1887

Chapter 12 : Persistence and Antigenic Variation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Persistence and Antigenic Variation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap12-2.gif

Abstract:

This chapter focuses on the genera and . Typically, antigenically variable proteins are immunodominant and thus allow evasion of the predominant immune responses. The donor allele repertoire remains unchanged during antigenic variation, while the expression-site variant is lost. This method is employed by some rickettsiae in the family and allows for lifelong persistence in the host with donor allele repertoires 10- to 100-fold smaller than those found in African trypanosomes. Earlier work has demonstrated that major surface proteins (MSP)2 and MSP3 are immunodominant, antigenically variable proteins that are instrumental in evading the host immune response. , a small ruminant pathogen, has been shown to establish persistent infections in goats. Antigenic variation in is effected through the homolog of . The antibody response to the MSP2 HVR is variant specific and diminishes rapidly, consistent with the idea that antigenic variation of MSP2 is responsible for persistence. Research shows that the implications of donor allele repertoires go beyond antigenic variation in the individual hosts, and that they also play critical roles in the epidemiology of pathogen strain structure and possibly host tropism.

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12

Key Concept Ranking

Type IV Secretion Systems
0.43179658
0.43179658
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Infection scenarios. Upon infection, pathogen load can increase in an uncontrolled fashion, ultimately causing death (solid line). Alternatively, a controlling immune response can be established, resulting in clearance of the pathogen and resolution of disease (dashed line). Finally, in the face of an adaptive immune response, the pathogen is able to evade recognition and enter a persistent phase of infection (dotted line). In persistence mediated by antigenic variation, the infection scenario is typically characterized by waves of parasitemia, reflecting control of variants, followed by emergence of new variants that are not immediately recognized by the existing immune response. doi:10.1128/9781555817336.ch12.f1

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Paradigms of antigenic variation. Antigenic shift is the result of a recombination event; in bacteria it can result either from a classical homologous recombination event, wherein the donor allele (DA) is exchanged with the expressed copy of the gene (ES), resulting in a change in the donor allele repertoire, or from a specialized type of homologous recombination called gene conversion where the donor allele is “copied and pasted” into the expression site, thus maintaining the donor allele repertoire. Antigenic variation sensu stricto is a rapid process that requires one or more expression sites and a pool of donor alleles. Antigenic variability is the accumulation of mutations in the expression-site copy of a gene over time, typically a slower process. doi:10.1128/9781555817336.ch12.f2

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

and expression sites (ES), genomic arrangement, and donor allele repertoires. (A) The (left) and (right) operons that are the sole expression sites for these genes. The promoter for each operon is indicated by the bent arrowhead. is transcribed from an operon of four genes with at the 3′ end. The other genes in the operon ( to -) are members of PF01617, as is the gene immediately upstream (), and these are depicted in green. A putative transcriptional regulator () that has been used as an indicator of synteny resides upstream and is shown in red. The operon contains three genes with at the 3′ end. The other two genes in the operon were annotated as and - (red), and recently have been implicated as being homologs of , a component of the type IV secretion system. , 3′ to the operon, has been used to identify the syntenic locus in related organisms, and is shown in red. (B) The genomic arrangement of the and expression sites and donor allele repertoires. Alleles depicted in identical colors (e.g., 3H1 and 2) have identical HVR sequences. The genome backbone is shown as gray. (C) The donor allele and pseudogene repertoires for and , showing the relative portion of the expression-site molecule that each encodes. The remnant sequences (R1 and R2) do not contain any portion of the HVR and could not serve as donor alleles. has a 3′ end identical to (solid blue), regions flanking the HVR that have similarity to (diagonal stripes), and a unique 5′ end (stippled). doi:10.1128/9781555817336.ch12.f3

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The anchoring model for gene conversion. A segment of the genome containing the expression site (ES) and several donor alleles is shown (not to scale). The first recombination event illustrates the complete HVR from donor allele 2 being recombined into the expression site, with both recombination sites occurring in the conserved flanking regions. The donor allele repertoire remains unchanged. The second recombination event incorporates a segment of donor allele G11 into the expression site. Importantly, one recombination event has occurred in the 5′ conserved flanking region, while the other has occurred in the HVR without the requirement for sequence identity at the recombination site. In the anchoring model, one end of the newly recombined segment will always be juxtaposed to the conserved flanking regions, as the sequence identity in these regions anchors the recombination complex. doi:10.1128/9781555817336.ch12.f4

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic representation of subsp. and expression sites (ES), genomic arrangement, and donor allele repertoires. (A) The (left) and (right) operons that are the sole expression sites for these genes. is the 3′ gene in an operon with to . The putative and genes reside upstream and are depicted in red and green, respectively. The candidate expression site is flanked by and (red). (B) The genomic arrangement of the and expression site and donor allele repertoires. Alleles depicted in identical colors (e.g., G1 and G2) have identical HVR sequences. The genome backbone is shown as gray. (C) The donor allele and remnant sequence repertoires for and , showing the relative portion of the expression-site molecule that each encodes. The remnant sequence (R1) does not contain any portion of the HVR. has a 3′ end identical to (solid blue), regions flanking the HVR that have similarity to (diagonal stripes), and a unique 5′ end (stippled) that is shorter than the 5′ end sequence found in . Comparison with Fig. 3 shows that the synteny of these sequences has not been maintained. doi:10.1128/9781555817336.ch12.f5

