1887

Chapter 15 : Chlamydial Genetics: Decades of Effort, Very Recent Successes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chlamydial Genetics: Decades of Effort, Very Recent Successes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap15-2.gif

Abstract:

This chapter addresses the challenging aspects of the chlamydial system and points out some avenues that can be exploited, perhaps opening the door to technologies for routine genetic modification of chlamydiae. It discusses the challenges in transforming chlamydiae. The rigid, extensively disulfide cross-linked outer membrane complex of the metabolically inactive elementary bodies (EBs) may hinder the introduction of exogenous DNA into the developmental form. The chapter then focuses on genomics and our understanding of natural lateral gene transfer in chlamydiae. The relative abundance of candidate gene transfer systems in members of the suggests that contemporary spp. evolved into their genetically intractable niche by reductive evolution from a genetically amenable ancestor. The chapter addresses the surprising finding that chlamydiae have the tools to naturally acquire and integrate homologous DNA into their genome as long as the DNA is donated by a related chlamydial strain. It reviews exciting new approaches that are being used to genetically manipulate the chlamydial genome and discusses how these efforts have helped one to understand different aspects of chlamydial biology. The chemical mutagenesis could be used to generate mutant chlamydial strains. A report was published describing the first stable transformation of chlamydiae by an exogenous plasmid, leading to replication of antibiotic-resistant and green fluorescent protein-expressing . The experimental studies demonstrate that chlamydiae can share DNA, can be transformed, and can incorporate introduced DNA into the genome via homologous recombination.

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15

Key Concept Ranking

Gene Expression and Regulation
0.5631828
Type IV Secretion Systems
0.41399363
Genetic Elements
0.40897796
0.5631828
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model for the integration of the tetracycline resistance gene into the -like gene in the genome. (A) The Tet(C) island of contains sequences that are very similar to sequences from other fish bacteria. R and cs605, which is composed of 200 and 1341 insertion sequences, are similar to sequences in HLHK5. Adjacent genes in the Tet(C) island are highly similar to plasmid maintenance genes from pRAS3.2, which is a plasmid from (B) The presence of this naturally occurring island in was then exploited as a tool for laboratory-based recombination experiments similar to those conducted by Demars and colleagues (Binet and Maurelli, 2009). rRNA operons in panel B are indicated by half-width open reading frame boxes. doi:10.1128/9781555817329.ch15.f1

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The reverse-genetic approach used to generate targeted mutations in the operon. (A) Flowchart for generating and screening libraries. (B) Summary of the mutations identified in the analysis of the library of subpopulations. CEL I digestion of the 24 subpopulations harboring mutations are shown on the gels in the order of their genomic locations. The and open reading frames are illustrated by the horizontal arrows. The complete sets of SNPs identified by capillary sequencing are indicated below each sample. Locations of SNPs are indicated in the operon above the gel image. Genomic scale and the region corresponding to the PCR amplicon are also shown. The nonsense mutation in at position 991 (R331*) truncates the open reading frame by 186 bp. Used by permission of and the author. doi:10.1128/9781555817329.ch15.f2

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Gene organization and plasmid constructs for the transformation vectors used by Binet and Maurelli. Shown are the regions of the ribosomal operons that were present in each of the transformation vectors used in the experiments and the base pair changes in the 16S and 23S rRNA genes that were used as markers in candidate transformants. Kasugamycin (Ksm) resistance was generated by a base pair change at position 794, and spectinomycin (Spc) resistance was associated with a change at position 1192. Two silent mutations were also present in some of the transformation vectors used by these authors. Note that one of the silent mutations (position 1071) allowed the screening of candidate transformants by the removal of an Hpa1 site in PCR products. The primers used to screen for positives are also indicated. Used by permission of . doi:10.1128/9781555817329.ch15.f3

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Expression of the green fluorescent protein in cells transformed with a plasmid carrying . Untransformed L2/434/Bu (control) and L2/434/Bu transformed by pGFP::SW2 were grown on coverslips for two days prior to paraformaldehyde fixation and visualization by fluorescence microscopy. Panel A shows untransformed L2/434/Bu under white light (arrows indicate inclusions). Panel B is the same image, viewed in a fluorescence channel for visualization of GFP. Panel C shows L2/434/Bu transformed with plasmid pGFP::SW2 under white light, and panel D is the same field viewed by fluorescence. The scale bar in panel D represents 20 µm.

