, M. N. Guentzel,, J. P. Chambers,, G. Zhong,, and B. P. Arulanandam. 2010. Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine 28:23232329. PubMed CrossRef
17. Champion, C. I.,, V. A. Kickhoefer,, G. Liu,, R. J. Moniz,, A. S. Freed,, L. L. Bergmann,, D. Vaccari,, S. Raval-Fernandes,, A. M. Chan,, L. H. Rome,, and K. A. Kelly. 2009. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 4:e5409. PubMed CrossRef
18. Chen, D.,, L. Lei,, C. Lu,, A. Galaleldeen,, P. J. Hart,, and G. Zhong. 2010. Characterization of Pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J. Bacteriol. 192:60176024. PubMed CrossRef
19. Cheng, C.,, M. I. Cruz-Fisher,, D. Tifrea,, S. Pal,, B. Wizel,, and L. M. de la Maza. 2011. Induction of protection in mice against a respiratory challenge by a vaccine formulated with the Chlamydia major outer membrane protein adjuvanted with IC31®. Vaccine 29:24372443. PubMed CrossRef
20. Cheng, W.,, P. Shivshankar,, Z. Li,, L. Chen,, I. T. Yeh,, and G. Zhong. 2008. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect. Immun. 76:515522. PubMed CrossRef
21. Coler, R. N.,, A. Bhatia,, J. F. Maisonneuve,, P. Probst,, B. Barth,, P. Ovendale,, H. Fang,, M. Alderson,, Y. Lobet,, J. Cohen,, P. Mettens,, and S. G. Reed. 2009. Identification and characterization of novel recombinant vaccine antigens for immunization against genital Chlamydia trachomatis. FEMS Immunol. Med. Microbiol. 55:258270. PubMed CrossRef
22. Collier, L. H.,, W. A. Blyth,, N. M. Larin,, and J. Treharne. 1967. Immunogenicity of experimental trachoma vaccines in baboons. III. Experiments with inactivated vaccines. J. Hyg. (London) 65:97107. PubMed
23. Cong, Y.,, M. Jupelli,, M. N. Guentzel,, G. Zhong,, A. K. Murthy,, and B. P. Arulanandam. 2007. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine 25:37733780. PubMed CrossRef
24. Cotter, T. W.,, Q. Meng,, Z. L. Shen,, Y. X. Zhang,, H. Su,, and H. D. Caldwell. 1995. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect. Immun. 63:47044714. PubMed
25. Cotter, T. W.,, K. H. Ramsey,, G. S. Miranpuri,, C. E. Poulsen,, and G. I. Byrne. 1997. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65:21452152. PubMed
26. Crane, D. D.,, J. H. Carlson,, E. R. Fischer,, P. Bavoil,, R. C. Hsia,, C. Tan,, C. C. Kuo,, and H. D. Caldwell. 2006. Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc. Natl. Acad. Sci. USA 103:18941899. PubMed CrossRef
27. Cruz-Fisher, M. I.,, C. Cheng,, G. Sun,, S. Pal,, A. Teng,, D. M. Molina,, M. A. Kayala,, A. Vigil,, P. Baldi,, P. L. Felgner,, X. Liang,, and L. M. de la Maza. 2011. Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice. Infect. Immun. 79:246257. PubMed CrossRef
28. Cunningham, K. A.,, A. J. Carey,, L. Hafner,, P. Timms,, and K. W. Beagley. 2011. Chlamydia muridarum major outer membrane protein-specific antibodies inhibit in vitro infection but enhance pathology in vivo. Am. J. Reprod. Immunol. 65:118126. PubMed CrossRef
29. Darville, T.,, J. M. O’Neill,, C. W. Andrews, Jr.,, U. M. Nagarajan,, L. Stahl,, and D. M. Ojcius. 2003. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171:61876197. PubMed
30. Deane, K. H.,, R. M. Jecock,, J. H. Pearce,, and J. S. Gaston. 1997. Identification and characterization of a DR4-restricted T cell epitope within chlamydia heat shock protein 60. Clin. Exp. Immunol. 109:439445. PubMed CrossRef
31. Dong, F.,, H. Su,, Y. Huang,, Y. Zhong,, and G. Zhong. 2004. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect. Immun. 72:38633868. PubMed CrossRef
32. Dong, F.,, Y. Zhong,, B. Arulanandam,, and G. Zhong. 2005. Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect. Immun. 73:18681872. PubMed CrossRef
33. Eko, F. O.,, Q. He,, T. Brown,, L. McMillan,, G. O. Ifere,, G. A. Ananaba,, D. Lyn,, W. Lubitz,, K. L. Kellar,, C. M. Black,, and J. U. Igietseme. 2004. A novel recombinant multisubunit vaccine against Chlamydia. J. Immunol. 173:33753382. PubMed
34. Eko, F. O.,, W. Lubitz,, L. McMillan,, K. Ramey,, T. T. Moore,, G. A. Ananaba,, D. Lyn,, C. M. Black,, and J. U. Igietseme. 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21:16941703. PubMed
35. Fadel, S.,, and A. Eley. 2007. Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J. Med. Microbiol. 56:1522. PubMed CrossRef
