1887

Chapter 8 : Cell Biology of the Chlamydial Inclusion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cell Biology of the Chlamydial Inclusion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap08-2.gif

Abstract:

All aspects of survival are intimately linked to the cell biology of its host. Recent advances in cell biological techniques and new tools to perform loss-of-function experiments in mammalian cells have accelerated one's understanding of the extent to which manipulates the host. Homotypic fusion of inclusions could serve to consolidate resources and reduce competition among multiple growing inclusions. It is clear that Incs on early inclusions likely play important roles in remodeling the nascent inclusion to segregate from the endolysosomal pathway and maintain single inclusion morphology in fusogenic species. However, the role played by soluble effectors secreted early or even during entry should not be discounted when considering early interactions with host cell biology. Of host sphingolipids (SLs), only sphingomyelin, and not glucosylceramide, is delivered to the chlamydial inclusion , suggesting highly specific interactions with host pathways. Multivesicular bodies (MVBs) are late endocytic compartments in which the limiting membrane of endosomes has invaginated into the lumen to form intraluminal vesicles containing membrane proteins destined for degradation. Much of the focus of investigations into chlamydial anti-immune strategies has centered on the interruption of innate immune signaling pathways. Given the long evolutionary history of the association of spp. with eukaryotic cells, these bacteria are expected to reveal new insights into basic aspects of eukaryotic cell biology, primordial mechanisms of cell autonomous innate immunity, and novel pathogenic strategies.

Citation: Kokes M, Valdivia R. 2012. Cell Biology of the Chlamydial Inclusion, p 170-191. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Early events in nascent inclusion biogenesis. Soon after chlamydial entry, the nascent inclusion rapidly loses plasma membrane and early endocytic and classic endolysosomal markers ( ), including the phosphoinositides PI(4,5)P and PI3P and endolysosomal Rabs (Rab5, Rab7, and Rab9) ( ). Recycling endosomes and their associated Rabs localize to early inclusions ( ) and may facilitate migration to the MTOC, in a microtubule- and dynein-dependent manner ( ). p150, the component of the dynactin protein complex linking vesicular cargo to dynein, is required for migration to the MTOC, although p50 dynamitin is not ( ). inclusion membrane proteins IncB and Ct850 are postulated to play a role in this interaction to promote association of the nascent inclusion with the microtubule-organizing center ( ). Endocytic pathway-associated SNAREs, including Vamp3, -7, and -8, localize around the inclusion in a fusion-inhibited state potentially as a result of interactions with Incs (IncA, CT813, and CT223) ( ). These Inc proteins have been proposed to function as inhibitory SNARE (iSNARE) mimics ( ). doi:10.1128/9781555817329.ch8.f1

