1887

Chapter 13 : Transmission and the Determinants of Transmission Efficiency

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Transmission and the Determinants of Transmission Efficiency, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap13-2.gif

Abstract:

Bacteria within the order would have little impact on human and veterinary medicine in the absence of the arthropod vector. Interestingly, the influence of primary infections with one sp. can influence the success of transovarial transmission of a second. This chapter details some fascinating trends observed regarding vertical and horizontal transmission. Biotic and abiotic factors determine the stability of any sylvatic or zoonotic transmission cycle. The chapter centers on a discussion of the attributes of successful pathogen transmission in the context of the vector's ability to modulate (i) the mammalian host's response during acquisition and transmission and (ii) microbial growth within the vector during the maintenance phase. The discussion in these two sections essentially defines the environment and competency of both the vector and mammalian host as determinants of transmission and transmission efficiency. The chapter ends with a survey of fluctuating ecological trends that can enhance or diminish the potency of vector-borne rickettsial zoonotic cycles. Even though acquisition rates were similar for each transmission experiment, intergenera transmission required cofeeding of multiple infected mites with uninfected mites. Rickettsial diseases have the potential to change the outcomes of war and prey on the unfortunate circumstances that arise from disaster.

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13

Key Concept Ranking

Small Interfering RNA
0.505618
Infectious Diseases
0.48893642
Human Monocytic Ehrlichiosis
0.46587867
Immune Systems
0.43342325
0.505618
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Tick-host-rickettsiae interaction. (A) Ticks secrete a number of antihemostatic and immunomodulatory substances into the bite site to increase blood flow and reduce immune activation to the tick during feeding. Rickettsiae are imbibed with the blood meal or transmitted to the host during this stage of the interaction. As rickettsiae enter the midgut lumen, they attach to the host cell (B) and induce phagocytosis so as to be enveloped in a vacuole that is rapidly degraded (C) to lie in direct contact with the cytoplasm. (D) Spotted fever group rickettsiae move between and within each host cell using actin tail polymerization. (E) Ticks respond to rickettsiae by mounting an innate immune response that involves antimicrobial peptide gene transcription. Recent work suggests that the rickettsial invasion process is limited by tick antimicrobial peptides. doi:10.1128/9781555817336.ch13.f1

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Vectors of the . (A) tick. (B) Oriental rat flea, . (C) Body louse, . (D) Trombiculid larval mite (chigger). (Images A, B, and C from the Centers for Disease Control and Prevention Public Health Image Library. Image A modified from CDC image 10865; image B modified from CDC image 4633; image C modified from CDC image 9208. Image D from Wikipedia Commons. Photo credit: Luc Viatour; www.lucnix.be.) doi:10.1128/9781555817336.ch13.f2

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Sylvatic and zoonotic transmission. Rickettsiae are transmitted in sylvatic cycles that involve a vector, in this case a tick, and their mammalian, reptilian, or avian hosts. Humans are accidentally infected when they encroach into the habitat where the sylvatic cycle exists. The cycle begins (1) and ends (4) when infected and uninfected ticks feed on large mammals. Horizontal transmission between infected and uninfected ticks can occur at this stage through cofeeding. Uninfected adults can also contract the pathogen by feeding on infected large mammals. If the bacterium is transmitted vertically (transovarial transmission), the egg clutch will be infected. Otherwise, uninfected egg masses will be oviposited. If transovarial transmission occurs, infected larvae will perpetuate pathogen transmission by feeding on small to medium-size hosts (2). Uninfected larvae can become infected at step 2 through cofeeding with infected larvae or by feeding on infected hosts. Infected larvae can also feed on humans (Z), representing the first point where humans can be infected. Transmission continues to uninfected hosts and ticks in the same manner at stage 3, perpetuating the pathogen in nature. Human infection can occur at Z and Z. Solid gray curved arrows follow the sylvatic cycle. The gray-to-white gradient curved arrows indicate accidental human infection. Solid gray straight arrows denote the infected path, while the open straight arrow denotes the uninfected path. (Portions of this figure adapted from images from the Centers for Disease Control and Prevention Public Health Image Library. Ticks modified from CDC image 6005; human modified from CDC image 3425; small mammals modified from CDC image 3381; large mammals modified from CDC image 3392.) doi: 10.1128/9781555817336.ch13.f3