36. Farris, C. M.,, S. G. Morrison,, and R. P. Morrison. 2010. CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect. Immun. 78:43744383. PubMed CrossRef
37. Fields, K. A.,, and T. Hackstadt. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38:10481060. PubMed CrossRef
38. Fling, S. P.,, R. A. Sutherland,, L. N. Steele,, B. Hess,, S. E. D’Orazio,, J. Maisonneuve,, M. F. Lampe,, P. Probst,, and M. N. Starnbach. 2001. CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 98:11601165. PubMed CrossRef
39. Frikha-Gargouri, O.,, R. Gdoura,, A. Znazen,, B. Gargouri,, J. Gargouri,, A. Rebai,, and A. Hammami. 2008. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections. BMC Microbiol. 8:217. PubMed CrossRef
40. Geisler, W. M.,, C. Wang,, S. G. Morrison,, C. M. Black,, C. I. Bandea,, and E. W. Hook III. 2008. The natural history of untreated Chlamydia trachomatis infection in the interval between screening and returning for treatment. Sex. Transm. Dis. 35:119123. PubMed CrossRef
41. Gervassi, A. L.,, K. H. Grabstein,, P. Probst,, B. Hess,, M. R. Alderson,, and S. P. Fling. 2004. Human CD8+ T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis. J. Immunol. 173:69056913. PubMed
42. Gong, S.,, L. Lei,, X. Chang,, R. Belland,, and G. Zhong. 2011. Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. Microbiology 157:11341144. PubMed CrossRef
43. Goodall, J. C.,, G. Yeo,, M. Huang,, R. Raggiaschi,, and J. S. Gaston. 2001. Identification of Chlamydia trachomatis antigens recognized by human CD4+ T lymphocytes by screening an expression library. Eur. J. Immunol. 31:15131522. PubMed CrossRef
44. Grayston, J. T.,, R. L. Woolridge,, C. W. Chen,, F. A. Assaad,, S. Maffei,, C. H. Yen,, and C. Y. Yang. 1961. Bacterial conjunctivitis caused by an eye ointment base used as a placebo in therapeutic trials. Am. J. Ophthalmol. 52:251256. PubMed
45. Grotenbreg, G. M.,, N. R. Roan,, E. Guillen,, R. Meijers,, J. H. Wang,, G. W. Bell,, M. N. Starnbach,, and H. L. Ploegh. 2008. Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proc. Natl. Acad. Sci. USA 105:38313836. PubMed CrossRef
46. Hackstadt, T.,, M. A. Scidmore-Carlson,, E. I. Shaw,, and E. R. Fischer. 1999. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1:119130. PubMed CrossRef
47. Hafner, L.,, K. Beagley,, and P. Timms. 2008. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol. 1:116130. PubMed CrossRef
48. Hansen, J.,, K. T. Jensen,, F. Follmann,, E. M. Agger,, M. Theisen,, and P. Andersen. 2008. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. J. Infect. Dis. 198:758767. PubMed CrossRef
49. Herbert, J.,, and J. Coffin. 2008. Reducing patient risk for human papillomavirus infection and cervical cancer. J. Am. Osteopathol. Assoc. 108:6570. PubMed
50. Hobolt-Pedersen, A. S.,, G. Christiansen,, E. Timmerman,, K. Gevaert,, and S. Birkelund. 2009. Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. FEMS Immunol. Med. Microbiol. 57:4658. PubMed CrossRef
51. Holland, M. J.,, R. L. Bailey,, D. J. Conway,, F. Culley,, G. Miranpuri,, G. I. Byrne,, H. C. Whittle,, and D. C. Mabey. 1996. T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clin. Exp. Immunol. 105:429435. PubMed
52. Holland, M. J.,, D. J. Conway,, T. J. Blanchard,, O. M. Mahdi,, R. L. Bailey,, H. C. Whittle,, and D. C. Mabey. 1997. Synthetic peptides based on Chlamydia trachomatis antigens identify cytotoxic T lymphocyte responses in subjects from a trachoma-endemic population. Clin. Exp. Immunol. 107:4449. PubMed
53. Huang, Z.,, Y. Feng,, D. Chen,, X. Wu,, S. Huang,, X. Wang,, X. Xiao,, W. Li,, N. Huang,, L. Gu,, G. Zhong,, and J. Chai. 2008. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 4:529542. PubMed CrossRef
54. Huh, W. K. 2009. Human papillomavirus infection: a concise review of natural history. Obstet. Gynecol. 114:139143. PubMed CrossRef
55. Ifere, G. O.,, Q. He,, J. U. Igietseme,, G. A. Ananaba,, D. Lyn,, W. Lubitz,, K. L. Kellar,, C. M. Black,, and F. O. Eko. 2007. Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. J. Microbiol. Immunol. Infect. 40:188200. PubMed
56. Igietseme, J. U.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Moore,, T. Belay,, F. O. Eko,, D. Lyn,, and C. M. Black. 2000. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J. Immunol. 164:42124219. PubMed