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic representation of expression site (ES), genomic arrangement, and donor allele/pseudogene repertoire. (A) Genomic arrangement of the operon. is shown in black at the 3′ end of the two-gene operon. A bent arrow indicates the position of the operon promoter. is also known as (Barbet et al., 2003), and this gene and (shown in gray) are both members of PF01617 and therefore related to . The putative transcriptional regulator (, in white) is found upstream from the operon. (B) Genomic arrangement of the family. Sequences with identity to are shown as black bars, with the expression site marked with a longer bar. The genome backbone is gray. (C) Diagram of the gene family, with conserved regions shown as black and the HVR shown as gray. There are 10 full-length genes, 75 sequences that contain the HVR and could act as donor alleles, and 26 pseudogenes that are unlikely to contribute to variation as they are lacking the necessary components for gene conversion events, i.e., conserved flanking regions and HVR. doi:10.1128/9781555817336.ch12.f6

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7a
FIGURE 7a

Alignment of deduced amino acid sequences for superfamily genes and . Each sequence is labeled with its genome identifier number (taken from GenBank accession no. CP000235) ( ) and represents an sequence that is full length or nearly full length. The expression site sequence is denoted with “ES.” All genes are annotated as paralogs except APH_1361, which is annotated as . The central HVR is boxed. Conserved residues are highlighted in black, while blocks of similar residues are shown on a gray background. A positionally conserved methionine residue, indicated with an arrow, may be the start codon for these genes. Numbers above the alignment indicate alignment position number, while numbers in parentheses indicate position for each sequence. The sequence used for alignment is from GenBank accession no. U07862 ( ). doi:10.1128/9781555817336.ch12.f7

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7b
FIGURE 7b

Alignment of deduced amino acid sequences for superfamily genes and . Each sequence is labeled with its genome identifier number (taken from GenBank accession no. CP000235) ( ) and represents an sequence that is full length or nearly full length. The expression site sequence is denoted with “ES.” All genes are annotated as paralogs except APH_1361, which is annotated as . The central HVR is boxed. Conserved residues are highlighted in black, while blocks of similar residues are shown on a gray background. A positionally conserved methionine residue, indicated with an arrow, may be the start codon for these genes. Numbers above the alignment indicate alignment position number, while numbers in parentheses indicate position for each sequence. The sequence used for alignment is from GenBank accession no. U07862 ( ). doi:10.1128/9781555817336.ch12.f7

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Schematic representation of species homolog tandem gene arrays. Genome sequences were used to identify the genomic context of sequences for (strain Jake; GenBank accession no. CP000107), (strain Arkansas; GenBank accession no. CP000236), and (strain Welgevonden; GenBank accession no. CR767821); however, nomenclature was taken from published analyses of these gene loci, as was information on ( ). The genome backbone is indicated by a gray line; PF01617 genes are shown in black, and other unrelated genes are shown in white. Gene names are indicated or shown as “H” for hypothetical. contains a second smaller locus wherein genes , , and are duplicated. doi:10.1128/9781555817336.ch12.f8