Citation: Kokes M, Valdivia R. 2012. Cell Biology of the Chlamydial Inclusion, p 170-191. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The inclusion interacts with multiple subcellular compartments. Fragmented Golgi apparatus ministacks, the ER, LDs, mitochondria, and recycling endosomes (RE) closely associate with the inclusion ( ). These interactions may facilitate nutrient acquisition directly from these organelles. Golgi apparatus fragmentation enhances sphingolipid uptake ( ), and lipid droplets translocate into the lumen of the inclusion ( ). Additional pathways for lipid delivery (inset) include vesicular transport of Golgi apparatus-derived exocytic vesicles ( ), MVBs ( ), and transfer at membrane contact sites (MCS) between the ER and inclusion membranes ( ). The inclusion remains in close association with centrosomes at the MTOC throughout intracellular infection ( ). doi:10.1128/9781555817329.ch8.f2

Citation: Kokes M, Valdivia R. 2012. Cell Biology of the Chlamydial Inclusion, p 170-191. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817329.chap8
1. Al-Younes, H. M.,, V. Brinkmann,, and T. F. Meyer. 2004. Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway. Infect. Immun. 72: 4751 4762. PubMed CrossRef
2. Al-Zeer, M. A.,, H. M. Al-Younes,, P. R. Braun,, J. Zerrahn,, and T. F. Meyer. 2009. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4: e4588. PubMed CrossRef
3. Alzhanov, D. T.,, S. K. Weeks,, J. R. Burnett,, and D. D. Rockey. 2009. Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223. BMC Microbiol. 9: 2. PubMed CrossRef
4. Balsara, Z. R.,, S. Misaghi,, J. N. Lafave,, and M. N. Starnbach. 2006. Chlamydia trachomatis infection induces cleavage of the mitotic cyclin B1. Infect. Immun. 74: 5602 5608. PubMed CrossRef
5. Barton, G. M.,, and J. C. Kagan. 2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9: 535 542. PubMed CrossRef
6. Basto, R.,, K. Brunk,, T. Vinadogrova,, N. Peel,, A. Franz,, A. Khodjakov,, and J. W. Raff. 2008. Centrosome amplification can initiate tumorigenesis in flies. Cell 133: 1032 1042. PubMed CrossRef
7. Beatty, W. L. 2006. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J. Cell Sci. 119: 350 359. PubMed CrossRef
8. Beatty, W. L. 2007. Lysosome repair enables host cell survival and bacterial persistence following Chlamydia trachomatis infection. Cell. Microbiol. 9: 2141 2152. PubMed CrossRef
9. Beatty, W. L. 2008. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect. Immun. 76: 2872 2881. PubMed CrossRef
10. Behnia, R.,, and S. Munro. 2005. Organelle identity and the signposts for membrane traffic. Nature 438: 597 604. PubMed CrossRef
11. Belland, R. J.,, G. Zhong,, D. D. Crane,, D. Hogan,, D. Sturdevant,, J. Sharma,, W. L. Beatty,, and H. D. Caldwell. 2003. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 100: 8478 8483. PubMed CrossRef
12. Betts, H. J.,, K. Wolf,, and K. A. Fields. 2009. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Curr. Opin. Microbiol. 12: 81 87. PubMed CrossRef
13. Bose, S. K.,, and H. Liebhaber. 1979. Deoxyribonucleic acid synthesis, cell cycle progression, and division of Chlamydia-infected HeLa 229 cells. Infect. Immun. 24: 953 957. PubMed
14. Brazil, D. P.,, J. Park,, and B. A. Hemmings. 2002. PKB binding proteins. Getting in on the Akt. Cell 111: 293 303. PubMed CrossRef
15. Capmany, A.,, and M. T. Damiani. 2010. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PLoS One 5: e14084. PubMed CrossRef
16. Carabeo, R. A.,, D. J. Mead,, and T. Hackstadt. 2003. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl. Acad. Sci. USA 100: 6771 6776. PubMed CrossRef
17. Chellas-Géry, B.,, C. N. Linton,, and K. A. Fields. 2007. Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Cell. Microbiol. 9: 2417 2430. PubMed CrossRef
18. Chen, Y. A.,, and R. H. Scheller. 2001. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2: 98 106. PubMed CrossRef