57. Igietseme, J. U.,, Q. He,, K. Joseph,, F. O. Eko,, D. Lyn,, G. Ananaba,, A. Campbell,, C. Bandea,, and C. M. Black. 2009. Role of T lymphocytes in the pathogenesis of Chlamydia disease. J. Infect. Dis. 200:926934. PubMed CrossRef
58. Igietseme, J. U.,, D. M. Magee,, D. M. Williams,, and R. G. Rank. 1994. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect. Immun. 62:51955197. PubMed
59. Igietseme, J. U.,, and A. Murdin. 2000. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect. Immun. 68:67986806. PubMed CrossRef
60. Igietseme, J. U.,, K. H. Ramsey,, D. M. Magee,, D. M. Williams,, T. J. Kincy,, and R. G. Rank. 1993. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg. Immunol. 5:317324. PubMed
61. Imtiaz, M. T.,, J. T. Distelhorst,, J. H. Schripsema,, I. M. Sigar,, J. N. Kasimos,, S. R. Lacy,, and K. H. Ramsey. 2007. A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes Infect. 9:15611566. PubMed CrossRef
62. Ito, J. I.,, and J. M. Lyons. 1999. Role of gamma interferon in controlling murine chlamydial genital tract infection. Infect. Immun. 67:55185521. PubMed
63. Johansson, M.,, K. Schon,, M. Ward,, and N. Lycke. 1997. Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect. Immun. 65:10321044. PubMed
64. Johnson, R. M. 2004. Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection include interleukin-12-p70 secretion. Infect. Immun. 72:39513960. PubMed CrossRef
65. Karunakaran, K. P.,, J. Rey-Ladino,, N. Stoynov,, K. Berg,, C. Shen,, X. Jiang,, B. R. Gabel,, H. Yu,, L. J. Foster,, and R. C. Brunham. 2008. Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J. Immunol. 180:24592465. PubMed
66. Kawa, D. E.,, J. Schachter,, and R. S. Stephens. 2004. Immune response to the Chlamydia trachomatis outer membrane protein PorB. Vaccine 22:42824286. PubMed CrossRef
67. Kawa, D. E.,, and R. S. Stephens. 2002. Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity. J. Immunol. 168:51845191. PubMed
68. Kim, S. K.,, M. Angevine,, K. Demick,, L. Ortiz,, R. Rudersdorf,, D. Watkins,, and R. DeMars. 1999. Induction of HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein of Chlamydia trachomatis in human genital tract infections. J. Immunol. 162:68556866. PubMed
69. Kim, S. K.,, and R. DeMars. 2001. Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. Curr. Opin. Immunol. 13:429436. PubMed
70. Kimani, J.,, I. W. Maclean,, J. J. Bwayo,, K. MacDonald,, J. Oyugi,, G. M. Maitha,, R. W. Peeling,, M. Cheang,, N. J. Nagelkerke,, F. A. Plummer,, and R. C. Brunham. 1996. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J. Infect. Dis. 173:14371444. PubMed CrossRef
71. Kinnunen, A.,, P. Molander,, R. Morrison,, M. Lehtinen,, R. Karttunen,, A. Tiitinen,, J. Paavonen,, and H. M. Surcel. 2002. Chlamydial heat shock protein 60-specific T cells in inflamed salpingeal tissue. Fertil. Steril. 77:162166. PubMed
72. Kiselev, A. O.,, W. E. Stamm,, J. R. Yates,, and M. F. Lampe. 2007. Expression, processing, and localization of PmpD of Chlamydia trachomatis serovar L2 during the chlamydial developmental cycle. PLoS One 2:e568. PubMed CrossRef
73. LaVerda, D.,, L. N. Albanese,, P. E. Ruther,, S. G. Morrison,, R. P. Morrison,, K. A. Ault,, and G. I. Byrne. 2000. Seroreactivity to Chlamydia trachomatis Hsp10 correlates with severity of human genital tract disease. Infect. Immun. 68:303309. PubMed CrossRef
74. Lee, H. Y.,, J. H. Schripsema,, I. M. Sigar,, S. R. Lacy,, J. N. Kasimos,, C. M. Murray,, and K. H. Ramsey. 2010a. A role for CXC chemokine receptor-2 in the pathogenesis of urogenital Chlamydia muridarum infection in mice. FEMS Immunol. Med. Microbiol. 60:4956. PubMed CrossRef
75. Lee, H. Y.,, J. H. Schripsema,, I. M. Sigar,, C. M. Murray,, S. R. Lacy,, and K. H. Ramsey. 2010b. A link between neutrophils and chronic disease manifestations of Chlamydia muridarum urogenital infection of mice. FEMS Immunol. Med. Microbiol. 59:108116. PubMed CrossRef
76. Li, W.,, M. N. Guentzel,, J. Seshu,, G. Zhong,, A. K. Murthy,, and B. P. Arulanandam. 2007. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Clin. Vaccine Immunol. 14:15371544. PubMed CrossRef
77. Li, W.,, A. K. Murthy,, M. N. Guentzel,, J. P. Chambers,, T. G. Forsthuber,, J. Seshu,, G. Zhong,, and B. P. Arulanandam. 2010. Immunization with a combination of integral chlamydial antigens and a defined secreted protein induces robust immunity against genital chlamydial challenge. Infect. Immun. 78:39423949. PubMed CrossRef