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817329.chap15
1. Albrecht, M.,, C. M. Sharma,, R. Reinhardt,, J. Vogel,, and T. Rudel. 2010. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38: 868 877. PubMed CrossRef
2. Andersen, A. A.,, and D. G. Rogers,. 1998. Resistance to tetracycline and sulfadiazine in swine C. trachomatis isolates, p. 313 316. In R. S. Stephens,, G. I. Byrne,, I. N. Clarke, et al. (ed.), Chlamydial Infections: Proceedings of the 9th International Symposium on Human Chlamydial Infection, Napa, California, June 1998. International Chlamydia Symposium, San Francisco, CA.
3. Barry, C. E., III,, T. J. Brickman,, and T. Hackstadt. 1993. Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol. Microbiol. 9: 273 283. PubMed CrossRef
4. Beare, P. A.,, D. Howe,, D. C. Cockrell,, A. Omsland,, B. Hansen,, and R. A. Heinzen. 2009. Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J. Bacteriol. 191: 1369 1381. PubMed CrossRef
5. Beare, P. A.,, K. M. Sandoz,, A. Omsland,, D. D. Rockey,, and R. A. Heinzen. 2011. Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front. Microbiol. 2: 97. PubMed CrossRef
6. Belland, R. J.,, D. E. Nelson,, D. Virok,, D. D. Crane,, D. Hogan,, D. Sturdevant,, W. L. Beatty,, and H. D. Caldwell. 2003. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc. Natl. Acad. Sci. USA 100: 15971 15976. PubMed CrossRef
7. Binet, R.,, and A. T. Maurelli. 2009. Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc. Natl. Acad. Sci. USA 106: 292 297. PubMed CrossRef
8. Brinkman, F. S.,, J. L. Blanchard,, A. Cherkasov,, Y. Av-Gay,, R. C. Brunham,, R. C. Fernandez,, B. B. Finlay,, S. P. Otto,, B. F. Ouellette,, P. J. Keeling,, A. M. Rose,, R. E. Hancock,, S. J. Jones,, and H. Greberg. 2002. Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res. 12: 1159 1167. PubMed CrossRef
9. Brunham, R.,, C. Yang,, I. Maclean,, J. Kimani,, G. Maitha,, and F. Plummer. 1994. Chlamydia trachomatis from individuals in a sexually transmitted disease core group exhibit frequent sequence variation in the major outer membrane protein ( omp1) gene. J. Clin. Investig. 94: 458 463. PubMed CrossRef
10. Burall, L. S.,, A. Rodolakis,, A. Rekiki,, G. S. Myers,, and P. M. Bavoil. 2009. Genomic analysis of an attenuated Chlamydia abortus live vaccine strain reveals defects in central metabolism and surface proteins. Infect. Immun. 77: 4161 4167. PubMed CrossRef
11. Caldwell, H. D.,, H. Wood,, D. Crane,, R. Bailey,, R. B. Jones,, D. Mabey,, I. Maclean,, Z. Mohammed,, R. Peeling,, C. Roshick,, J. Schachter,, A. W. Solomon,, W. E. Stamm,, R. J. Suchland,, L. Taylor,, S. K. West,, T. C. Quinn,, R. J. Belland,, and G. McClarty. 2003. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Investig. 111: 1757 1769. PubMed CrossRef
12. Chen, D.,, L. Lei,, C. Lu,, A. Galaleldeen,, P. J. Hart,, and G. Zhong. 2010. Characterization of pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J. Bacteriol. 192: 6017 6024. PubMed CrossRef
13. Clifton, D. R.,, C. A. Dooley,, S. S. Grieshaber,, R. A. Carabeo,, K. A. Fields,, and T. Hackstadt. 2005. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Infect. Immun. 73: 3860 3868. PubMed CrossRef
14. Collingro, A.,, P. Tischler,, T. Weinmaier,, T. Penz,, E. Heinz,, R. C. Brunham,, T. D. Read,, P. M. Bavoil,, K. Sachse,, S. Kahane,, M. G. Friedman,, T. Rattei,, G. S. Myers,, and M. Horn. 2011. Unity in variety—the pangenome of the chlamydiae. Mol. Biol. Evol. 28: 3253 3270. doi:10.1093/molbev/msr161. PubMed CrossRef
15. Demars, R.,, and J. Weinfurter. 2008. Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J. Bacteriol. 190: 1605 1614. PubMed CrossRef
16. Demars, R.,, J. Weinfurter,, E. Guex,, J. Lin,, and Y. Potucek. 2007. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J. Bacteriol. 189: 991 1003. PubMed CrossRef