19. Claude, A.,, B. P. Zhao,, C. E. Kuziemsky,, S. Dahan,, S. J. Berger,, J. P. Yan,, A. D. Armold,, E. M. Sullivan,, and P. Melançon. 1999. GBF1: a novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J. Cell Biol. 146: 71 84. PubMed CrossRef
20. Clausen, J. D.,, G. Christiansen,, H. U. Holst,, and S. Birkelund. 1997. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol. Microbiol. 25: 441 449. PubMed CrossRef
21. Clifton, D. R.,, K. A. Fields,, S. S. Grieshaber,, C. A. Dooley,, E. R. Fischer,, D. J. Mead,, R. A. Carabeo,, and T. Hackstadt. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA 101: 10166 10171. PubMed CrossRef
22. Cocchiaro, J. L.,, Y. Kumar,, E. R. Fischer,, T. Hackstadt,, and R. H. Valdivia. 2008. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc. Natl. Acad. Sci. USA 105: 9379 9384. PubMed CrossRef
23. Cocchiaro, J. L.,, and R. H. Valdivia. 2009. New insights into Chlamydia intracellular survival mechanisms. Cell. Microbiol. 11: 1571 1578. PubMed CrossRef
24. Coers, J.,, I. Bernstein-Hanley,, D. Grotsky,, I. Parvanova,, J. C. Howard,, G. A. Taylor,, W. F. Dietrich,, and M. N. Starnbach. 2008. Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10. J. Immunol. 180: 6237 6245. PubMed
25. Cortes, C.,, K. A. Rzomp,, A. Tvinnereim,, M. A. Scidmore,, and B. Wizel. 2007. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect. Immun. 75: 5586 5596. PubMed CrossRef
26. Delevoye, C.,, M. Nilges,, A. Dautry-Varsat,, and A. Subtil. 2004. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. J. Biol. Chem. 279: 46896 46906. PubMed CrossRef
27. Delevoye, C.,, M. Nilges,, P. Dehoux,, F. Paumet,, S. Perrinet,, A. Dautry-Varsat,, and A. Subtil. 2008. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog. 4: e1000022. PubMed CrossRef
28. Deretic, V. 2011. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 240: 92 104. PubMed CrossRef
29. Derré, I.,, M. Pypaert,, A. Dautry-Varsat,, and H. Agaisse. 2007. RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection. PLoS Pathog. 3: e155. PubMed CrossRef
30. Derré, I.,, R. Swiss,, and H. Agaisse. 2011. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER- Chlamydia inclusion membrane contact sites. PLoS Pathog. 7: e1002092. PubMed CrossRef
31. Dong, F.,, M. Pirbhai,, Y. Xiao,, Y. Zhong,, Y. Wu,, and G. Zhong. 2005. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect. Immun. 73: 1861 1864. PubMed CrossRef
32. Dong, F.,, H. Su,, Y. Huang,, Y. Zhong,, and G. Zhong. 2004. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect. Immun. 72: 3863 3868. PubMed CrossRef
33. D'Souza-Schorey, C.,, and P. Chavrier. 2006. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7: 347 358. PubMed CrossRef
34. Elwell, C. A.,, A. Ceesay,, J. H. Kim,, D. Kalman,, and J. N. Engel. 2008. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog. 4: e1000021. PubMed CrossRef
35. Elwell, C. A.,, S. Jiang,, J. H. Kim,, A. Lee,, T. Wittmann,, K. Hanada,, P. Melancon,, and J. N. Engel. 2011. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7: e1002198. PubMed CrossRef
36. Etienne-Manneville, S.,, and A. Hall. 2002. Rho GTPases in cell biology. Nature 420: 629 635. PubMed CrossRef
37. Farese, R. V., Jr.,, and T. C. Walther. 2009. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139: 855 860. PubMed CrossRef
38. Fields, K. A.,, E. Fischer,, and T. Hackstadt. 2002. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA. Infect. Immun. 70: 3816 3823. PubMed CrossRef
39. Fields, K. A.,, and T. Hackstadt. 2002. The chlamydial inclusion: escape from the endocytic pathway. Annu. Rev. Cell Dev. Biol. 18: 221 245. PubMed CrossRef