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817336.chap12
1. Abbott, J. R.,, G. H. Palmer,, C. J. Howard,, J. C. Hope,, and W. C. Brown. 2004. Anaplasma marginale major surface protein 2 CD4 +-T-cell epitopes are evenly distributed in conserved and hypervariable regions (HVR), whereas linear B-cell epitopes are predominantly located in the HVR. Infect. Immun. 72: 7360 7366. PubMed CrossRef
2. Alleman, A. R.,, and A. F. Barbet. 1996. Evaluation of Anaplasma marginale major surface protein 3 (MSP3) as a diagnostic test antigen. J. Clin. Microbiol. 34: 270 276. PubMed
3. Alleman, A. R.,, G. H. Palmer,, T. C. McGuire,, T. F. McElwain,, L. E. Perryman,, and A. F. Barbet. 1997. Anaplasma marginale major surface protein 3 is encoded by a polymorphic, multigene family. Infect. Immun. 65: 156 163. PubMed
4. Allred, D. R.,, T. C. McGuire,, G. H. Palmer,, S. R. Leib,, T. M. Harkins,, T. F. McElwain,, and A. F. Barbet. 1990. Molecular basis for surface antigen size polymorphisms and conservation of a neutralization-sensitive epitope in Anaplasma marginale. Proc. Natl. Acad. Sci. USA 87: 3220 3224. PubMed
5. Allsopp, M. T.,, C. M. Dorfling,, J. C. Maillard,, A. Bensaid,, D. T. Haydon,, H. van Heerden,, and B. A. Allsopp. 2001. Ehrlichia ruminantium major antigenic protein gene ( map1) variants are not geographically constrained and show no evidence of having evolved under positive selection pressure. J. Clin. Microbiol. 39: 4200 4203. PubMed CrossRef
6. Andrew, H. R.,, and R. A. Norval. 1989. The carrier status of sheep, cattle and African buffalo recovered from heartwater. Vet. Parasitol. 34: 261 266. PubMed
7. Asanovich, K. M.,, J. S. Bakken,, J. E. Madigan,, M. Aguero-Rosenfeld,, G. P. Wormser,, and J. S. Dumler. 1997. Antigenic diversity of granulocytic Ehrlichia isolates from humans in Wisconsin and New York and a horse in California. J. Infect. Dis. 176: 1029 1034. PubMed CrossRef
8. Barbet, A. F.,, A. Lundgren,, J. Yi,, F. R. Rurangirwa,, and G. H. Palmer. 2000. Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics. Infect. Immun. 68: 6133 6138. PubMed CrossRef
9. Barbet, A. F.,, P. F. Meeus,, M. Belanger,, M. V. Bowie,, J. Yi,, A. M. Lundgren,, A. R. Alleman,, S. J. Wong,, F. K. Chu,, U. G. Munderloh,, and S. D. Jauron. 2003. Expression of multiple outer membrane protein sequence variants from a single genomic locus of Anaplasma phagocytophilum. Infect. Immun. 71: 1706 1718. PubMed CrossRef
10. Barbour, A. G.,, and B. I. Restrepo. 2000. Antigenic variation in vector-borne pathogens. Emerg. Infect. Dis. 6: 449 457. PubMed CrossRef
11. Bekker, C. P.,, M. Postigo,, A. Taoufik,, L. Bell-Sakyi,, C. Ferraz,, D. Martinez,, and F. Jongejan. 2005. Transcription analysis of the major antigenic protein 1 multigene family of three in vitro-cultured Ehrlichia ruminantium isolates. J. Bacteriol. 187: 4782 4791. PubMed CrossRef
12. Berriman, M.,, E. Ghedin,, C. Hertz-Fowler,, G. Blandin,, H. Renauld,, D. C. Bartholomeu,, N. J. Lennard,, E. Caler,, N. E. Hamlin,, B. Haas,, U. Bohme,, L. Hannick,, M. A. Aslett,, J. Shallom,, L. Marcello,, L. Hou,, B. Wickstead,, U. C. Alsmark,, C. Arrowsmith,, R. J. Atkin,, A. J. Barron,, F. Bringaud,, K. Brooks,, M. Carrington,, I. Cherevach,, T. J. Chillingworth,, C. Churcher,, L. N. Clark,, C. H. Corton,, A. Cronin,, R. M. Davies,, J. Doggett,, A. Djikeng,, T. Feldblyum,, M. C. Field,, A. Fraser,, I. Goodhead,, Z. Hance,, D. Harper,, B. R. Harris,, H. Hauser,, J. Hostetler,, A. Ivens,, K. Jagels,, D. Johnson,, J. Johnson,, K. Jones,, A. X. Kerhornou,, H. Koo,, N. Larke,, S. Landfear,, C. Larkin,, V. Leech,, A. Line,, A. Lord,, A. Macleod,, P. J. Mooney,, S. Moule,, D. M. Martin,, G. W. Morgan,, K. Mungall,, H. Norbertczak,, D. Ormond,, G. Pai,, C. S. Peacock,, J. Peterson,, M. A. Quail,, E. Rabbinowitsch,, M. A. Rajandream,, C. Reitter,, S. L. Salzberg,, M. Sanders,, S. Schobel,, S. Sharp,, M. Simmonds,, A. J. Simpson,, L. Tallon,, C. M. Turner,, A. Tait,, A. R. Tivey,, S. Van Aken,, D. Walker,, D. Wanless,, S. Wang,, B. White,, O. White,, S. Whitehead,, J. Woodward,, J. Wortman,, M. D. Adams,, T. M. Embley,, K. Gull,, E. Ullu,, J. D. Barry,, A. H. Fairlamb,, F. Opperdoes,, B. G. Barrell,, J. E. Donelson,, N. Hall,, C. M. Fraser,, S. E. Melville,, and N. M. El-Sayed. 2005. The genome of the African trypanosome Trypanosoma brucei. Science 309: 416 422. PubMed CrossRef
13. Borst, P. 1991. Molecular genetics of antigenic variation. Immunol. Today 12: A29 A33. PubMed CrossRef