17. Di Francesco, A.,, M. Donati,, M. Rossi,, S. Pignanelli,, A. Shurdhi,, R. Baldelli,, and R. Cevenini. 2008. Tetracycline-resistant Chlamydia suis isolates in Italy. Vet. Rec. 163: 251 252. PubMed
18. Dugan, J.,, A. A. Andersen,, and D. D. Rockey. 2007. Functional characterization of IScs605, an insertion element carried by tetracycline-resistant Chlamydia suis. Microbiology 153: 71 79. PubMed CrossRef
19. Dugan, J.,, D. D. Rockey,, L. Jones,, and A. A. Andersen. 2004. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob. Agents Chemother. 48: 3989 3995. PubMed CrossRef
20. Fehlner-Gardiner, C.,, C. Roshick,, J. H. Carlson,, S. Hughes,, R. J. Belland,, H. D. Caldwell,, and G. McClarty. 2002. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J. Biol. Chem. 277: 26893 26903. PubMed CrossRef
21. Gieffers, J.,, R. J. Belland,, W. Whitmire,, S. Ouellette,, D. Crane,, M. Maass,, G. I. Byrne,, and H. D. Caldwell. 2002. Isolation of Chlamydia pneumoniae clonal variants by a focus-forming assay. Infect. Immun. 70: 5827 5834. PubMed
22. Gomes, J. P.,, W. J. Bruno,, M. J. Borrego,, and D. Dean. 2004. Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer. J. Bacteriol. 186: 4295 4306. PubMed CrossRef
23. Gomes, J. P.,, W. J. Bruno,, A. Nunes,, N. Santos,, C. Florindo,, M. J. Borrego,, and D. Dean. 2007. Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots. Genome Res. 17: 50 60. PubMed CrossRef
24. Gomes, J. P.,, A. Nunes,, W. J. Bruno,, M. J. Borrego,, C. Florindo,, and D. Dean. 2006. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. J. Bacteriol. 188: 275 286. PubMed CrossRef
25. Greub, G.,, F. Collyn,, L. Guy,, and C. A. Roten. 2004. A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system. BMC Microbiol. 4: 48. PubMed CrossRef
26. Hackstadt, T.,, W. Baehr,, and Y. Ying. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl. Acad. Sci. USA 88: 3937 3941. PubMed
27. Hackstadt, T.,, T. J. Brickman,, C. E. Barry III,, and J. Sager. 1993. Diversity in the Chlamydia trachomatis histone homologue Hc2. Gene 132: 137 141. PubMed
28. Hackstadt, T.,, M. A. Scidmore-Carlson,, E. I. Shaw,, and E. R. Fischer. 1999. The Chlamydia trachomatis incA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1: 119 130. PubMed CrossRef
29. Heinzen, R. A.,, M. A. Scidmore,, D. D. Rockey,, and T. Hackstadt. 1996. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64: 796 809. PubMed
30. Horn, M.,, A. Collingro,, S. Schmitz-Esser,, C. L. Beier,, U. Purkhold,, B. Fartmann,, P. Brandt,, G. J. Nyakatura,, M. Droege,, D. Frishman,, T. Rattei,, H.-W. Mewes,, and M. Wagner. 2004. Illuminating the evolutionary history of chlamydiae. Science 304: 728 730. PubMed CrossRef
31. Hsia, R. C.,, L. M. Ting,, and P. M. Bavoil. 2000. Microvirus of Chlamydia psittaci strain guinea pig inclusion conjunctivitis: isolation and molecular characterization. Microbiology 146: 1651 1660. PubMed
32. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433. PubMed
33. Jeffrey, B. M.,, R. J. Suchland,, K. L. Quinn,, J. R. Davidson,, W. E. Stamm,, and D. D. Rockey. 2010. Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect. Immun. 78: 2544 2553. PubMed CrossRef
34. Kari, L.,, M. M. Goheen,, L. B. Randall,, L. D. Taylor,, J. H. Carlson,, W. M. Whitmire,, D. Virok,, K. Rajaram,, V. Endresz,, G. McClarty,, D. E. Nelson,, and H. D. Caldwell. 2011. Generation of targeted Chlamydia trachomatis null mutants. Proc. Natl. Acad. Sci. USA 108: 7189 7193. PubMed CrossRef
35. Karunakaran, K. P.,, J. F. Blanchard,, A. Raudonikiene,, C. Shen,, A. D. Murdin,, and R. C. Brunham. 2002. Molecular detection and seroepidemiology of the Chlamydia pneumoniae bacteriophage (PhiCpn1). J. Clin. Microbiol. 40: 4010 4014. PubMed CrossRef
