1887

Chapter 2 : Deep and Wide: Comparative Genomics of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Deep and Wide: Comparative Genomics of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap02-2.gif

Abstract:

This chapter focuses on comparative genomics of species, which are well-known human and animal pathogens that constitute the family . There were 33 chlamydial genome sequences produced by whole-genome shotgun (WGS) sequencing that are publicly available as complete or draft genomes in GenBank. The pangenome was first examined by a BLAST score ratio (BSR) analysis using a single representative of each of the eight sequenced species. The secreted effectors identified in are more divergent in other species than are the other selected virulence factors. One of the most significant features of the chlamydial plasticity zone (PZ) revealed by comparative analysis is the heterogeneity of the chlamydial cytotoxin (tox) across the . Nevertheless, the tox variation identified here is a prime example of the utility of comparative genomics for identifying novel interspecies genetic variation for further exploration. The chapter focuses further attention on the processes of gene decay and loss that are shaping the . The symptoms of human disease are variable, ranging from no clinical signs at all to severe systemic disease. is represented by 20 of the 33 genomes currently available, as befitting the most recognizable pathogen of the family , responsible for significant sexually transmitted disease morbidity and infectious blindness worldwide.

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2

Key Concept Ranking

Transcription Start Site
0.5485493
Outer Membrane Proteins
0.46792212
Multilocus Sequence Typing
0.4233731
Single Nucleotide Polymorphism
0.40639663
Chlamydia trachomatis
0.4029356
0.5485493
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Blast Score Ratio similarity profile of selected known virulence factors across the . The BSR for each protein was scored from 0.0 (black; least similar) to 1.0 (red; most similar) and hierarchically clustered by species (Pearson correlation with average linkage). doi:10.1128/9781555817329.ch2.f1

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of the chlamydial plasticity zone across nine representative genomes. Regions are ordered by size, with selected coding sequences highlighted in color. Asterisks denote selected genes with evidence of truncation or decay. doi:10.1128/9781555817329.ch2.f2

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

sSNP phylogenetic tree using all sequenced genomes. The number of separating synonymous SNPs (sSNPs) is given on each branch. High-quality sSNPs were identified by comparing the predicted genes on the closed genome of strain AR39 with the LPCoLN genome sequence. A polymorphic site was considered of high quality when its underlying sequence comprised at least three sequencing reads with an average Phred quality score greater than 30. sSNPs in CWL029, TW183, and J138 were similarly identified, although no assessment of quality could be made, as quality scores are not available for these genomes. Concatenated sSNPs for the individual isolates were further analyzed by the HKY85 method with 200 bootstrap replicates, and the results were used to generate an unrooted phylogenetic tree according to the PhyLM algorithms. doi:10.1128/9781555817329.ch2.f3

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Comparison of two regions of SNP accumulation in , with SNP location and type (synonymous, green; nonsynonymous, red). Grey highlighting shows SNP-associated CDS fragmentation. (A) The plasticity zone. LPCoLN gene region, ORF00689 to ORF00665; AR39 gene region, CP_0585 to CP_0622. (B) Pmp cluster. LPCoLN gene region, ORF00989 to ORF00956; AR39 gene region, CP_0280 to CP_0309. doi:10.1128/9781555817329.ch2.f4

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Circular representation of proteomic similarity across 19 genomes, relative to D, showing hot spots of gene variability. Data are from outermost circle to innermost. In the first two outermost circles, black tick marks represent predicted CDSs on the plus strand of 6BC and the minus strand, respectively. The following two circles plot %GC and GC skew as histograms. The following circle plots the positions of proteins that are present and highly conserved (red; BSR, >0.8) across all genomes. Each subsequent circle shows the positions of variable or unique proteins only for each genome as labeled. Color coding is as follows: purple, the protein is present in <19 genomes (including the reference); green, protein is present in ≤10 genomes; blue, protein is present in ≤5 genomes; orange, protein is present only in the reference; grey, protein is absent in the reference genome. strains, from the outermost circle moving toward the center, are as follows: A-HAR-13, B-TZA828OT, B-Jali20OT, D-EC, D-LC, D-s2923, E-150, E-1103,?G-11074, G-9301, G-11222, G-9768, L2b-UCH-1proctitis, Sweden2, 434Bu, 6276, 6276s, 70, and 70s. doi:10.1128/9781555817329.ch2.f5