14. Brayton, K. A.,, L. S. Kappmeyer,, D. R. Herndon,, M. J. Dark,, D. L. Tibbals,, G. H. Palmer,, T. C. McGuire,, and D. P. Knowles, Jr. 2005. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl. Acad. Sci. USA 102: 844 849. PubMed CrossRef
15. Brayton, K. A.,, D. P. Knowles,, T. C. McGuire,, and G. H. Palmer. 2001. Efficient use of a small genome to generate antigenic diversity in tick-borne ehrlichial pathogens. Proc. Natl. Acad. Sci. USA 98: 4130 4135. PubMed CrossRef
16. Brayton, K. A.,, P. F. Meeus,, A. F. Barbet,, and G. H. Palmer. 2003. Simultaneous variation of the immunodominant outer membrane proteins, MSP2 and MSP3, during Anaplasma marginale persistence in vivo. Infect. Immun. 71: 6627 6632. PubMed CrossRef
17. Brayton, K. A.,, G. H. Palmer,, A. Lundgren,, J. Yi,, and A. F. Barbet. 2002. Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Mol. Microbiol. 43: 1151 1159. PubMed CrossRef
18. Brown, W. C.,, K. A. Brayton,, C. M. Styer,, and G. H. Palmer. 2003. The hypervariable region of Anaplasma marginale major surface protein 2 (MSP2) contains multiple immunodominant CD4 + T lymphocyte epitopes that elicit variant-specific proliferative and IFN-γ responses in MSP2 vaccinates. J. Immunol. 170: 3790 3798. PubMed
19. Brown, W. C.,, T. C. McGuire,, D. Zhu,, H. A. Lewin,, J. Sosnow,, and G. H. Palmer. 2001. Highly conserved regions of the immunodominant major surface protein 2 of the genogroup II ehrlichial pathogen Anaplasma marginale are rich in naturally derived CD4 + T lymphocyte epitopes that elicit strong recall responses. J. Immunol. 166: 1114 1124. PubMed
20. Casey, A. N.,, R. J. Birtles,, A. D. Radford,, K. J. Bown,, N. P. French,, Z. Woldehiwet,, and N. H. Ogden. 2004. Groupings of highly similar major surface protein (p44)-encoding paralogues: a potential index of genetic diversity amongst isolates of Anaplasma phagocytophilum. Microbiology 150: 727 734. PubMed CrossRef
21. Caspersen, K.,, J. H. Park,, S. Patil,, and J. S. Dumler. 2002. Genetic variability and stability of Anaplasma phagocytophila msp2 (p44). Infect. Immun. 70: 1230 1234. PubMed CrossRef
22. Codner, E. C.,, and L. L. Farris-Smith. 1986. Characterization of the subclinical phase of ehrlichiosis in dogs. J. Am. Vet. Med. Assoc. 189: 47 50. PubMed
23. Collins, N. E.,, J. Liebenberg,, E. P. de Villiers,, K. A. Brayton,, E. Louw,, A. Pretorius,, F. E. Faber,, H. van Heerden,, A. Josemans,, M. van Kleef,, H. C. Steyn,, M. F. van Strijp,, E. Zweygarth,, F. Jongejan,, J. C. Maillard,, D. Berthier,, M. Botha,, F. Joubert,, C. H. Corton,, N. R. Thomson,, M. T. Allsopp,, and B. A.. Allsopp. 2005. The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proc. Natl. Acad. Sci. USA 102: 838 843. PubMed CrossRef
24. Dark, M. J.,, D. R. Herndon,, L. S. Kappmeyer,, M. P. Gonzales,, E. Nordeen,, G. H. Palmer,, D. P. Knowles, Jr.,, and K. A. Brayton. 2009. Conservation in the face of diversity: multistrain analysis of an intracellular bacterium. BMC Genomics 10: 16. PubMed CrossRef
25. Davidson, W. R.,, J. M. Lockhart,, D. E. Stallknecht,, E. W. Howerth,, J. E. Dawson,, and Y. Rechav. 2001. Persistent Ehrlichia chaffeensis infection in white-tailed deer. J. Wildl. Dis. 37: 538 546. PubMed
26. de la Fuente, J.,, M. W. Atkinson,, V. Naranjo,, I. G. Fernandez de Mera,, A. J. Mangold,, K. A. Keating,, and K. M. Kocan. 2007. Sequence analysis of the msp4 gene of Anaplasma ovis strains. Vet. Microbiol. 119: 375 381. PubMed CrossRef
27. de la Fuente, J.,, J. C. Garcia-Garcia,, E. F. Blouin,, J. T. Saliki,, and K. M. Kocan. 2002. Infection of tick cells and bovine erythrocytes with one genotype of the intracellular ehrlichia Anaplasma marginale excludes infection with other genotypes. Clin. Diagn. Lab. Immunol. 9: 658 668. PubMed CrossRef
28. Dumler, J. S.,, A. F. Barbet,, C. P. Bekker,, G. A. Dasch,, G. H. Palmer,, S. C. Ray,, Y. Rikihisa,, and F. R. Rurangirwa. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 51: 2145 2165. PubMed CrossRef
29. Dumler, J. S.,, J. E. Madigan,, N. Pusterla,, and J. S. Bakken. 2007. Ehrlichioses in humans: epidemiology, clinical presentation, diagnosis, and treatment. Clin. Infect. Dis. 45( Suppl. 1): S45 S51. PubMed CrossRef
30. Dumler, J. S.,, W. L. Sutker,, and D. H. Walker. 1993. Persistent infection with Ehrlichia chaffeensis. Clin. Infect. Dis. 17: 903 905. PubMed CrossRef
31. Dunning Hotopp, J. C.,, M. Lin,, R. Madupu,, J. Crabtree,, S. V. Angiuoli,, J. Eisen,, R. Seshadri,, Q. Ren,, M. Wu,, T. R. Utterback,, S. Smith,, M. Lewis,, H. Khouri,, C. Zhang,, H. Niu,, Q. Lin,, N. Ohashi,, N. Zhi,, W. Nelson,, L. M. Brinkac,, R. J. Dodson,, M. J. Rosovitz,, J. Sundaram,, S. C. Daugherty,, T. Davidsen,, A. S. Durkin,, M. Gwinn,, D. H. Haft,, J. D. Selengut,, S. A. Sullivan,, N. Zafar,, L. Zhou,, F. Benahmed,, H. Forberger,, R. Halpin,, S. Mulligan,, J. Robinson,, O. White,, Y. Rikihisa,, and H. Tettelin. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2: e21. PubMed CrossRef