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Endosymbiotic rickettsial modulation of tick immune activation. Endosymbiotic rickettsiae like may recalibrate immune homeostatic norms, thereby increasing the sensitivity of ticks to secondary rickettsial infection. Primary rickettsial infections may increase the immunological sensitivity of ticks to secondary rickettsial infections. Although this hypothesis has not been tested, it is possible that by-products of replication like free peptidoglycan functionally saturate recognition proteins such as PGRP-LB, which normally prevents activation by degrading immunostimulatory peptidoglycan. Alternatively, rickettsiae may modulate host gene transcription or posttranslational modification of immune effectors to make them more potent. We hypothesize that endosymbiotic rickettsiae effectively lower the activation threshold (B) or increase basal homeostatic immune activity, bringing it closer to the activation threshold (C). Scenario A represents immune activation in ticks that possess no infection. Scenario D represents the immune activation that occurs when ticks possess a primary endosymbiont and imbibe a secondary rickettsia. We hypothesize that rapid and possibly sustained immune activation in scenario D limits infection of the ovary by a second rickettsia. Dashed lines represent immune activation threshold; solid lines represent baseline (constitutive) immune activity. doi:10.1128/9781555817336.ch13.f4

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817336.chap13
1. Anderson, J. F.,, and L. A. Magnarelli. 2008. Biology of ticks. Infect. Dis. Clin. North Am. 22:195215, v.PubMed CrossRef
2. Azad, A. F.,, and C. B. Beard. 1998. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 4:179186. PubMed CrossRef
3. Azad, A. F.,, S. Radulovic,, J. A. Higgins,, B. H. Noden,, and J. M. Troyer. 1997. Flea-borne rickettsioses: ecologic considerations. Emerg. Infect. Dis. 3:319327. PubMed CrossRef
4. Baldridge, G. D.,, T. J. Kurtti,, N. Burkhardt,, A. S. Baldridge,, C. M. Nelson,, A. S. Oliva,, and U. G. Munderloh. 2007. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J. Invertebr. Pathol. 94:163174. PubMed CrossRef
5. Bitam, I.,, K. Dittmar,, P. Parola,, M. F. Whiting,, and D. Raoult. 2010. Fleas and flea-borne diseases. Int. J. Infect. Dis. 14:e667e676. PubMed CrossRef
6. Bowman, A. S.,, L. B. Coons,, G. R. Needham,, and J. R. Sauer. 1997. Tick saliva: recent advances and implications for vector competence. Med. Vet. Entomol. 11:277285. PubMed
7. Bozeman, F. M.,, D. E. Sonenshine,, M. S. Williams,, D. P. Chadwick,, D. M. Lauer,, and B. L. Elisberg. 1981. Experimental infection of ectoparasitic arthropods with Rickettsia prowazekii (GvF-16 strain) and transmission to flying squirrels. Am. J. Trop. Med. Hyg. 30:253263. PubMed
8. Brossard, M.,, and S. K. Wikel. 2004. Tick immunobiology. Parasitology 129(Suppl.):S161S176. PubMed
9. Burgdorfer, W.,, S. F. Hayes,, and A. J. Mavros,. 1981. Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii, p. 585594. In W. Burgdorfer, and R. L. Anacker (ed.), Rickettsiae and Rickettsial Diseases. Academic Press, New York, NY.
10. Ceraul, S. M.,, A. Chung,, K. T. Sears,, V. L. Popov,, M. Beier-Sexton,, M. S. Rahman,, and A. F. Azad. 2011. A Kunitz protease inhibitor from Dermacentor variabilis, a vector for spotted fever group rickettsiae, limits Rickettsia montanensis invasion. Infect. Immun. 79:321329. PubMed CrossRef