40. Fischer, S. F.,, J. Vier,, S. Kirschnek,, A. Klos,, S. Hess,, S. Ying,, and G. Häcker. 2004. Chlamydia inhibits host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med. 200: 905 916. PubMed CrossRef
41. Giles, D. K.,, and P. B. Wyrick. 2008. Trafficking of chlamydial antigens to the endoplasmic reticulum of infected epithelial cells. Microbes Infect. 10: 1494 1503. PubMed CrossRef
42. Greene, W.,, Y. Xiao,, Y. Huang,, G. McClarty,, and G. Zhong. 2004. Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect. Immun. 72: 451 460. PubMed CrossRef
43. Greene, W.,, and G. Zhong. 2003. Inhibition of host cell cytokinesis by Chlamydia trachomatis infection. J. Infect. 47: 45 51. PubMed
44. Grieshaber, S. S.,, N. A. Grieshaber,, and T. Hackstadt. 2003. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J. Cell Sci. 116: 3793 3802. PubMed CrossRef
45. Grieshaber, S. S.,, N. A. Grieshaber,, N. Miller,, and T. Hackstadt. 2006. Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic 7: 940 949. PubMed CrossRef
46. Guo, Y.,, K. R. Cordes,, R. V. Farese,, and T. C. Walther. 2009. Lipid droplets at a glance. J. Cell Sci. 122: 749 752. PubMed CrossRef
47. Gurumurthy, R. K.,, A. P. Mäurer,, N. Machuy,, S. Hess,, K. P. Pleissner,, J. Schuchhardt,, T. Rudel,, and T. F. Meyer. 2010. A loss-of-function screen reveals Ras- and Raf-independent MEK-ERK signaling during Chlamydia trachomatis infection. Sci. Signal. 3: ra21. PubMed CrossRef
48. Hackstadt, T.,, D. D. Rockey,, R. A. Heinzen,, and M. A. Scidmore. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15: 964 977. PubMed
49. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92: 4877 4881. PubMed
50. Hackstadt, T.,, M. A. Scidmore-Carlson,, E. I. Shaw,, and E. R. Fischer. 1999. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1: 119 130. PubMed CrossRef
51. Hanada, K.,, K. Kumagai,, S. Yasuda,, Y. Miura,, M. Kawano,, M. Fukasawa,, and M. Nishijima. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803 809. PubMed CrossRef
52. Hatch, G. M.,, and G. McClarty. 1998a. Cardiolipin remodeling in eukaryotic cells infected with Chlamydia trachomatis is linked to elevated mitochondrial metabolism. Biochem. Biophys. Res. Commun. 243: 356 360. PubMed CrossRef
53. Hatch, G. M.,, and G. McClarty. 1998b. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect. Immun. 66: 3727 3735. PubMed
54. Heuer, D.,, A. Rejman Lipinski,, N. Machuy,, A. Karlas,, A. Wehrens,, F. Siedler,, V. Brinkmann,, and T. F. Meyer. 2009. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457: 731 735. PubMed CrossRef
55. Ho, T. D.,, and M. N. Starnbach. 2005. The Salmonella enterica serovar Typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Infect. Immun. 73: 905 911. PubMed CrossRef
56. Horn, M. 2008. Chlamydiae as symbionts in eukaryotes. Annu. Rev. Microbiol. 62: 113 131. PubMed CrossRef
57. Hybiske, K.,, and R. S. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 104: 11430 11435. PubMed CrossRef
58. Igal, R. A.,, P. Wang,, and R. A. Coleman. 1997. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA. Biochem. J. 324: 529 534. PubMed
59. Jewett, T. J.,, E. R. Fischer,, D. J. Mead,, and T. Hackstadt. 2006. Chlamydial TARP is a bacterial nucleator of actin. Proc. Natl. Acad. Sci. USA 103: 15599 15604. PubMed CrossRef
60. Johnson, K. A.,, M. Tan,, and C. Sütterlin. 2009. Centrosome abnormalities during a Chlamydia trachomatis infection are caused by dysregulation of the normal duplication pathway. Cell. Microbiol. 11: 1064 1073. PubMed CrossRef