32. Egenvall, A.,, I. Lilliehook,, A. Bjoersdorff,, E. O. Engvall,, E. Karlstam,, K. Artursson,, M. Heldtander,, and A. Gunnarsson. 2000. Detection of granulocytic Ehrlichia species DNA by PCR in persistently infected dogs. Vet. Rec. 146: 186 190. PubMed
33. Eid, G.,, D. M. French,, A. M. Lundgren,, A. F. Barbet,, T. F. McElwain,, and G. H. Palmer. 1996. Expression of major surface protein 2 antigenic variants during acute Anaplasma marginale rickettsemia. Infect. Immun. 64: 836 841. PubMed
34. Felek, S.,, S. Telford III,, R. C. Falco,, and Y. Rikihisa. 2004. Sequence analysis of p44 homologs expressed by Anaplasma phagocytophilum in infected ticks feeding on naive hosts and in mice infected by tick attachment. Infect. Immun. 72: 659 666. PubMed CrossRef
35. Finn, R. D.,, J. Mistry,, J. Tate,, P. Coggill,, A. Heger,, J. E. Pollington,, O. L. Gavin,, P. Gunasekaran,, G. Ceric,, K. Forslund,, L. Holm,, E. L. Sonnhammer,, S. R. Eddy,, and A. Bateman. 2010. The Pfam protein families database. Nucleic Acids Res. 38( Database issue): D211 D222. PubMed CrossRef
36. Foley, J. E.,, N. C. Nieto,, A. Barbet,, and P. Foley. 2009. Antigen diversity in the parasitic bacterium Anaplasma phagocytophilum arises from selectively-represented, spatially clustered functional pseudogenes. PLoS One 4: e8265. PubMed CrossRef
37. Franzen, P.,, A. Aspan,, A. Egenvall,, A. Gunnarsson,, E. Karlstam,, and J. Pringle. 2009. Molecular evidence for persistence of Anaplasma phagocytophilum in the absence of clinical abnormalities in horses after recovery from acute experimental infection. J. Vet. Intern. Med. 23: 636 642. PubMed CrossRef
38. French, D. M.,, W. C. Brown,, and G. H. Palmer. 1999. Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia. Infect. Immun. 67: 5834 5840. PubMed
39. French, D. M.,, T. F. McElwain,, T. C. McGuire,, and G. H. Palmer. 1998. Expression of Anaplasma marginale major surface protein 2 variants during persistent cyclic rickettsemia. Infect. Immun. 66: 1200 1207. PubMed
40. Futse, J. E.,, K. A. Brayton,, M. J. Dark,, D. P. Knowles, Jr.,, and G. H. Palmer. 2008. Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proc. Natl. Acad. Sci. USA 105: 2123 2127. PubMed CrossRef
41. Futse, J. E.,, K. A. Brayton,, D. P. Knowles, Jr.,, and G. H. Palmer. 2005. Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants. Mol. Microbiol. 57: 212 221. PubMed CrossRef
42. Futse, J. E.,, K. A. Brayton,, S. D. Nydam,, and G. H. Palmer. 2009. Generation of antigenic variants via gene conversion: evidence for recombination fitness selection at the locus level in Anaplasma marginale. Infect. Immun. 77: 3181 3187. PubMed CrossRef
43. Galletti, M. F.,, M. W. Ueti,, D. P. Knowles, Jr.,, K. A. Brayton,, and G. H. Palmer. 2009. Independence of Anaplasma marginale strains with high and low transmission efficiencies in the tick vector following simultaneous acquisition by feeding on a superinfected mammalian reservoir host. Infect. Immun. 77: 1459 1464. PubMed CrossRef
44. Granquist, E. G.,, K. Bårdsen,, K. Bergström,, and S. Stuen. 2010a. Variant- and individual dependent nature of persistent Anaplasma phagocytophilum infection. Acta Vet. Scand. 52: 25. PubMed CrossRef
45. Granquist, E. G.,, S. Stuen,, L. Crosby,, A. M. Lundgren,, A. R. Alleman,, and A. F. Barbet. 2010b. Variant-specific and diminishing immune responses towards the highly variable MSP2(P44) outer membrane protein of Anaplasma phagocytophilum during persistent infection in lambs. Vet. Immunol. Immunopathol. 133: 117 124. PubMed CrossRef
46. Harrus, S.,, T. Waner,, I. Aizenberg,, J. E. Foley,, A. M. Poland,, and H. Bark. 1998. Amplification of ehrlichial DNA from dogs 34 months after infection with Ehrlichia canis. J. Clin. Microbiol. 36: 73 76. PubMed
47. Herndon, D. R.,, G. H. Palmer,, V. Shkap,, D. P. Knowles, Jr.,, and K. A. Brayton. 2010. Complete genome sequence of Anaplasma marginale subsp. centrale. J. Bacteriol. 192: 379 380. PubMed CrossRef
48. Huang, H.,, X. Wang,, T. Kikuchi,, Y. Kumagai,, and Y. Rikihisa. 2007. Porin activity of Anaplasma phagocytophilum outer membrane fraction and purified P44. J. Bacteriol. 189: 1998 2006. PubMed CrossRef
49. IJdo, J. W.,, W. Sun,, Y. Zhang,, L. A. Magnarelli,, and E. Fikrig. 1998. Cloning of the gene encoding the 44-kilodalton antigen of the agent of human granulocytic ehrlichiosis and characterization of the humoral response. Infect. Immun. 66: 3264 3269. PubMed