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817329.chap2
1. Albrecht, M.,, C. M. Sharma,, R. Reinhardt,, J. Vogel,, and T. Rudel. 2010. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38:868877. PubMed CrossRef
2. Andersen, A. A. 1991. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J. Clin. Microbiol. 29:707711. PubMed
3. Andersen, A. A. 1997. Two new serovars of Chlamydia psittaci from North American birds. J. Vet. Diagn. Investig. 9:159164. PubMed
4. Azuma, Y.,, H. Hirakawa,, A. Yamashita,, Y. Cai,, M. A. Rahman,, H. Suzuki,, S. Mitaku,, H. Toh,, S. Goto,, T. Murakami,, K. Sugi,, H. Hayashi,, H. Fukushi,, M. Hattori,, S. Kuhara,, and M. Shirai. 2006. Genome sequence of the cat pathogen, Chlamydophila felis. DNA Res. 13:1523. PubMed CrossRef
5. Balana, M. E.,, F. Niedergang,, A. Subtil,, A. Alcover,, P. Chavrier,, and A. Dautry-Varsat. 2005. ARF6 GTPase controls bacterial invasion by actin remodelling. J. Cell Sci. 118:22012210. PubMed CrossRef
6. Balin, B. J.,, C. S. Little,, C. J. Hammond,, D.M. Appelt,, J. A. Whittum-Hudson,, H. C. Gerard,, and A. P. Hudson. 2008. Chlamydophila pneumoniae and the etiology of late-onset Alzheimer's disease. J. Alzheimer's Dis. 13:371380. PubMed
7. Beeckman, D. S.,, and D. C. Vanrompay. 2009. Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin. Microbiol. Infect. 15:1117. PubMed CrossRef
8. Belland, R. J.,, M. A. Scidmore,, D. D. Crane,, D. M. Hogan,, W. Whitmire,, G. McClarty,, and H. D. Caldwell. 2001. Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. Proc. Natl. Acad. Sci. USA 98:1398413989. PubMed CrossRef
9. Belland, R. J.,, G. Zhong,, D. D. Crane,, D. Hogan,, D. Sturdevant,, J. Sharma,, W. L. Beatty,, and H. D. Caldwell. 2003. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 100:84788483. PubMed CrossRef
10. Bertelli, C.,, F. Collyn,, A. Croxatto,, C. Ruckert,, A. Polkinghorne,, C. Kebbi-Beghdadi,, A. Goesmann,, L. Vaughan,, and G. Greub. 2010. The Waddlia genome: a window into chlamydial biology. PloS One 5:e10890. PubMed CrossRef
11. Binet, R.,, and A. T. Maurelli. 2009. Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc. Natl. Acad. Sci. USA 106:292297. PubMed CrossRef
12. Bodetti, T. J.,, E. Jacobson,, C. Wan,, L. Hafner,, A. Pospischil,, K. Rose,, and P. Timms. 2002. Molecular evidence to support the expansion of the host range of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst. Appl. Microbiol. 25:146152. PubMed
13. Caldwell, H. D.,, H. Wood,, D. Crane,, R. Bailey,, R. B. Jones,, D. Mabey,, I. Maclean,, Z. Mohammed,, R. Peeling,, C. Roshick,, J. Schachter,, A. W. Solomon,, W. E. Stamm,, R. J. Suchland,, L. Taylor,, S. K. West,, T. C. Quinn,, R. J. Belland,, and G. McClarty. 2003. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Investig. 111:17571769. PubMed CrossRef
14. Carlson, J. H.,, S. Hughes,, D. Hogan,, G. Cieplak,, D. E. Sturdevant,, G. McClarty,, H. D. Caldwell,, and R. J. Belland. 2004. Polymorphisms in the Chlamydia trachomatis cytotoxin locus associated with ocular and genital isolates. Infect. Immun. 72:70637072. PubMed CrossRef
15. Carlson, J. H.,, S. F. Porcella,, G. McClarty,, and H. D. Caldwell. 2005. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect. Immun. 73:64076418. PubMed CrossRef