78. Li, W.,, A. K. Murthy,, M. N. Guentzel,, J. Seshu,, T. G. Forsthuber,, G. Zhong,, and B. P. Arulanandam. 2008a. Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J. Immunol. 180:33753382. PubMed
79. Li, Z.,, C. Chen,, D. Chen,, Y. Wu,, Y. Zhong,, and G. Zhong. 2008b. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect. Immun. 76:27462757. PubMed CrossRef
80. Li, Z.,, D. Chen,, Y. Zhong,, S. Wang,, and G. Zhong. 2008c. The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect. Immun. 76:34153428. PubMed CrossRef
81. Li, Z.,, S. Wang,, Y. Wu,, G. Zhong,, and D. Chen. 2008d. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Sci. China C 51:973980. PubMed CrossRef
82. Longbottom, D.,, and M. Livingstone. 2006. Vaccination against chlamydial infections of man and animals. Vet. J. 171:263275. PubMed CrossRef
83. Mabey, D. C.,, M. J. Holland,, N. D. Viswalingam,, B. T. Goh,, S. Estreich,, A. Macfarlane,, H. M. Dockrell,, and J. D. Treharne. 1991. Lymphocyte proliferative responses to chlamydial antigens in human chlamydial eye infections. Clin. Exp. Immunol. 86:3742. PubMed
84. MacMillan, L.,, G. O. Ifere,, Q. He,, J. U. Igietseme,, K. L. Kellar,, D. M. Okenu,, and F. O. Eko. 2007. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol. Med. Microbiol. 49:4655. PubMed CrossRef
85. Masson, P. L.,, J. F. Heremans,, and J. Ferin. 1969. Clinical importance of the biochemical changes in the female genital tract. I. Studies on the proteins of cervical mucus. Int. J. Fertil. 14:17. PubMed
86. Maxion, H. K.,, and K. A. Kelly. 2002. Chemokine expression patterns differ within anatomically distinct regions of the genital tract during Chlamydia trachomatis infection. Infect. Immun. 70:15381546. PubMed CrossRef
87. McClarty, G.,, H. D. Caldwell,, and D. E. Nelson. 2007. Chlamydial interferon gamma immune evasion influences infection tropism. Curr. Opin. Microbiol. 10:4751. PubMed CrossRef
88. McNeilly, C. L.,, K. W. Beagley,, R. J. Moore,, V. Haring,, P. Timms,, and L. M. Hafner. 2007. Expression library immunization confers partial protection against Chlamydia muridarum genital infection. Vaccine 25:26432655. PubMed CrossRef
89. Moelleken, K.,, and J. H. Hegemann. 2008. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol. Microbiol. 67:403419. PubMed CrossRef
90. Molina, D. M.,, S. Pal,, M. A. Kayala,, A. Teng,, P. J. Kim,, P. Baldi,, P. L. Felgner,, X. Liang,, and L. M. de la Maza. 2010. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 28:30143024. PubMed CrossRef
91. Moore, T.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Belay,, F. O. Eko,, and J. U. Igietseme. 2002. Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology 105:213221. PubMed CrossRef
92. Moore, T.,, C. O. Ekworomadu,, F. O. Eko,, L. MacMillan,, K. Ramey,, G. A. Ananaba,, J. W. Patrickson,, P. R. Nagappan,, D. Lyn,, C. M. Black,, and J. U. Igietseme. 2003. Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J. Infect. Dis. 188:617624. PubMed CrossRef
93. Morrison, R. P.,, R. J. Belland,, K. Lyng,, and H. D. Caldwell. 1989a. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J. Exp. Med. 170:12711283. PubMed
94. Morrison, R. P.,, and H. D. Caldwell. 2002. Immunity to murine chlamydial genital infection. Infect. Immun. 70:27412751. PubMed CrossRef
95. Morrison, R. P.,, K. Feilzer,, and D. B. Tumas. 1995. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect. Immun. 63:46614668. PubMed
96. Morrison, R. P.,, K. Lyng,, and H. D. Caldwell. 1989b. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J. Exp. Med. 169:663675. PubMed
97. Morrison, S. G.,, and R. P. Morrison. 2001. Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4+ and CD8+ T cells. Infect. Immun. 69:26432649. PubMed CrossRef
98. Morrison, S. G.,, and R. P. Morrison. 2005. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 175:75367542. PubMed
99. Morrison, S. G.,, H. Su,, H. D. Caldwell,, and R. P. Morrison. 2000. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infect. Immun. 68:69796987. PubMed CrossRef
100. Murdin, A. D.,, P. Dunn,, R. Sodoyer,, J. Wang,, J. Caterini,, R. C. Brunham,, L. Aujame,, and R. Oomen. 2000. Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis. 181(Suppl. 3):S544S551. PubMed CrossRef