50. IJdo, W.,, Y. Zhang,, E. Hodzic,, L. A. Magnarelli,, M. L. Wilson,, S. R. Telford III,, S. W. Barthold,, and E. Fikrig. 1997. The early humoral response in human granulocytic ehrlichiosis. J. Infect. Dis. 176: 687 692. PubMed CrossRef
51. Jorgensen, W. K.,, A. J. de Vos,, and R. J. Dalgliesh. 1989. Infectivity of cryopreserved Babesia bovis, Babesia bigemina and Anaplasma centrale for cattle after thawing, dilution and incubation at 30 degrees C. Vet. Parasitol. 31: 243 251. PubMed
52. Krigel, Y.,, E. Pipano,, and V. Shkap. 1992. Duration of carrier state following vaccination with live Anaplasma centrale. Trop. Anim. Health Prod. 24: 209 210. PubMed
53. Lai, T. H.,, N. G. Orellana,, Y. Yuasa,, and Y. Rikihisa. 2011. Cloning of the major outer membrane protein expression locus in Anaplasma platys and seroreactivity of a species-specific antigen. J. Bacteriol. 193: 2924 2930. PubMed CrossRef
54. Lin, Q.,, and Y. Rikihisa. 2005. Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect. Immun. 73: 5106 5114. PubMed CrossRef
55. Lin, Q.,, Y. Rikihisa,, S. Felek,, X. Wang,, R. F. Massung,, and Z. Woldehiwet. 2004a. Anaplasma phagocytophilum has a functional msp2 gene that is distinct from p44. Infect. Immun. 72: 3883 3889. PubMed CrossRef
56. Lin, Q.,, Y. Rikihisa,, R. F. Massung,, Z. Woldehiwet,, and R. C. Falco. 2004b. Polymorphism and transcription at the p44-1/p44-18 genomic locus in Anaplasma phagocytophilum strains from diverse geographic regions. Infect. Immun. 72: 5574 5581. PubMed CrossRef
57. Lin, Q.,, Y. Rikihisa,, N. Ohashi,, and N. Zhi. 2003. Mechanisms of variable p44 expression by Anaplasma phagocytophilum. Infect. Immun. 71: 5650 5661. PubMed CrossRef
58. Lin, Q.,, C. Zhang,, and Y. Rikihisa. 2006. Analysis of involvement of the RecF pathway in p44 recombination in Anaplasma phagocytophilum and in Escherichia coli by using a plasmid carrying the p44 expression and p44 donor loci. Infect. Immun. 74: 2052 2062. PubMed CrossRef
59. Lin, Q.,, N. Zhi,, N. Ohashi,, H. W. Horowitz,, M. E. Aguero-Rosenfeld,, J. Raffalli,, G. P. Wormser,, and Y. Rikihisa. 2002. Analysis of sequences and loci of p44 homologs expressed by Anaplasma phagocytophila in acutely infected patients. J. Clin. Microbiol. 40: 2981 2988. PubMed CrossRef
60. Löhr, C. V.,, K. A. Brayton,, A. F. Barbet,, and G. H. Palmer. 2004. Characterization of the Anaplasma marginale msp2 locus and its synteny with the omp1/p30 loci of Ehrlichia chaffeensis and E. canis. Gene 325: 115 121. PubMed
61. Löhr, C. V.,, K. A. Brayton,, V. Shkap,, T. Molad,, A. F. Barbet,, W. C. Brown,, and G. H.. Palmer. 2002. Expression of Anaplasma marginale major surface protein 2 operon-associated proteins during mammalian and arthropod infection. Infect. Immun. 70: 6005 6012. PubMed
62. Losos, G. J., 1986. Anaplasmosis, p. 743 795. In G. J. Losos (ed.), Infectious Tropical Diseases of Domestic Animals. Longman Press, Essex, United Kingdom.
63. Massung, R. F.,, J. W. Courtney,, S. L. Hiratzka,, V. E. Pitzer,, G. Smith,, and R. L. Dryden. 2005. Anaplasma phagocytophilum in white-tailed deer. Emerg. Infect. Dis. 11: 1604 1606. PubMed CrossRef
64. Mavromatis, K.,, C. K. Doyle,, A. Lykidis,, N. Ivanova,, M. P. Francino,, P. Chain,, M. Shin,, S. Malfatti,, F. Larimer,, A. Copeland,, J. C. Detter,, M. Land,, P. M. Richardson,, X. J. Yu,, D. H. Walker,, J. W. McBride,, and N. C. Kyrpides. 2006. The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies. J. Bacteriol. 188: 4015 4023. PubMed CrossRef
65. McBride, J. W.,, X. Yu,, and D. H. Walker. 1999. Molecular cloning of the gene for a conserved major immunoreactive 28-kilodalton protein of Ehrlichia canis: a potential serodiagnostic antigen. Clin. Diagn. Lab. Immunol. 6: 392 399. PubMed
66. McCarthy, A. 2010. Third generation DNA sequencing: Pacific Biosciences’ single molecule real time technology. Chem. Biol. 17: 675 676. PubMed CrossRef
67. McGuire, T. C.,, G. H. Palmer,, W. L. Goff,, M. I. Johnson,, and W. C. Davis. 1984. Common and isolate-restricted antigens of Anaplasma marginale detected with monoclonal antibodies. Infect. Immun. 45: 697 700. PubMed
68. Meeus, P. F.,, K. A. Brayton,, G. H. Palmer,, and A. F. Barbet. 2003. Conservation of a gene conversion mechanism in two distantly related paralogues of Anaplasma marginale. Mol. Microbiol. 47: 633 643. PubMed CrossRef
69. Molad, T.,, B. Leibovich,, M. Mazuz,, L. Fleiderovich,, L. Fish,, and V. Shkap. 2010. Identification of Anaplasma centrale major surface protein-2 pseudogenes. Vet. Microbiol. 143: 277 283. PubMed CrossRef