61. Jorgensen, I.,, M. M. Bednar,, V. Amin,, B. K. Davis,, J. P. Y. Ting,, D. G. McCafferty,, and R. H. Valdivia. 2011. The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe 10: 21 32. PubMed CrossRef
62. Kawano, M.,, K. Kumagai,, M. Nishijima,, and K. Hanada. 2006. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J. Biol. Chem. 281: 30279 30288. PubMed CrossRef
63. Knowlton, A. E.,, H. M. Brown,, T. S. Richards,, L. A. Andreolas,, R. K. Patel,, and S. S. Grieshaber. 2011. Chlamydia trachomatis infection causes mitotic spindle pole defects independently from its effects on centrosome amplification. Traffic 12: 854 866. PubMed CrossRef
64. Kumar, Y.,, J. Cocchiaro,, and R. H. Valdivia. 2006. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr. Biol. 16: 1646 1651. PubMed CrossRef
65. Kumar, Y.,, and R. H. Valdivia. 2009. Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe 5: 593 601. PubMed CrossRef
66. Kumar, Y.,, and R. H. Valdivia. 2008. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4: 159 169. PubMed CrossRef
67. Lane, B. J.,, C. Mutchler,, S. Al Khodor,, S. S. Grieshaber,, and R. A. Carabeo. 2008. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog. 4: e1000014. PubMed CrossRef
68. Le Negrate, G.,, A. Krieg,, B. Faustin,, M. Loeffler,, A. Godzik,, S. Krajewski,, and J. C. Reed. 2008. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell. Microbiol. 10: 1879 1892. PubMed CrossRef
69. Levine, T.,, and C. Loewen. 2006. Inter-organelle membrane contact sites: through a glass, darkly. Curr. Opin. Cell Biol. 18: 371 378. PubMed CrossRef
70. Li, Z.,, C. Chen,, D. Chen,, Y. Wu,, Y. Zhong,, and G. Zhong. 2008. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect. Immun. 76: 2746 2757. PubMed CrossRef
71. Lippincott-Schwartz, J.,, and R. D. Phair. 2010. Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys. 39: 559 578. PubMed CrossRef
72. Lippincott-Schwartz, J.,, L. C. Yuan,, J. S. Bonifacino,, and R. D. Klausner. 1989. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801 813. PubMed CrossRef
73. Littman, A. J.,, L. A. Jackson,, and T. L. Vaughan. 2005. Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol. Biomarkers Prev. 14: 773 778. PubMed CrossRef
74. Majeed, M.,, K. H. Krause,, R. A. Clark,, E. Kihlström,, and O. Stendahl. 1999. Localization of intracellular Ca2+ stores in HeLa cells during infection with Chlamydia trachomatis. J. Cell Sci. 112: 35 44. PubMed
75. Manolea, F.,, A. Claude,, J. Chun,, J. Rosas,, and P. Melançon. 2008. Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. Mol. Biol. Cell 19: 523 535. PubMed CrossRef
76. Mansour, S. J.,, J. Skaug,, X. H. Zhao,, J. Giordano,, S. W. Scherer,, and P. Melançon. 1999. p200 ARF-GEP1: a Golgi-localized guanine nucleotide exchange protein whose Sec7 domain is targeted by the drug brefeldin A. Proc. Natl. Acad. Sci. USA 96: 7968 7973. PubMed CrossRef
77. Martens, S.,, and H. T. McMahon. 2008. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9: 543 556. PubMed CrossRef
78. Matanis, T.,, A. Akhmanova,, P. Wulf,, E. Del Nery,, T. Weide,, T. Stepanova,, N. Galjart,, F. Grosveld,, B. Goud,, C. I. De Zeeuw,, A. Barnekow,, and C. C. Hoogenraad. 2002. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat. Cell Biol. 4: 986 992. PubMed CrossRef
79. Matsumoto, A.,, H. Bessho,, K. Uehira,, and T. Suda. 1991. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J. Electron Microsc. 40: 356 363. PubMed
80. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135 145.