11. Ceraul, S. M.,, S. M. Dreher-Lesnick,, J. J. Gillespie,, M. S. Rahman,, and A. F. Azad. 2007. New tick defensin isoform and antimicrobial gene expression in response to Rickettsia montanensis challenge. Infect. Immun. 75:19731983. PubMed CrossRef
12. Ceraul, S. M.,, S. M. Dreher-Lesnick,, A. Mulenga,, M. S. Rahman,, and A. F. Azad. 2008. Functional characterization and novel rickettsiostatic effects of a Kunitz-type serine protease inhibitor from the tick Dermacentor variabilis. Infect. Immun. 76:54295435. PubMed CrossRef
13. Ceraul, S. M.,, D. E. Sonenshine,, and W. L. Hynes. 2002. Resistance of the tick Dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). J. Med. Entomol. 39:376383. PubMed
14. Ceraul, S. M.,, D. E. Sonenshine,, R. E. Ratzlaff,, and W. L. Hynes. 2003. An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Insect Biochem. Mol. Biol. 33:10991103. PubMed
15. Dautel, H.,, C. Dippel,, R. Oehme,, K. Hartelt,, and E. Schettler. 2006. Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4. Int. J. Med. Microbiol. 296(Suppl. 40):149156. PubMed CrossRef
16. de la Fuente, J.,, E. F. Blouin,, and K. M. Kocan. 2003. Infection exclusion of the rickettsial pathogen Anaplasma marginale in the tick vector Dermacentor variabilis. Clin. Diagn. Lab. Immunol. 10:182184. PubMed CrossRef
17. de la Fuente, J.,, J. C. Garcia-Garcia,, E. F. Blouin,, J. T. Saliki,, and K. M. Kocan. 2002. Infection of tick cells and bovine erythrocytes with one genotype of the intracellular ehrlichia Anaplasma marginale excludes infection with other genotypes. Clin. Diagn. Lab. Immunol. 9:658668. PubMed CrossRef
18. de la Fuente, J.,, V. Naranjo,, F. Ruiz-Fons,, U. Höfle,, I. G. Fernández De Mera,, D. Villanúa,, C. Almazán,, A. Torina,, S. Caracappa,, K. M. Kocan,, and C. Gortázar. 2005. Potential vertebrate reservoir hosts and invertebrate vectors of Anaplasma marginale and A. phagocytophilum in central Spain. Vector Borne Zoonotic Dis. 5:390400. PubMed CrossRef
19. Demma, L. J.,, J. H. McQuiston,, W. L. Nicholson,, S. M. Murphy,, P. Marumoto,, M. Sengebau-Kingzio,, S. Kuartei,, A. M. Durand,, and D. L. Swerdlow. 2006. Scrub typhus, Republic of Palau. Emerg. Infect. Dis. 12:290295. PubMed CrossRef
20. Dreher-Lesnick, S. M.,, S. M. Ceraul,, S. C. Lesnick,, J. J. Gillespie,, J. M. Anderson,, R. C. Jochim,, J. G. Valenzuela,, and A. F. Azad. 2009. Analysis of Rickettsia typhi-infected and uninfected cat flea (Ctenocephalides felis) midgut cDNA libraries: deciphering molecular pathways involved in host response to R. typhi infection. Insect Mol. Biol. 19:229241. PubMed CrossRef
21. Duma, R. J.,, D. E. Sonenshine,, F. M. Bozeman,, J. M. Veazey, Jr.,, B. L. Elisberg,, D. P. Chadwick,, N. I. Stocks,, T. M. McGill,, G. B. Miller, Jr.,, and J. N. MacCormack. 1981. Epidemic typhus in the United States associated with flying squirrels. JAMA 245:23182323. PubMed CrossRef
22. Dushay, M. S.,, and E. D. Eldon. 1998. Drosophila immune responses as models for human immunity. Am. J. Hum. Genet. 62:1014. PubMed CrossRef
23. Eggenberger, L. R.,, W. J. Lamoreaux,, and L. B. Coons. 1990. Hemocytic encapsulation of implants in the tick Dermacentor variabilis. Exp. Appl. Acarol. 9:279287. PubMed
24. Ellis, B. R.,, and B. A. Wilcox. 2009. The ecological dimensions of vector-borne disease research and control. Cad. Saude Publica 25(Suppl. 1):S155S167. PubMed