101. Murphey, C.,, A. K. Murthy,, P. A. Meier,, G. M. Neal,, G. Zhong,, and B. P. Arulanandam. 2006. The protective efficacy of chlamydial protease-like activity factor vaccination is dependent upon CD4+ T cells. Cell. Immunol. 242:110117. PubMed CrossRef
102. Murthy, A. K.,, B. K. Chaganty,, W. Li,, M. N. Guentzel,, J. P. Chambers,, J. Seshu,, G. Zhong,, and B. P. Arulanandam. 2009a. A limited role for antibody in protective immunity induced by rCPAF and CpG vaccination against primary genital Chlamydia muridarum challenge. FEMS Immunol. Med. Microbiol. 55:271279. PubMed CrossRef
103. Murthy, A. K.,, J. P. Chambers,, P. A. Meier,, G. Zhong,, and B. P. Arulanandam. 2007. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect. Immun. 75:666676. PubMed CrossRef
104. Murthy, A. K.,, Y. Cong,, C. Murphey,, M. N. Guentzel,, T. G. Forsthuber,, G. Zhong,, and B. P. Arulanandam. 2006. Chlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA-DR4 allele. Infect. Immun. 74:67226729. PubMed CrossRef
105. Murthy, A. K.,, M. N. Guentzel,, G. Zhong,, and B. P. Arulanandam. 2009b. Chlamydial protease-like activity factor—insights into immunity and vaccine development. J. Reprod. Immunol. 83:179184. PubMed CrossRef
106. Murthy, A. K.,, W. Li,, M. N. Guentzel,, G. Zhong,, and B. P. Arulanandam. 2011. Vaccination with the defined chlamydial secreted protein CPAF induces robust protection against female infertility following repeated genital chlamydial challenge. Vaccine 29:25192522. PubMed CrossRef
107. Nelson, D. E.,, D. P. Virok,, H. Wood,, C. Roshick,, R. M. Johnson,, W. M. Whitmire,, D. D. Crane,, O. Steele-Mortimer,, L. Kari,, G. McClarty,, and H. D. Caldwell. 2005. Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc. Natl. Acad. Sci. USA 102:1065810663. PubMed CrossRef
108. Nichols, R. L.,, S. D. Bell, Jr.,, E. S. Murray,, N. A. Haddad,, and A. A. Bobb. 1966. Studies on trachoma. V. Clinical observations in a field trial of bivalent trachoma vaccine at three dosage levels in Saudi Arabia. Am. J. Trop. Med. Hyg. 15:639647. PubMed
109. O’Connell, C. M.,, Y. M. Abdelrahman,, E. Green,, H. K. Darville,, K. Saira,, B. Smith,, T. Darville,, A. M. Scurlock,, C. R. Meyer,, and R. J. Belland. 2011. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect. Immun. 79:10441056. PubMed CrossRef
110. O’Connell, C. M.,, R. R. Ingalls,, C. W. Andrews, Jr.,, A. M. Scurlock,, and T. Darville. 2007. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J. Immunol. 179:40274034. PubMed
111. Olsen, A. W.,, M. Theisen,, D. Christensen,, F. Follmann,, and P. Andersen. 2010. Protection against Chlamydia promoted by a subunit vaccine (CTH1) compared with a primary intranasal infection in a mouse genital challenge model. PLoS One 5:e10768. PubMed CrossRef
112. Pal, S.,, J. Bravo,, E. M. Peterson,, and L. M. de la Maza. 2008. Protection of wild-type and severe combined immunodeficiency mice against an intranasal challenge by passive immunization with monoclonal antibodies to the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Infect. Immun. 76:55815587. PubMed CrossRef
113. Pal, S.,, E. M. Peterson,, and L. M. de la Maza. 2005. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect. Immun. 73:81538160. PubMed CrossRef
114. Pal, S.,, I. Theodor,, E. M. Peterson,, and L. M. de la Maza. 1997a. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect. Immun. 65:33613369. PubMed
115. Pal, S.,, I. Theodor,, E. M. Peterson,, and L. M. de la Maza. 1997b. Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine 15:575582. PubMed
116. Patton, D. L.,, Y. T. Sweeney,, and C. C. Kuo. 1994. Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J. Infect. Dis. 169:680683. PubMed CrossRef
117. Peeling, R. W.,, J. Kimani,, F. Plummer,, I. Maclean,, M. Cheang,, J. Bwayo,, and R. C. Brunham. 1997. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J. Infect. Dis. 175:11531158. PubMed CrossRef
118. Penttila, T.,, A. Tammiruusu,, P. Liljestrom,, M. Sarvas,, P. H. Makela,, J. M. Vuola,, and M. Puolakkainen. 2004. DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 22:33863394. PubMed CrossRef