81. Misaghi, S.,, Z. R. Balsara,, A. Catic,, E. Spooner,, H. L. Ploegh,, and M. N. Starnbach. 2006. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61: 142 150. PubMed CrossRef
82. Mital, J.,, N. J. Miller,, E. R. Fischer,, and T. Hackstadt. 2010. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell. Microbiol. 12: 1235 1249. PubMed CrossRef
83. Moore, E. R.,, E. R. Fischer,, D. J. Mead,, and T. Hackstadt. 2008. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9: 2130 2140. PubMed CrossRef
84. Moore, L.,, D. Mead,, C. Dooley,, J. Sager,, and T. Hackstadt. 2010. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Microbiology 157: 830 838. PubMed CrossRef
85. Moorhead, A. M.,, J.-Y. Jung,, A. Smirnov,, S. Kaufer,, and M. A. Scidmore. 2010. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect. Immun. 78: 1990 2007. PubMed CrossRef
86. Moorhead, A. R.,, K. A. Rzomp,, and M. A. Scidmore. 2007. The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner. Infect. Immun. 75: 781 791. PubMed CrossRef
87. Morrison, R. P.,, and H. D. Caldwell. 2002. Immunity to murine chlamydial genital infection. Infect. Immun. 70: 2741 2751. PubMed CrossRef
88. Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190. PubMed
89. Musacchio, A.,, and E. D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8: 379 393. PubMed CrossRef
90. Nagai, T.,, A. Abe,, and C. Sasakawa. 2005. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280: 2998 3011. PubMed CrossRef
91. Nelson, D. E.,, D. P. Virok,, H. Wood,, C. Roshick,, R. M. Johnson,, W. M. Whitmire,, D. D. Crane,, O. Steele-Mortimer,, L. Kari,, G. McClarty,, and H. D. Caldwell. 2005. Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc. Natl. Acad. Sci. USA 102: 10658 10663. PubMed CrossRef
92. Ojcius, D. M.,, H. Degani,, J. Mispelter,, and A. Dautry-Varsat. 1998. Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J. Biol. Chem. 273: 7052 7058. PubMed CrossRef
93. Ouellette, S.,, and R. A. Carabeo. 2010. A functional slow recycling pathway of transferrin is required for growth of Chlamydia. Frontiers Microbiol. 1: 112. PubMed CrossRef
94. Papatheodorou, P.,, G. Domańska,, M. Oxle,, J. Mathieu,, O. Selchow,, B. Kenny,, and J. Rassow. 2006. The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology. Cell. Microbiol. 8: 677 689. PubMed CrossRef
95. Paschen, S. A.,, J. G. Christian,, J. Vier,, F. Schmidt,, A. Walch,, D. M. Ojcius,, and G. Häcker. 2008. Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J. Cell Biol. 182: 117 127. PubMed CrossRef
96. Paumet, F.,, J. Wesolowski,, A. Garcia-Diaz,, C. Delevoye,, N. Aulner,, H. A. Shuman,, A. Subtil,, and J. E. Rothman. 2009. PLoS One 4: e7375. PubMed CrossRef
97. Pennini, M. E.,, S. Perrinet,, A. Dautry-Varsat,, and A. Subtil. 2010. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog. 6: e1000995. PubMed CrossRef
98. Perry, R. J.,, and N. D. Ridgway. 2005. Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta 1734: 220 234. PubMed CrossRef
99. Peterson, E. M.,, and L. M. de la Maza. 1988. Chlamydia parasitism: ultrastructural characterization of the interaction between the chlamydial cell envelope and the host cell. J. Bacteriol. 170: 1389 1392. PubMed
100. Piper, R. C.,, and D. J. Katzmann. 2007. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23: 519 547. PubMed CrossRef
101. Quintyne, N. J.,, J. E. Reing,, D. R. Hoffelder,, S. M. Gollin,, and W. S. Saunders. 2005. Spindle multipolarity is prevented by centrosomal clustering. Science 307: 127 129. PubMed CrossRef
102. Read, T. D.,, R. C. Brunham,, C. Shen,, S. R. Gill,, J. F. Heidelberg,, O. White,, E. K. Hickey,, J. Peterson,, T. Utterback,, K. Berry,, S. Bass,, K. Linher,, J. Weidman,, H. Khouri,, B. Craven,, C. Bowman,, R. Dodson,, M. Gwinn,, W. Nelson,, R. DeBoy,, J. Kolonay,, G. McClarty,, S. L. Salzberg,, J. Eisen,, and C. M. Fraser. 2000. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28: 1397 1406. PubMed CrossRef