16. CDC. 2007. Biosafety in Microbiological and Biomedical Laboratories (BMBL), 5th ed. U.S. Department of Health and Human Services, Washington, DC.
17. Christerson, L.,, A. Ruettger,, K. Gravningen,, R. Ehricht,, K. Sachse,, and B. Herrmann. 2011. High-resolution genotyping of Chlamydia trachomatis by use of a novel multilocus typing DNA microarray. J. Clin. Microbiol. 49:28382843. PubMed CrossRef
18. Collingro, A.,, P. Tischler,, T. Weinmaier,, T. Penz,, E. Heinz,, R. C. Brunham,, T. D. Read,, P. M. Bavoil,, K. Sachse,, S. Kahane,, M. G. Friedman,, T. Rattei,, G. S. Myers,, and M. Horn. 2011. Unity in variety—the pangenome of the Chlamydiae. Mol. Biol. Evol. doi: 10.1093/molbev/msr161. PubMed CrossRef
19. Cox, R. L.,, C.-c. Kuo,, J. T. Grayston,, and L. Campbell. 1988. Deoxyribonucleic acid relatedness of Chlamydia sp. strain TWAR to Chlamydia trachomatis and Chlamydia psittaci. Int. J. Syst. Bacteriol. 38:265268.
20. Delcher, A. L.,, S. L. Salzberg,, and A. M. Phillippy. 2003. Using MUMmer to identify similar regions in large sequence sets. Curr. Protocols Bioinform. Chapter 10:Unit 10 3. PubMed CrossRef
21. DeMars, R.,, and J. Weinfurter. 2008. Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J. Bacteriol. 190:16051614. PubMed CrossRef
22. DeMars, R.,, J. Weinfurter,, E. Guex,, J. Lin,, and Y. Potucek. 2007. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J. Bacteriol. 189:9911003. PubMed CrossRef
23. Eisen, J. A.,, J. F. Heidelberg,, O. White,, and S. L. Salzberg. 2000. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 1:RESEARCH0011. PubMed
24. Elkind, M. S.,, and J. W. Cole. 2006. Do common infections cause stroke? Semin. Neurol. 26:8899. PubMed CrossRef
25. Ellicott, V. L.,, and C. H. Halliday. 1931. The psittacosis outbreak in Maryland, December, 1929, and January, 1930. Public Health Rep. 46:843850.
26. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496512. PubMed
27. Fraser, C. M.,, J. A. Eisen,, K. E. Nelson,, I. T. Paulsen,, and S. L. Salzberg. 2002. The value of complete microbial genome sequencing (you get what you pay for). J. Bacteriol. 184:64036405. PubMed
28. Fukushi, H.,, and K. Hirai. 1992. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int. J. Syst. Bacteriol. 42:306308. PubMed
29. Geens, T.,, A. Desplanques,, M. Van Loock,, B. M. Bonner,, E. F. Kaleta,, S. Magnino,, A. A. Andersen,, K. D. Everett,, and D. Vanrompay. 2005. Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method. J. Clin. Microbiol. 43:24562461. PubMed CrossRef
30. Gomes, J. P.,, W. J. Bruno,, M. J. Borrego,, and D. Dean. 2004. Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer. J. Bacteriol. 186:42954306. PubMed CrossRef
31. Gomes, J. P.,, W. J. Bruno,, A. Nunes,, N. Santos,, C. Florindo,, M. J. Borrego,, and D. Dean. 2007. Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots. Genome Res. 17:5060. PubMed CrossRef
32. Gomes, J. P.,, A. Nunes,, W. J. Bruno,, M. J. Borrego,, C. Florindo,, and D. Dean. 2006. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. J. Bacteriol. 188:275286. PubMed CrossRef