70. Morrison, L. J.,, P. Majiwa,, A. F. Read,, and J. D. Barry. 2005. Probabilistic order in antigenic variation of Trypanosoma brucei. Int. J. Parasitol. 35: 961 972. PubMed CrossRef
71. Morrison, L. J.,, L. Marcello,, and R. McCulloch. 2009. Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity. Cell. Microbiol. 11: 1724 1734. PubMed CrossRef
72. Murphy, C. I.,, J. R. Storey,, J. Recchia,, L. A. Doros-Richert,, C. Gingrich-Baker,, K. Munroe,, J. S. Bakken,, R. T. Coughlin,, and G. A. Beltz. 1998. Major antigenic proteins of the agent of human granulocytic ehrlichiosis are encoded by members of a multigene family. Infect. Immun. 66: 3711 3718. PubMed
73. Noh, S. M.,, K. A. Brayton,, D. P. Knowles,, J. T. Agnes,, M. J. Dark,, W. C. Brown,, T. V. Baszler,, and G. H. Palmer. 2006. Differential expression and sequence conservation of the Anaplasma marginale msp2 gene superfamily outer membrane proteins. Infect. Immun. 74: 3471 3479. PubMed CrossRef
74. Ohashi, N.,, Y. Rikihisa,, and A. Unver. 2001. Analysis of transcriptionally active gene clusters of major outer membrane protein multigene family in Ehrlichia canis and E. chaffeensis. Infect. Immun. 69: 2083 2091. PubMed CrossRef
75. Palmer, G. H.,, J. R. Abbott,, D. M. French,, and T. F. McElwain. 1998. Persistence of Anaplasma ovis infection and conservation of the msp-2 and msp-3 multigene families within the genus Anaplasma. Infect. Immun. 66: 6035 6039. PubMed
76. Palmer, G. H.,, and K. A. Brayton. 2007. Gene conversion is a convergent strategy for pathogen antigenic variation. Trends Parasitol. 23: 408 413. PubMed CrossRef
77. Palmer, G. H.,, G. Eid,, A. F. Barbet,, T. C. McGuire,, and T. F. McElwain. 1994. The immunoprotective Anaplasma marginale major surface protein 2 is encoded by a polymorphic multigene family. Infect. Immun. 62: 3808 3816. PubMed
78. Palmer, G. H.,, J. E. Futse,, C. K. Leverich,, D. P. Knowles, Jr.,, F. R. Rurangirwa,, and K. A. Brayton. 2007. Selection for simple major surface protein 2 variants during Anaplasma marginale transmission to immunologically naive animals. Infect. Immun. 75: 1502 1506. PubMed CrossRef
79. Palmer, G. H.,, D. P. Knowles, Jr.,, J. L. Rodriguez,, D. P. Gnad,, L. C. Hollis,, T. Marston,, and K. A. Brayton. 2004. Stochastic transmission of multiple genotypically distinct Anaplasma marginale strains in a herd with high prevalence of Anaplasma infection. J. Clin. Microbiol. 42: 5381 5384. PubMed CrossRef
80. Palmer, G. H.,, F. R. Rurangirwa,, and T. F. McElwain. 2001. Strain composition of the ehrlichia Anaplasma marginale within persistently infected cattle, a mammalian reservoir for tick transmission. J. Clin. Microbiol. 39: 631 635. PubMed CrossRef
81. Park, J.,, K. S. Choi,, and J. S. Dumler. 2003a. Major surface protein 2 of Anaplasma phagocytophilum facilitates adherence to granulocytes. Infect. Immun. 71: 4018 4025. PubMed CrossRef
82. Park, J.,, K. J. Kim,, D. J. Grab,, and J. S. Dumler. 2003b. Anaplasma phagocytophilum major surface protein-2 (Msp2) forms multimeric complexes in the bacterial membrane. FEMS Microbiol. Lett. 227: 243 247. PubMed
83. Pipano, E.,, Y. Krigel,, M. Frank,, A. Markovics,, and E. Mayer. 1986. Frozen Anaplasma centrale vaccine against anaplasmosis in cattle. Br. Vet. J. 142: 553 556. PubMed CrossRef
84. Potgieter, F. T. 1979. Epizootiology and control of anaplasmosis in South africa. J. S. Afr. Vet. Assoc. 50: 367 372. PubMed
85. Psaroulaki, A.,, D. Chochlakis,, V. Sandalakis,, I. Vranakis,, I. Ioannou,, and Y. Tselentis. 2009. Phylogentic analysis of Anaplasma ovis strains isolated from sheep and goats using groEL and msp4 genes. Vet. Microbiol. 138: 394 400. PubMed CrossRef
86. Reddy, G. R.,, C. R. Sulsona,, A. F. Barbet,, S. M. Mahan,, M. J. Burridge,, and A. R. Alleman. 1998. Molecular characterization of a 28 kDa surface antigen gene family of the tribe Ehrlichiae. Biochem. Biophys. Res. Commun. 247: 636 643. PubMed CrossRef
87. Robinson, N. P.,, N. Burman,, S. E. Melville,, and J. D. Barry. 1999. Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol. Cell. Biol. 19: 5839 5846. PubMed
88. Rodriguez, J. L.,, G. H. Palmer,, D. P. Knowles, Jr.,, and K. A. Brayton. 2005. Distinctly different msp2 pseudogene repertoires in Anaplasma marginale strains that are capable of superinfection. Gene 361: 127 132. PubMed CrossRef
89. Rudenko, G. 2010. Epigenetics and transcriptional control in African trypanosomes. Essays Biochem. 48: 201 219. PubMed CrossRef