103. Rejman Lipinski, A.,, J. Heymann,, C. Meissner,, A. Karlas,, V. Brinkmann,, T. F. Meyer,, and D. Heuer. 2009. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog. 5: e1000615. PubMed CrossRef
104. Richardson, D. R.,, and P. Ponka. 1997. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1331: 1 40. PubMed
105. Robertson, D. K.,, L. Gu,, R. K. Rowe,, and W. L. Beatty. 2009. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis. PLoS Pathog. 5: e1000664. PubMed CrossRef
106. Rockey, D. D.,, E. R. Fischer,, and T. Hackstadt. 1996. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect. Immun. 64: 4269 4278. PubMed
107. Rockey, D. D.,, M. A. Scidmore,, J. P. Bannantine,, and W. J. Brown. 2002. Proteins in the chlamydial inclusion membrane. Microbes Infect. 4: 333 340. PubMed
108. Rzomp, K. A.,, A. R. Moorhead,, and M. A. Scidmore. 2006. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect. Immun. 74: 5362 5373. PubMed CrossRef
109. Rzomp, K. A.,, L. D. Scholtes,, B. J. Briggs,, G. R. Whittaker,, and M. A. Scidmore. 2003. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect. Immun. 71: 5855 5870. PubMed CrossRef
110. Saka, H. A.,, J. W. Thompson,, Y.-S. Chen,, Y. Kumar,, L. G. Dubois,, M. A. Moseley,, and R. H. Valdivia. 2011. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol. Microbiol. 82: 1185 1203. PubMed CrossRef
111. Schramm, N.,, and P. B. Wyrick. 1995. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect. Immun. 63: 324 332. PubMed
112. Scidmore, M. A.,, E. R. Fischer,, and T. Hackstadt. 2003. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect. Immun. 71: 973 984. PubMed CrossRef
113. Scidmore, M. A.,, and T. Hackstadt. 2001. Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39: 1638 1650. PubMed CrossRef
114. Scidmore, M. A.,, D. D. Rockey,, E. R. Fischer,, R. A. Heinzen,, and T. Hackstadt. 1996. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64: 5366 5372. PubMed
115. Sharma, M.,, and T. Rudel. 2009. Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? FEMS Immunol. Med. Microbiol. 55: 154 161. PubMed CrossRef
116. Shaw, E. I.,, C. A. Dooley,, E. R. Fischer,, M. A. Scidmore,, K. A. Fields,, and T. Hackstadt. 2000. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol. Microbiol. 37: 913 925. PubMed CrossRef
117. Simonetti, A. C.,, J. H. de L. Melo,, P. R. E. de Souza,, D. Bruneska,, and J. L. de Lima Filho. 2009. Immunological's host profile for HPV and Chlamydia trachomatis, a cervical cancer cofactor. Microbes Infect. 11: 435 442. PubMed CrossRef
118. Sisko, J. L.,, K. Spaeth,, Y. Kumar,, and R. H. Valdivia. 2006. Multifunctional analysis of Chlamydia-specific genes in a yeast expression system. Mol. Microbiol. 60: 51 66. PubMed CrossRef
119. Stenmark, H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10: 513 525. PubMed CrossRef
120. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759. PubMed CrossRef
121. Stephens, R. S.,, G. Myers,, M. Eppinger,, and P. M. Bavoil. 2009. Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol. Med. Microbiol. 55: 115 119. PubMed CrossRef
122. Su, H.,, G. McClarty,, F. Dong,, G. M. Hatch,, Z. K. Pan,, and G. Zhong. 2004. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279: 9409 9416. PubMed CrossRef
123. Subtil, A.,, C. Delevoye,, M.-E. Balañá,, L. Tastevin,, S. Perrinet,, and A. Dautry-Varsat. 2005. A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol. Microbiol. 56: 1636 1647. PubMed CrossRef
124. Suchland, R. J.,, D. D. Rockey,, J. P. Bannantine,, and W. E. Stamm. 2000. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect. Immun. 68: 360 367. PubMed CrossRef