36. Kim, J. F. 2001. Revisiting the chlamydial type III protein secretion system: clues to the origin of type III protein secretion. Trends Genet. 17: 65 69. PubMed
37. L'Abee-Lund, T. M.,, and H. Sorum. 2002. A global non-conjugative Tet C plasmid, pRAS3, from Aeromonas salmonicida. Plasmid 47: 172 181. PubMed
38. Lampe, M. F.,, R. J. Suchland,, and W. E. Stamm. 1993. Nucleotide sequence of the variable domains within the major outer membrane protein gene from serovariants of Chlamydia trachomatis. Infect. Immun. 61: 213 219. PubMed
39. Lau, S. K.,, G. K. Wong,, M. W. Li,, P. C. Woo,, and K. Y. Yuen. 2008. Distribution and molecular characterization of tetracycline resistance in Laribacter hongkongensis. J. Antimicrob. Chemother. 61: 488 497. PubMed CrossRef
40. Lenart, J.,, A. A. Andersen,, and D. D. Rockey. 2001. Growth and development of tetracycline-resistant Chlamydia suis. Antimicrob. Agents Chemother. 45: 2198 2203. PubMed CrossRef
41. Mabey, D. 2008. Trachoma: recent developments. Adv. Exp. Med. Biol. 609: 98 107. PubMed CrossRef
42. McCoy, A. J.,, N. E. Adams,, A. O. Hudson,, C. Gilvarg,, T. Leustek,, and A. T. Maurelli. 2006. L,L-Diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc. Natl. Acad. Sci. USA 103: 17909 17914. PubMed CrossRef
43. Millman, K. L.,, S. Tavare,, and D. Dean. 2001. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J. Bacteriol. 183: 5997 6008. PubMed CrossRef
44. Nguyen, B. D.,, and R. H. Valdivia. 2012. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc. Natl. Acad. Sci. USA 109: 1263 1268. PubMed CrossRef
45. Nunes, A.,, P. J. Nogueira,, M. J. Borrego,, and J. P. Gomes. 2008. Chlamydia trachomatis diversity viewed as a tissue-specific coevolutionary arms race. Genome Biol. 9: R153. PubMed CrossRef
46. O’Connell, C. M.,, and K. M. Nicks. 2006. A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152: 1601 1607. PubMed CrossRef
47. O’Connell, C. M. C.,, and A. T. Maurelli,. 1998. Introduction of foreign DNA into Chlamydia and stable expression of chloramphenicol resistance, p. 519 522. In R. S. Stephens,, G. I. Byrne,, I. N. Clarke,, and G. Christiansen (ed.), Chlamydial Infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, CA.
48. Olivares-Zavaleta, N.,, W. Whitmire,, D. Gardner,, and H. D. Caldwell. 2010. Immunization with the attenuated plasmidless Chlamydia trachomatis l2(25667r) strain provides partial protection in a murine model of female genitourinary tract infection. Vaccine 28: 1454 1462. PubMed CrossRef
49. Omsland, A.,, D. C. Cockrell,, E. R. Fischer,, and R. A. Heinzen. 2008. Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J. Bacteriol. 190: 3203 3212. PubMed CrossRef
50. Omsland, A.,, D. C. Cockrell,, D. Howe,, E. R. Fischer,, K. Virtaneva,, D. E. Sturdevant,, S. F. Porcella,, and R. A. Heinzen. 2009. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl. Acad. Sci. USA 106: 4430 4434. PubMed CrossRef
51. Perara, E.,, D. Ganem,, and J. N. Engel. 1992. A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone H1. Proc. Natl. Acad. Sci. USA 89: 2125 2129. PubMed
52. Read, T. D.,, R. C. Brunham,, C. Shen,, S. R. Gill,, J. F. Heidelberg,, O. White,, E. K. Hickey,, J. Peterson,, T. Utterback,, K. Berry,, S. Bass,, K. Linher,, J. Weidman,, H. Khouri,, B. Craven,, C. Bowman,, R. Dodson,, M. Gwinn,, W. Nelson,, R. DeBoy,, J. Kolonay,, G. McClarty,, S. L. Salzberg,, J. Eisen,, and C. M. Fraser. 2000. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28: 1397 1406. PubMed CrossRef
53. Rodolakis, A.,, and F. Bernard. 1984. Vaccination with temperature-sensitive mutant of Chlamydia psittaci against enzootic abortion of ewes. Vet. Rec. 114: 193 194. PubMed
54. Roshick, C.,, H. Wood,, H. D. Caldwell,, and G. McClarty. 2006. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Infect. Immun. 74: 225 238. PubMed CrossRef