90. Shkap, V.,, B. Leibovitz,, Y. Krigel,, T. Molad,, L. Fish,, M. Mazuz,, L. Fleiderovitz,, and I. Savitsky. 2008. Concomitant infection of cattle with the vaccine strain Anaplasma marginale ss centrale and field strains of A. marginale. Vet. Microbiol. 130: 277 284. PubMed CrossRef
91. Shkap, V.,, T. Molad,, K. A. Brayton,, W. C. Brown,, and G. H. Palmer. 2002. Expression of major surface protein 2 variants with conserved T-cell epitopes in Anaplasma centrale vaccinates. Infect. Immun. 70: 642 648. PubMed CrossRef
92. Taylor, J. E.,, and G. Rudenko. 2006. Switching trypanosome coats: what’s in the wardrobe? Trends Genet. 22: 614 620. PubMed CrossRef
93. Teglas, M. B.,, and J. Foley. 2006. Differences in the transmissibility of two Anaplasma phagocytophilum strains by the North American tick vector species, Ixodes pacificus and Ixodes scapularis (Acari: Ixodidae). Exp. Appl. Acarol. 38: 47 58. PubMed CrossRef
94. Telford, S. R. III,, J. E. Dawson,, P. Katavolos,, C. K. Warner,, C. P. Kolbert,, and D. H. Persing. 1996. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl. Acad. Sci. USA 93: 6209 6214. PubMed
95. Theiler, A. 1910. Report of the Government Veterinary Bacteriologist, 1908-1909, p. 7 64. Department of Agriculture, Union of South Africa, Transvaal, South Africa.
96. Theiler, A. 1911. First Report of the Director of Veterinary Research, Union of South Africa, p. 7 46. Department of Agriculture, Union of South Africa, Johannesburg, South Africa.
97. Theiler, A. 1912. Gallsickness of imported cattle and the protective inoculation against this disease. Agric. J. Union S. Afr. 3: 7 46.
98. Unver, A.,, N. Ohashi,, T. Tajima,, R. W. Stich,, D. Grover,, and Y. Rikihisa. 2001. Transcriptional analysis of p30 major outer membrane multigene family of Ehrlichia canis in dogs, ticks, and cell culture at different temperatures. Infect. Immun. 69: 6172 6178. PubMed CrossRef
99. Unver, A.,, Y. Rikihisa,, R. W. Stich,, N. Ohashi,, and S. Felek. 2002. The omp-1 major outer membrane multigene family of Ehrlichia chaffeensis is differentially expressed in canine and tick hosts. Infect. Immun. 70: 4701 4704. PubMed CrossRef
100. van Heerden, H.,, N. E. Collins,, K. A. Brayton,, C. Rademeyer,, and B. A. Allsopp. 2004. Characterization of a major outer membrane protein multigene family in Ehrlichia ruminantium. Gene 330: 159 168. PubMed CrossRef
101. van Vliet, A. H.,, F. Jongejan,, M. van Kleef,, and B. A. van der Zeijst. 1994. Molecular cloning, sequence analysis, and expression of the gene encoding the immunodominant 32-kilodalton protein of Cowdria ruminantium. Infect. Immun. 62: 1451 1456. PubMed
102. Watt, V. M.,, C. J. Ingles,, M. S. Urdea,, and W. J.. Rutter. 1985. Homology requirements for recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 4768 4772. PubMed
103. Wen, B.,, Y. Rikihisa,, J. M. Mott,, R. Greene,, H. Y. Kim,, N. Zhi,, G. C. Couto,, A. Unver,, and R. Bartsch. 1997. Comparison of nested PCR with immunofluorescent-antibody assay for detection of Ehrlichia canis infection in dogs treated with doxycycline. J. Clin. Microbiol. 35: 1852 1855. PubMed
104. Woldehiwet, Z. 2010. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 167: 108 122. PubMed CrossRef
105. Young, D.,, T. Hussell,, and G. Dougan. 2002. Chronic bacterial infections: living with unwanted guests. Nat. Immunol. 3: 1026 1032. PubMed CrossRef
106. Yu, X.,, J. W. McBride,, X. Zhang,, and D. H. Walker. 2000. Characterization of the complete transcriptionally active Ehrlichia chaffeensis 28 kDa outer membrane protein multigene family. Gene 248: 59 68. PubMed
107. Zhang, C.,, Q. Xiong,, T. Kikuchi,, and Y. Rikihisa. 2008. Identification of 19 polymorphic major outer membrane protein genes and their immunogenic peptides in Ehrlichia ewingii for use in a serodiagnostic assay. Clin. Vaccine Immunol. 15: 402 411. PubMed CrossRef
108. Zhi, N.,, N. Ohashi,, and Y. Rikihisa. 2002. Activation of a p44 pseudogene in Anaplasma phagocytophila by bacterial RNA splicing: a novel mechanism for post-transcriptional regulation of a multigene family encoding immunodominant major outer membrane proteins. Mol. Microbiol. 46: 135 145. PubMed CrossRef
109. Zhi, N.,, Y. Rikihisa,, H. Y. Kim,, G. P. Wormser,, and H. W. Horowitz. 1997. Comparison of major antigenic proteins of six strains of the human granulocytic ehrlichiosis agent by Western immunoblot analysis. J. Clin. Microbiol. 35: 2606 2611. PubMed

Tables

Generic image for table
TABLE 1

donor allele repertoires

Citation: Brayton K. 2012. Persistence and Antigenic Variation, p 366-390. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error