125. Sütterlin, C.,, and A. Colanzi. 2010. The Golgi and the centrosome: building a functional partnership. J. Cell Biol. 188: 621 628. PubMed CrossRef
126. Tafesse, F. G.,, K. Huitema,, M. Hermansson,, S. van der Poel,, J. van den Dikkenberg,, A. Uphoff,, P. Somerharju,, and J. C. M. Holthuis. 2007. Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J. Biol. Chem. 282: 17537 17547. PubMed CrossRef
127. Taylor, G. A. 2007. IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell. Microbiol. 9: 1099 1107. PubMed CrossRef
128. Taylor, L. D.,, D. E. Nelson,, D. W. Dorward,, W. M. Whitmire,, and H. D. Caldwell. 2010. Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect. Immun. 78: 2691 2699. PubMed CrossRef
129. Thompson, C. C.,, and R. A. Carabeo. 2011. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis. Frontiers Microbiol. 2: 20. PubMed CrossRef
130. Tietzel, I.,, C. El-Haibi,, and R. A. Carabeo. 2009. Human guanylate binding proteins potentiate the anti-chlamydia effects of interferon-gamma. PLoS One 4: e6499. PubMed CrossRef
131. Tse, S. M. L.,, D. Mason,, R. J. Botelho,, B. Chiu,, M. Reyland,, K. Hanada,, R. D. Inman,, and S. Grinstein. 2005. Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J. Biol. Chem. 280: 25210 25215. PubMed CrossRef
132. Ullrich, O.,, S. Reinsch,, S. Urbé,, M. Zerial,, and R. G. Parton. 1996. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135: 913 924. PubMed
133. Valdivia, R. H. 2008. Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr. Opin. Microbiol. 11: 53 59. PubMed CrossRef
134. van Niel, G.,, I. Porto-Carreiro,, S. Simoes,, and G. Raposo. 2006. Exosomes: a common pathway for a specialized function. J. Biochem. 140: 13 21. PubMed CrossRef
135. van Ooij, C.,, G. Apodaca,, and J. Engel. 1997. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect. Immun. 65: 758 766. PubMed
136. van Ooij, C.,, E. Homola,, E. Kincaid,, and J. Engel. 1998. Fusion of Chlamydia trachomatis-containing inclusions is inhibited at low temperatures and requires bacterial protein synthesis. Infect. Immun. 66: 5364 5371. PubMed
137. van Ooij, C.,, L. Kalman,, S. van Ijzendoorn,, M. Nishijima,, K. Hanada,, K. Mostov,, and J. N. Engel. 2000. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell. Microbiol. 2: 627 637. PubMed CrossRef
138. Verbeke, P.,, L. Welter-Stahl,, S. Ying,, J. Hansen,, G. Häcker,, T. Darville,, and D. M. Ojcius. 2006. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2: e45. PubMed CrossRef
139. Verma, V.,, D. Shen,, P. C. Sieving,, and C. C. Chan. 2008. The role of infectious agents in the etiology of ocular adnexal neoplasia. Survey Ophthalmol. 53: 312 331. PubMed CrossRef
140. Walther, T. C.,, and R. V. Farese, Jr. 2009. The life of lipid droplets. Biochim. Biophys. Acta 1791: 459 466. PubMed CrossRef
141. Wilson, D. P.,, P. Timms,, D. L. S. McElwain,, and P. M. Bavoil. 2006. Type III secretion, contact-dependent model for the intracellular development of Chlamydia. Bull. Math. Biol. 68: 161 178. PubMed CrossRef
142. Wolf, K.,, and T. Hackstadt. 2001. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells. Cell. Microbiol. 3: 145 152. PubMed CrossRef
143. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179: 7233 7242. PubMed
144. Yamaji, R.,, R. Adamik,, K. Takeda,, A. Togawa,, G. Pacheco-Rodriguez,, V. J. Ferrans,, J. Moss,, and M. Vaughan. 2000. Identification and localization of two brefeldin A-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors in a macromolecular complex. Proc. Natl. Acad. Sci. USA 97: 2567 2572. PubMed CrossRef
145. Yoshida, K. 2007. PKCdelta signaling: mechanisms of DNA damage response and apoptosis. Cell. Signal. 19: 892 901. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error