25. Eriks, I. S.,, D. Stiller,, and G. H. Palmer. 1993. Impact of persistent Anaplasma marginale rickettsemia on tick infection and transmission. J. Clin. Microbiol. 31:20912096. PubMed
26. Feng, H. M.,, and D. H. Walker. 2000. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect. Immun. 68:67296736. PubMed CrossRef
27. Fine, P. E. M., 1981. Epidemiological principles of vector-mediated transmission, p. 7791. In J. J. McKelvey,, B. F. Eldridge,, and K. Maramorosche (ed.), Vectors of Disease Agents. Praeger, New York, NY.
28. Fogaca, A. C.,, P. I. da Silva, Jr.,, M. T. Miranda,, A. G. Bianchi,, A. Miranda,, P. E. Ribolla,, and S. Daffre. 1999. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol. Chem. 274:2533025334. PubMed CrossRef
29. Fogaca, A. C.,, D. M. Lorenzini,, L. M. Kaku,, E. Esteves,, P. Bulet,, and S. Daffre. 2004. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev. Comp. Immunol. 28:191200. PubMed
30. Frances, S. P.,, P. Watcharapichat,, D. Phulsuksombati,, and P. Tanskul. 2000. Transmission of Orientia tsutsugamushi, the aetiological agent for scrub typhus, to co-feeding mites. Parasitology 120:601607. PubMed
31. Francischetti, I. M.,, T. N. Mather,, and J. M. Ribeiro. 2004. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis. Thromb. Haemost. 91:886898. PubMed CrossRef
32. Friggens, M. M.,, and P. Beier. 2010. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164:809820. PubMed CrossRef
33. Futse, J. E.,, M. W. Ueti,, D. P. Knowles, Jr.,, and G. H. Palmer. 2003. Transmission of Anaplasma marginale by Boophilus microplus: retention of vector competence in the absence of vector-pathogen interaction. J. Clin. Microbiol. 41:38293834. PubMed
34. Gerardo, N. M.,, B. Altincicek,, C. Anselme,, H. Atamian,, S. M. Barribeau,, M. de Vos,, E. J. Duncan,, J. D. Evans,, T. Gabaldón,, M. Ghanim,, A. Heddi,, I. Kaloshian,, A. Latorre,, A. Moya,, A. Nakabachi,, B. J. Parker,, V. Pérez-Brocal,, M. Pignatelli,, Y. Rahbé,, J. S. Ramsey,, C. J. Spragg,, J. Tamames,, D. Tamarit,, C. Tamborindeguy,, C. Vincent-Monegat,, and A. Vilcinskas. 2010. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 11:R21. PubMed CrossRef
35. Gray, J. S.,, H. Dautel,, A. Estrada-Peña,, O. Kahl,, and E. Lindgren. 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009:593232. PubMed CrossRef
36. Huang, B.,, A. Hubber,, J. A. McDonough,, C. R. Roy,, M. A. Scidmore,, and J. A. Carlyon. 2010. The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell. Microbiol. 12:12921307. PubMed CrossRef
37. Hultmark, D. 2003. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15:1219. PubMed
38. Inoue, N.,, K. Hanada,, N. Tsuji,, I. Igarashi,, H. Nagasawa,, T. Mikami,, and K. Fujisaki. 2001. Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). J. Med. Entomol. 38:514519. PubMed
39. Jensenius, M.,, P. E. Fournier,, and D. Raoult. 2004. Rickettsioses and the international traveler. Clin. Infect. Dis. 39:14931499. PubMed CrossRef
40. Johns, R.,, D. E. Sonenshine,, and W. L. Hynes. 1998. Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence for the existence of antimicrobial proteins in tick hemolymph. J. Med. Entomol. 35:458464. PubMed
41. Johns, R.,, D. E. Sonenshine,, and W. L. Hynes. 2001. Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect Biochem. Mol. Biol. 31:857865. PubMed
42. Jones, K. E.,, N. G. Patel,, M. A. Levy,, A. Storeygard,, D. Balk,, J. L. Gittleman,, and P. Daszak. 2008. Global trends in emerging infectious diseases. Nature 451:990993. PubMed CrossRef