55. Rupp, J.,, W. Solbach,, and J. Gieffers. 2007. Prevalence, genetic conservation and transmissibility of the Chlamydia pneumoniae bacteriophage (PhiCpn1). FEMS Microbiol. Lett. 273: 45 49. PubMed CrossRef
56. Russell, M.,, T. Darville,, K. Chandra-Kuntal,, B. Smith,, C. W. Andrews, Jr.,, and C. M. O’Connell. 2011. Infectivity acts as in vivo selection for maintenance of the chlamydial cryptic plasmid. Infect. Immun. 79: 98 107. PubMed CrossRef
57. Sauer, J. D.,, J. G. Shannon,, D. Howe,, S. F. Hayes,, M. S. Swanson,, and R. A. Heinzen. 2005. Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect. Immun. 73: 4494 4504. PubMed CrossRef
58. Setlow, P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15: 172 180. PubMed CrossRef
59. Shaw, A. C.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, J. Vandekerckhove,, M. R. Larsen,, P. Roepstorff,, A. Holm,, G. Christiansen,, and S. Birkelund. 2002. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164 186. PubMed
60. Stemple, D. L. 2004. TILLING—a high-throughput harvest for functional genomics. Nat. Rev. Genet. 5: 145 150. PubMed CrossRef
61. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759. PubMed CrossRef
62. Stewart, P. E.,, J. Hoff,, E. Fischer,, J. G. Krum,, and P. A. Rosa. 2004. Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl. Environ. Microbiol. 70: 5973 5979. PubMed CrossRef
63. Storey, C. C.,, M. Lusher,, and S. J. Richmond. 1989. Analysis of the complete nucleotide sequence of chp1, a phage which infects avian Chlamydia psittaci. J. Gen. Virol. 70( Pt. 12): 3381 3390. PubMed CrossRef
64. Subtil, A.,, A. Blocker,, and A. Dautry-Varsat. 2000. Type III secretion system in chlamydia species: identified members and candidates. Microbes Infect. 2: 367 369. PubMed
65. Suchland, R. J.,, L. O. Eckert,, S. E. Hawes,, and W. E. Stamm. 2003. Longitudinal assessment of infecting serovars of Chlamydia trachomatis in Seattle public health clinics: 1988-1996. Sex. Transm. Dis. 30: 357 361. PubMed
66. Suchland, R. J.,, B. M. Jeffrey,, M. Xia,, A. Bhatia,, H. G. Chu,, D. D. Rockey,, and W. E. Stamm. 2008. Identification of concomitant infection with Chlamydia trachomatis incA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations. Infect. Immun. 76: 5438 5446. PubMed CrossRef
67. Suchland, R. J.,, K. M. Sandoz,, B. M. Jeffrey,, W. E. Stamm,, and D. D. Rockey. 2009. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob. Agents Chemother. 53: 4604 4611. PubMed CrossRef
68. Suchland, R. J.,, and W. E. Stamm. 1991. Simplified microtiter cell culture method for rapid immunotyping of Chlamydia trachomatis. J. Clin. Microbiol. 29: 1333 1338. PubMed
69. Tam, J. E.,, C. H. Davis,, and P. B. Wyrick. 1994. Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation. Can. J. Microbiol. 40: 583 591. PubMed
70. Vidal, L.,, J. Pinsach,, G. Striedner,, G. Caminal,, and P. Ferrer. 2008. Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J. Biotechnol. 134: 127 136. PubMed CrossRef
71. Voth, D. E.,, P. A. Beare,, D. Howe,, U. M. Sharma,, G. Samoilis,, D. C. Cockrell,, A. Omsland,, and R. A. Heinzen. 2011. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J. Bacteriol. 193: 1493 1503. PubMed CrossRef
72. Wang, Y.,, S. Kahane,, L. T. Cutcliffe,, R. J. Skilton,, P. R. Lambden,, and I. N. Clarke. 2011. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathogens 7:e1002258 PubMed CrossRef

Tables

Generic image for table
TABLE 1

Antibiotics previously used to generate stable or transient resistance in spp.

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15
Generic image for table
TABLE 2

Antibiotic resistance markers that cannot be used for selection of transformants in

Citation: Jeffrey B, Rockey D, Maurelli A. 2012. Chlamydial Genetics: Decades of Effort, Very Recent Successes, p 334-351. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error