33. Grinblat-Huse, V.,, E. F. Drabek,, H. H. Creasy,, S. C. Daugherty,, K. M. Jones,, I. Santana-Cruz,, L. J. Tallon,, T. D. Read,, T. P. Hatch,, P. Bavoil,, and G. S. Myers. 2011. Genome sequences of the zoonotic pathogens Chlamydia psittaci 6BC and Cal10. J. Bacteriol. 193:40394040. PubMed CrossRef
34. Harkinezhad, T.,, T. Geens,, and D. Vanrompay. 2009. Chlamydophila psittaci infections in birds: a review with emphasis on zoonotic consequences. Vet. Microbiol. 135:6877. PubMed CrossRef
35. Horn, M.,, A. Collingro,, S. Schmitz-Esser,, C. L. Beier,, U. Purkhold,, B. Fartmann,, P. Brandt,, G. J. Nyakatura,, M. Droege,, D. Frishman,, T. Rattei,, H. W. Mewes,, and M. Wagner. 2004. Illuminating the evolutionary history of chlamydiae. Science 304:728730. PubMed CrossRef
36. Iriarte, M.,, and G. R. Cornelis. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29:915929. PubMed
37. Jeffrey, B. M.,, R. J. Suchland,, K. L. Quinn,, J. R. Davidson,, W. E. Stamm,, and D. D. Rockey. 2010. Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect. Immun. 78:25442553. PubMed CrossRef
38. Jones, K. E.,, N. G. Patel,, M. A. Levy,, A. Storeygard,, D. Balk,, J. L. Gittleman,, and P. Daszak. 2008. Global trends in emerging infectious diseases. Nature 451:990993. PubMed CrossRef
39. Joseph, S. J.,, X. Didelot,, K. Gandhi,, D. Dean,, and T. D. Read. 2011. Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol. Direct. 6:28. PubMed CrossRef
40. Kalman, S.,, W. Mitchell,, R. Marathe,, C. Lammel,, J. Fan,, R. W. Hyman,, L. Olinger,, J. Grimwood,, R. W. Davis,, and R. S. Stephens. 1999. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21:385389. PubMed CrossRef
41. Laroucau, K.,, S. Thierry,, F. Vorimore,, K. Blanco,, E. Kaleta,, R. Hoop,, S. Magnino,, D. Vanrompay,, K. Sachse,, G. S. Myers,, P. M. Bavoil,, G. Vergnaud,, and C. Pourcel. 2008. High resolution typing of Chlamydophila psittaci by multilocus VNTR analysis (MLVA). Infect. Genet. Evol. 8:171181. PubMed CrossRef
42. Lepore, J. June 1 2009. It's spreading: outbreaks, media scares, and the parrot panic of 1930. The New Yorker 19:4650.
43. McClarty, G.,, H. D. Caldwell,, and D. E. Nelson. 2007. Chlamydial interferon gamma immune evasion influences infection tropism. Curr. Opin. Microbiol. 10:4751. PubMed CrossRef
44. McNutt, S. H.,, and E. F. Waller. 1940. Sporadic bovine encephalomyelitis (Buss disease). Cornell Vet. 30:437448.
45. Mitchell, C. M.,, S. Hutton,, G. S. Myers,, R. Brunham,, and P. Timms. 2010. Chlamydia pneumoniae is genetically diverse in animals and appears to have crossed the host barrier to humans on (at least) two occasions. PLoS Pathog. 6:e1000903. PubMed CrossRef
46. Mojica, S.,, H. Huot Creasy,, S. Daugherty,, T. D. Read,, T. Kim,, B. Kaltenboeck,, P. Bavoil,, and G. S. Myers. 2011. Genome sequence of the obligate intracellular animal pathogen Chlamydia pecorum E58. J. Bacteriol. 193:3690. PubMed CrossRef
47. Myers, G. S.,, S. A. Mathews,, M. Eppinger,, C. Mitchell,, K. K. O’Brien,, O. R. White,, F. Benahmed,, R. C. Brunham,, T. D. Read,, J. Ravel,, P. M. Bavoil,, and P. Timms. 2009. Evidence that human Chlamydia pneumoniae was zoonotically acquired. J. Bacteriol. 191:72257233. PubMed CrossRef