43. Jongejan, F.,, and G. Uilenberg. 2004. The global importance of ticks. Parasitology 129(Suppl.):S3S14. PubMed
44. Kocan, K. M.,, and J. de la Fuente. 2003. Co-feeding studies of ticks infected with Anaplasma marginale. Vet. Parasitol. 112:295305. PubMed
45. Kovár, L. 2004. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol. (Praha) 49:327336. PubMed
46. Kovats, R. S.,, D. H. Campbell-Lendrum,, A. J. McMichael,, A. Woodward,, and J. S. Cox. 2001. Early effects of climate change: do they include changes in vector-borne disease? Philos. Trans. R. Soc. Lond. B Biol. Sci. 356:10571068. PubMed CrossRef
47. Krusell, A.,, J. A. Comer,, and D. J. Sexton. 2002. Rickettsialpox in North Carolina: a case report. Emerg. Infect. Dis. 8:727728. PubMed CrossRef
48. Kubes, M.,, P. Kocakova,, M. Slovak,, M. Slavikova,, N. Fuchsberger,, and P. A. Nuttall. 2002. Heterogeneity in the effect of different ixodid tick species on human natural killer cell activity. Parasite Immunol. 24:2328. PubMed CrossRef
49. Lafferty, K. D. 2009. The ecology of climate change and infectious diseases. Ecology 90:888900. PubMed
50. Lemaitre, B.,, J. M. Reichhart,, and J. A. Hoffmann. 1997. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci USA 94:1461414619. PubMed
51. Lievens, S.,, S. Goormachtig,, and M. Holsters. 2004. Nodule-enhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata. J. Exp. Bot. 55:8997. PubMed CrossRef
52. Lockhart, J. M.,, W. R. Davidson,, D. E. Stallknecht,, and J. E. Dawson. 1998. Lack of seroreactivity to Ehrlichia chaffeensis among rodent populations. J. Wildl. Dis. 34:392396. PubMed
53. Macaluso, K. R.,, A. Mulenga,, J. A. Simser,, and A. F. Azad. 2003. Differential expression of genes in uninfected and Rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect. Immun. 71:61656170. PubMed CrossRef
54. Macaluso, K. R.,, D. E. Sonenshine,, S. M. Ceraul,, and A. F. Azad. 2002. Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second rickettsia. J. Med. Entomol. 39:809813. PubMed
55. Manen, J. F.,, P. Simon,, J. C. Van Slooten,, M. Østerås,, S. Frutiger,, and G. J. Hughes. 1991. A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell 3:259270. PubMed CrossRef
56. Marx, J. 2004. The roots of plant-microbe collaborations. Science 304:234236. PubMed CrossRef
57. Mather, T. N.,, and H. S. Ginsberg,. 1994. Vector-host-pathogen relationships: transmission dynamics of tick-borne infections, p. 6890. In D. E. Sonenshine, and T. N. Mather (ed.), Ecological Dynamics of Tick-Borne Zoonoses. Oxford University Press, New York, NY.
58. McElroy, K. M.,, B. L. Blagburn,, E. B. Breitschwerdt,, P. S. Mead,, and J. H. McQuiston. 2010. Flea-associated zoonotic diseases of cats in the USA: bartonellosis, flea-borne rickettsioses, and plague. Trends Parasitol. 26:197204. PubMed CrossRef
59. Mejri, N.,, N. Franscini,, B. Rutti,, and M. Brossard. 2001. Th2 polarization of the immune response of BALB/c mice to Ixodes ricinus instars, importance of several antigens in activation of specific Th2 subpopulations. Parasite Immunol. 23:6169. PubMed
60. Mulenga, A.,, K. R. Macaluso,, J. A. Simser,, and A. F. Azad. 2003. Dynamics of Rickettsia-tick interactions: identification and characterization of differentially expressed mRNAs in uninfected and infected Dermacentor variabilis. Insect Mol. Biol. 12:185193. PubMed CrossRef
61. Nakajima, Y.,, J. Ishibashi,, F. Yukuhiro,, A. Asaoka,, D. Taylor,, and M. Yamakawa. 2003a. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim. Biophys. Acta 1624:125130. PubMed