119. Penttila, T.,, J. M. Vuola,, V. Puurula,, M. Anttila,, M. Sarvas,, N. Rautonen,, P. H. Makela,, and M. Puolakkainen. 2000. Immunity to Chlamydia pneumoniae induced by vaccination with DNA vectors expressing a cytoplasmic protein (Hsp60) or outer membrane proteins (MOMP and Omp2). Vaccine 19:12561265. PubMed
120. Perry, L. L.,, K. Feilzer,, and H. D. Caldwell. 1997. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J. Immunol. 158:33443352. PubMed
121. Perry, L. L.,, K. Feilzer,, S. Hughes,, and H. D. Caldwell. 1999a. Clearance of Chlamydia trachomatis from the murine genital mucosa does not require perforin-mediated cytolysis or Fas-mediated apoptosis. Infect. Immun. 67:13791385. PubMed
122. Perry, L. L.,, H. Su,, K. Feilzer,, R. Messer,, S. Hughes,, W. Whitmire,, and H. D. Caldwell. 1999b. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J. Immunol. 162:35413548. PubMed
123. Pinchuk, I.,, B. C. Starcher,, B. Livingston,, A. Tvninnereim,, S. Wu,, E. Appella,, J. Sidney,, A. Sette,, and B. Wizel. 2005. A CD8+ T cell heptaepitope minigene vaccine induces protective immunity against Chlamydia pneumoniae. J. Immunol. 174:57295739. PubMed
124. Pirbhai, M.,, F. Dong,, Y. Zhong,, K. Z. Pan,, and G. Zhong. 2006. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J. Biol. Chem. 281:3149531501. PubMed CrossRef
125. Punnonen, R.,, P. Terho,, V. Nikkanen,, and O. Meurman. 1979. Chlamydial serology in infertile women by immunofluorescence. Fertil. Steril. 31:656659. PubMed
126. Ramsey, K. H.,, and R. G. Rank. 1990. The role of T cell subpopulations in resolution of chlamydial genital infection in mice, p. 241244. In Proceedings of the 7th International Symposium on Human Chlamydial Infection. Cambridge University Press, New York, NY.
127. Rank, R. G. 1994. Animal models for urogenital infections. Methods Enzymol. 235:8393. PubMed
128. Rank, R. G.,, and A. L. Barron. 1983. Humoral immune response in acquired immunity to chlamydial genital infection of female guinea pigs. Infect. Immun. 39:463465. PubMed
129. Rank, R. G.,, and B. E. Batteiger. 1989. Protective role of serum antibody in immunity to chlamydial genital infection. Infect. Immun. 57:299301. PubMed
130. Rank, R. G.,, A. K. Bowlin,, S. Cane,, H. Shou,, Z. Liu,, U. M. Nagarajan,, and P. M. Bavoil. 2009. Effect of Chlamydiaphage phiCPG1 on the course of conjunctival infection with “Chlamydia caviae” in guinea pigs. Infect. Immun. 77:12161221. PubMed CrossRef
131. Rank, R. G.,, K. H. Ramsey,, E. A. Pack,, and D. M. Williams. 1992. Effect of gamma interferon on resolution of murine chlamydial genital infection. Infect. Immun. 60:44274429. PubMed
132. Rank, R. G.,, H. J. White,, and A. L. Barron. 1979. Humoral immunity in the resolution of genital infection in female guinea pigs infected with the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 26:573579. PubMed
133. Rasmussen, S. J.,, L. Eckmann,, A. J. Quayle,, L. Shen,, Y. X. Zhang,, D. J. Anderson,, J. Fierer,, R. S. Stephens,, and M. F. Kagnoff. 1997. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Investig. 99:7787. PubMed CrossRef
134. Roan, N. R.,, and M. N. Starnbach. 2006. Antigen-specific CD8+ T cells respond to Chlamydia trachomatis in the genital mucosa. J. Immunol. 177:79747979. PubMed
135. Rockey, D. D.,, D. Grosenbach,, D. E. Hruby,, M. G. Peacock,, R. A. Heinzen,, and T. Hackstadt. 1997. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol. Microbiol. 24:217228. PubMed CrossRef
136. Rockey, D. D.,, R. A. Heinzen,, and T. Hackstadt. 1995. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol. Microbiol. 15:617626. PubMed CrossRef
137. Rockey, D. D.,, J. Wang,, L. Lei,, and G. Zhong. 2009. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev. Vaccines 8:13651377. PubMed CrossRef
138. Rodriguez, A.,, M. Rottenberg,, A. Tjarnlund,, and C. Fernandez. 2006. Immunoglobulin A and CD8 T-cell mucosal immune defenses protect against intranasal infection with Chlamydia pneumoniae. Scand. J. Immunol. 63:177183. PubMed CrossRef
139. Sabet, S. F.,, J. Simmons,, and H. D. Caldwell. 1984. Enhancement of Chlamydia trachomatis infectious progeny by cultivation of HeLa 229 cells treated with DEAE-dextran and cycloheximide. J. Clin. Microbiol. 20:217222. PubMed
140. Sanchez-Campillo, M.,, L. Bini,, M. Comanducci,, R. Raggiaschi,, B. Marzocchi,, V. Pallini,, and G. Ratti. 1999. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 20:22692279. PubMed CrossRef