48. Pannekoek, Y.,, V. Dickx,, D. S. Beeckman,, K. A. Jolley,, W. C. Keijzers,, E. Vretou,, M. C. Maiden,, D. Vanrompay,, and A. van der Ende. 2010. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PloS One 5:. PubMed CrossRef
49. Pannekoek, Y.,, G. Morelli,, B. Kusecek,, S. A. Morre,, J. M. Ossewaarde,, A. A. Langerak,, and A. van der Ende. 2008. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol. 8:42. PubMed CrossRef
50. Ponting, C. P. 1999. Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr. Biol. 9:R911R913. PubMed
51. Rasko, D. A.,, G. S. Myers,, and J. Ravel. 2005. Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinform. 6:2. PubMed CrossRef
52. Rattei, T.,, S. Ott,, M. Gutacker,, J. Rupp,, M. Maass,, S. Schreiber,, W. Solbach,, T. Wirth,, and J. Gieffers. 2007. Genetic diversity of the obligate intracellular bacterium Chlamydophila pneumoniae by genome-wide analysis of single nucleotide polymorphisms: evidence for highly clonal population structure. BMC Genomics 8:355. PubMed CrossRef
53. Read, T. D.,, R. C. Brunham,, C. Shen,, S. R. Gill,, J. F. Heidelberg,, O. White,, E. K. Hickey,, J. Peterson,, T. Utterback,, K. Berry,, S. Bass,, K. Linher,, J. Weidman,, H. Khouri,, B. Craven,, C. Bowman,, R. Dodson,, M. Gwinn,, W. Nelson,, R. DeBoy,, J. Kolonay,, G. McClarty,, S. L. Salzberg,, J. Eisen,, and C. M. Fraser. 2000. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28:13971406. PubMed
54. Read, T. D.,, G. S. Myers,, R. C. Brunham,, W. C. Nelson,, I. T. Paulsen,, J. Heidelberg,, E. Holtzapple,, H. Khouri,, N. B. Federova,, H. A. Carty,, L. A. Umayam,, D. H. Haft,, J. Peterson,, M. J. Beanan,, O. White,, S. L. Salzberg,, R. C. Hsia,, G. McClarty,, R. G. Rank,, P. M. Bavoil,, and C. M. Fraser. 2003. Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res. 31:21342147. PubMed
55. Saeed, A. I.,, N. K. Bhagabati,, J. C. Braisted,, W. Liang,, V. Sharov,, E. A. Howe,, J. Li,, M. Thiagarajan,, J. A. White,, and J. Quackenbush. 2006. TM4 microarray software suite. Methods Enzymol. 411:134193. PubMed CrossRef
56. Saikku, P. 1992. The epidemiology and significance of Chlamydia pneumoniae. J. Infect. 25(Suppl. 1):2734. PubMed
57. Seth-Smith, H. M.,, S. R. Harris,, R. Rance,, A. P. West,, J. A. Severin,, J. M. Ossewaarde,, L. T. Cutcliffe,, R. J. Skilton,, P. Marsh,, J. Parkhill,, I. N. Clarke,, and N. R. Thomson. 2011. Genome sequence of the zoonotic pathogen Chlamydophila psittaci. J. Bacteriol. 193:12821283. PubMed CrossRef
58. Shao, F.,, P. M. Merritt,, Z. Bao,, R. W. Innes,, and J. E. Dixon. 2002. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109:575588. PubMed CrossRef
59. Shirai, M.,, H. Hirakawa,, M. Kimoto,, M. Tabuchi,, F. Kishi,, K. Ouchi,, T. Shiba,, K. Ishii,, M. Hattori,, S. Kuhara,, and T. Nakazawa. 2000. Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res. 28:23112314. PubMed
60. Somboonna, N.,, R. Wan,, D. M. Ojcius,, M. A. Pettengill,, S. J. Joseph,, A. Chang,, R. Hsu,, T. D. Read,, and D. Dean. 3 May 2011. Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L2) and D lineages. mBio 2:e0004511. PubMed CrossRef
61. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754759. PubMed
62. Suchland, R. J.,, K. M. Sandoz,, B. M. Jeffrey,, W. E. Stamm,, and D. D. Rockey. 2009. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob. Agents Chemother. 53:46044611. PubMed CrossRef