141. Schachter, J.,, and C. R. Dawson. 1978. Human Chlamydial Infections. PSG Publishing Co. Inc., Littleton, MA.
142. Scurlock, A. M.,, L. C. Frazer,, C. W. Andrews, Jr.,, C. M. O’Connell,, I. P. Foote,, S. L. Bailey,, K. Chandra-Kuntal,, J. K. Kolls,, and T. Darville. 2011. Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect. Immun. 79:13491362. PubMed CrossRef
143. Sharma, J.,, A. M. Bosnic,, J. M. Piper,, and G. Zhong. 2004. Human antibody responses to a Chlamydia-secreted protease factor. Infect. Immun. 72:71647171. PubMed CrossRef
144. Sharma, J.,, F. Dong,, M. Pirbhai,, and G. Zhong. 2005. Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis. Infect. Immun. 73:44144419. PubMed CrossRef
145. Sharma, J.,, Y. Zhong,, F. Dong,, J. M. Piper,, G. Wang,, and G. Zhong. 2006. Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. Infect. Immun. 74:14901499. PubMed CrossRef
146. Shaw, A. C.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, J. Vandekerckhove,, M. R. Larsen,, P. Roepstorff,, A. Holm,, G. Christiansen,, and S. Birkelund. 2002. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2:164186. PubMed
147. Starnbach, M. N.,, W. P. Loomis,, P. Ovendale,, D. Regan,, B. Hess,, M. R. Alderson,, and S. P. Fling. 2003. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. J. Immunol. 171:47424749. PubMed
148. Stemke-Hale, K.,, B. Kaltenboeck,, F. J. DeGraves,, K. F. Sykes,, J. Huang,, C. H. Bu,, and S. A. Johnston. 2005. Screening the whole genome of a pathogen in vivo for individual protective antigens. Vaccine 23:30163025. PubMed CrossRef
149. Stephens, R. S.,, K. Koshiyama,, E. Lewis,, and A. Kubo. 2001. Heparin-binding outer membrane protein of chlamydiae. Mol. Microbiol. 40:691699. PubMed CrossRef
150. Stuart, E. S.,, P. B. Wyrick,, J. Choong,, S. B. Stoler,, and A. B. MacDonald. 1991. Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding. Immunology 74:740747. PubMed
151. Su, H.,, and H. D. Caldwell. 1995. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect. Immun. 63:33023308. PubMed
152. Swanson, K. A.,, L. D. Taylor,, S. D. Frank,, G. L. Sturdevant,, E. R. Fischer,, J. H. Carlson,, W. M. Whitmire,, and H. D. Caldwell. 2009. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect. Immun. 77:508516. PubMed CrossRef
153. Tammiruusu, A.,, T. Penttila,, R. Lahesmaa,, M. Sarvas,, M. Puolakkainen,, and J. M. Vuola. 2007. Intranasal administration of chlamydial outer protein N (CopN) induces protection against pulmonary Chlamydia pneumoniae infection in a mouse model. Vaccine 25:283290. PubMed CrossRef
154. Thomas, N. S.,, M. Lusher,, C. C. Storey,, and I. N. Clarke. 1997. Plasmid diversity in Chlamydia. Microbiology 143(Pt. 6):18471854. PubMed CrossRef
155. Ting, L. M.,, R. C. Hsia,, C. G. Haidaris,, and P. M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63:36003608. PubMed
156. Toye, B.,, C. Laferriere,, P. Claman,, P. Jessamine,, and R. Peeling. 1993. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J. Infect. Dis. 168:12361240. PubMed CrossRef
157. Tseng, C. T.,, and R. G. Rank. 1998. Role of NK cells in early host response to chlamydial genital infection. Infect. Immun. 66:58675875. PubMed
158. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1996. Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with Chlamydia trachomatis. J. Infect. Dis. 174:647650. PubMed CrossRef
159. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1997. Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect. Immun. 65:21752182. PubMed
160. Villeneuve, A.,, L. Brossay,, G. Paradis,, and J. Hebert. 1994. Determination of neutralizing epitopes in variable domains I and IV of the major outer-membrane protein from Chlamydia trachomatis serovar K. Microbiology 140(Pt. 9):24812487. PubMed CrossRef