63. Sutherland, E. R.,, and R. J. Martin. 2007. Asthma and atypical bacterial infection. Chest 132:19621966. PubMed CrossRef
64. Taylor, L. D.,, D. E. Nelson,, D. W. Dorward,, W. M. Whitmire,, and H. D. Caldwell. 2010. Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect. Immun. 78:26912699. PubMed CrossRef
65. Thalmann, J.,, K. Janik,, M. May,, K. Sommer,, J. Ebeling,, F. Hofmann,, H. Genth,, and A. Klos. 2010. Actin re-organization induced by Chlamydia trachomatis serovar D—evidence for a critical role of the effector protein CT166 targeting Rec. PLoS ONE 5(3):e9887. doi:10.1371/journal.pone.0009887. PubMed CrossRef
66. Thomson, N. R.,, and I. N. Clarke. 2010. Chlamydia trachomatis: small genome, big challenges. Future Microbiol. 5:555561. PubMed CrossRef
67. Thomson, N. R.,, M. T. Holden,, C. Carder,, N. Lennard,, S. J. Lockey,, P. Marsh,, P. Skipp,, C. D. O’Connor,, I. Goodhead,, H. Norbertzcak,, B. Harris,, D. Ormond,, R. Rance,, M. A. Quail,, J. Parkhill,, R. S. Stephens,, and I. N. Clarke. 2008. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res. 18:161171. PubMed CrossRef
68. Thomson, N. R.,, C. Yeats,, K. Bell,, M. T. Holden,, S. D. Bentley,, M. Livingstone,, A. M. Cerdeno-Tarraga,, B. Harris,, J. Doggett,, D. Ormond,, K. Mungall,, K. Clarke,, T. Feltwell,, Z. Hance,, M. Sanders,, M. A. Quail,, C. Price,, B. G. Barrell,, J. Parkhill,, and D. Longbottom. 2005. The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res. 15:629640. PubMed CrossRef
69. Vanrompay, D.,, A. A. Andersen,, R. Ducatelle,, and F. Haesebrouck. 1993. Serotyping of European isolates of Chlamydia psittaci from poultry and other birds. J. Clin. Microbiol. 31:134137. PubMed
70. Wardrop, S.,, A. Fowler,, P. O’Callaghan,, P. Giffard,, and P. Timms. 1999. Characterization of the koala biovar of Chlamydia pneumoniae at four gene loci—ompAVD4, ompB, 16S rRNA, groESL spacer region. Syst. Appl. Microbiol. 22:2227. PubMed
71. Watson, C.,, and N. J. Alp. 2008. Role of Chlamydia pneumoniae in atherosclerosis. Clin. Sci. 114:509531. PubMed CrossRef
72. Yousef Mohamad, K.,, S. M. Roche,, G. Myers,, P. M. Bavoil,, K. Laroucau,, S. Magnino,, S. Laurent,, D. Rasschaert,, and A. Rodolakis. 2008. Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains. Infect. Genet. Evol. 8:764771. PubMed CrossRef

Tables

Generic image for table
TABLE 1

Key parameters of selected second- and third-generation sequencing technologies, compared to first-generation Sanger sequencing

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Generic image for table
TABLE 2

Genome features of current publicly available genomes

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Generic image for table
TABLE 3

Pangenome analysis of the across representative species of all sequenced and within each species that is represented by multiple genome sequences

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2
Generic image for table
TABLE 4

Breakdown of SNP/indels per genome, where multiple genomes are available

Citation: Myers G, Crabtree J, Creasy H. 2012. Deep and Wide: Comparative Genomics of , p 27-50. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error