161. Wang, J.,, Y. Zhang,, C. Lu,, L. Lei,, P. Yu,, and G. Zhong. 2010. A genome-wide profiling of the humoral immune response to Chlamydia trachomatis infection reveals vaccine candidate antigens expressed in humans. J. Immunol. 185:16701680. PubMed CrossRef
162. Wang, S.,, Y. Fan,, R. C. Brunham,, and X. Yang. 1999. IFN-gamma knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection. Eur. J. Immunol. 29:37823792. PubMed
163. Wang, S. P.,, and J. T. Grayston. 1967. Pannus with experimental trachoma and inclusion conjunctivitis agent infection of Taiwan monkeys. Am. J. Ophthalmol. 63(Suppl.):11331145. PubMed
164. Westrom, L.,, R. Joesoef,, G. Reynolds,, A. Hagdu,, and S. E. Thompson. 1992. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex. Transm. Dis. 19:185192. PubMed
165. Whittum-Hudson, J. A.,, L. L. An,, W. M. Saltzman,, R. A. Prendergast,, and A. B. MacDonald. 1996. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat. Med. 2:11161121. PubMed
166. Whittum-Hudson, J. A.,, D. Rudy,, H. Gerard,, G. Vora,, E. Davis,, P. K. Haller,, S. M. Prattis,, A. P. Hudson,, W. M. Saltzman,, and E. S. Stuart. 2001. The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis. Vaccine 19:40614071. PubMed
167. Williams, D. M.,, B. G. Grubbs,, K. Kelly,, E. Pack,, and R. G. Rank. 1996. Role of gamma-delta T cells in murine Chlamydia trachomatis infection. Infect. Immun. 64:39163919. PubMed
168. Wizel, B.,, B. C. Starcher,, B. Samten,, Z. Chroneos,, P. F. Barnes,, J. Dzuris,, Y. Higashimoto,, E. Appella,, and A. Sette. 2002. Multiple Chlamydia pneumoniae antigens prime CD8+ Tc1 responses that inhibit intracellular growth of this vacuolar pathogen. J. Immunol. 169:25242535. PubMed
169. Wolf, K.,, E. Fischer,, D. Mead,, G. Zhong,, R. Peeling,, B. Whitmire,, and H. D. Caldwell. 2001. Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect. Immun. 69:30823091. PubMed CrossRef
170. Woolridge, R. L.,, J. T. Grayston,, I. H. Chang,, C. Y. Yang,, and K. H. Cheng. 1967. Long-term follow-up of the initial (1959-1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol. 63(Suppl.):16501655. PubMed
171. Yang, X.,, J. Gartner,, L. Zhu,, S. Wang,, and R. C. Brunham. 1999. IL-10 gene knockout mice show enhanced Th1-like protective immunity and absent granuloma formation following Chlamydia trachomatis lung infection. J. Immunol. 162:10101017. PubMed
172. Yu, H.,, K. P. Karunakaran,, I. Kelly,, C. Shen,, X. Jiang,, L. J. Foster,, and R. C. Brunham. 2011. Immunization with live and dead Chlamydia muridarum induces different levels of protective immunity in a murine genital tract model: correlation with MHC class II peptide presentation and multifunctional Th1 cells. J. Immunol. 186:36153621. PubMed CrossRef
173. Yu, H. H.,, E. G. Di Russo,, M. A. Rounds,, and M. Tan. 2006. Mutational analysis of the promoter recognized by Chlamydia and Escherichia coli sigma(28) RNA polymerase. J. Bacteriol. 188:55245531. PubMed CrossRef
174. Zhong, G.,, and R. C. Brunham. 1992. Antibody responses to the chlamydial heat shock proteins Hsp60 and Hsp70 are H-2 linked. Infect. Immun. 60:31433149. PubMed
175. Zhong, G.,, P. Fan,, H. Ji,, F. Dong,, and Y. Huang. 2001. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193:935942. PubMed CrossRef
176. Zhong, G.,, T. Fan,, and L. Liu. 1999. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J. Exp. Med. 189:19311938. PubMed CrossRef
177. Zhong, G.,, L. Liu,, T. Fan,, P. Fan,, and H. Ji. 2000. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J. Exp. Med. 191:15251534. PubMed CrossRef
178. Zomorodipour, A.,, and S. G. Andersson. 1999. Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett. 452:1115. PubMed

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error