62. Nakajima, Y.,, K. Ogihara,, D. Taylor,, and M. Yamakawa. 2003b. Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J. Med. Entomol. 40:7881. PubMed
63. Nakajima, Y.,, H. Saido-Sakanaka,, D. Taylor,, and M. Yamakawa. 2003c. Up-regulated humoral immune response in the soft tick, Ornithodoros moubata (Acari: Argasidae). Parasitol. Res. 91:476481. PubMed CrossRef
64. Nakajima, Y.,, A. Van der Goes van Naters-Yasui,, D. Taylor,, and M. Yamakawa. 2002. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol. Biol. 11:611618. PubMed
65. Nakajima, Y.,, A. Van der Goes van Naters-Yasui,, D. Taylor,, and M. Yamakawa. 2001. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem. Mol. Biol. 31:747751. PubMed
66. Nakayama, K.,, K. Kurokawa,, M. Fukuhara,, H. Urakami,, S. Yamamoto,, K. Yamazaki,, Y. Ogura,, T. Ooka,, and T. Hayashi. 2008. Genome comparison and phylogenetic analysis of Orientia tsutsugamushi strains. DNA Res. 17:281291. PubMed CrossRef
67. Niebylski, M. L.,, M. G. Peacock,, and T. G. Schwan. 1999. Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl. Environ. Microbiol. 65:773778. PubMed
68. Nuttall, P. A.,, and M. Labuda. 2004. Tick-host interactions: saliva-activated transmission. Parasitology 129(Suppl.):S177S189. PubMed
69. Oliver, J. H., Jr. 1989. Biology and systematics of ticks (Acari:Ixodida). Annu. Rev. Ecol. Syst. 20:397430.
70. Paddock, C. D.,, and J. E. Childs. 2003. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin. Microbiol. Rev. 16:3764. PubMed CrossRef
71. Paddock, C. D.,, J. W. Sumner,, J. A. Comer,, S. R. Zaki,, C. S. Goldsmith,, J. Goddard,, S. L. McLellan,, C. L. Tamminga,, and C. A. Ohl. 2004. Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin. Infect. Dis. 38:805811. PubMed CrossRef
72. Parmenter, R. R.,, E. P. Yadav,, C. A. Parmenter,, P. Ettestad,, and K. L. Gage. 1999. Incidence of plague associated with increasedwinter-spring precipitation in New Mexico. Am. J. Trop. Med. Hyg. 61:814821. PubMed CrossRef
73. Parola, P.,, C. D. Paddock,, and D. Raoult. 2005. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18:719756. PubMed CrossRef
74. Pereira, L. S.,, P. L. Oliveira,, C. Barja-Fidalgo,, and S. Daffre. 2001. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp. Parasitol. 99:6672. PubMed CrossRef
75. Randolph, S. E. 2009. Perspectives on climate change impacts on infectious diseases. Ecology 90: 927931. PubMed
76. Randolph, S. E.,, and D. J. Rogers,. 2007. Ecology of tick-borne disease and the role of climate, p. 167186. In O. Ergonul, and C. A. Whitehouse (ed.), Crimean-Congo Hemorrhagic Fever. Springer, Dordrecht, The Netherlands.
77. Randolph, S. E.,, and D. J. Rogers. 2010. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat. Rev. Microbiol. 8:361371. PubMed CrossRef
78. Raoult, D.,, O. Dutour,, L. Houhamdi,, R. Jankauskas,, P. E. Fournier,, Y. Ardagna,, M. Drancourt,, M. Signoli,, V. D. La,, Y. Macia,, and G. Aboudharam. 2006. Evidence for louse-transmitted diseases in soldiers of Napoleon’s Grand Army in Vilnius. J. Infect. Dis. 193:112120. PubMed CrossRef
79. Raoult, D.,, J. B. Ndihokubwayo,, H. Tissot-Dupont,, V. Roux,, B. Faugere,, R. Abegbinni,, and R. J. Birtles. 1998. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352:353358. PubMed CrossRef
80. Raoult, D.,, and V. Roux. 1999. The body louse as a vector of reemerging human diseases. Clin. Infect. Dis. 29:888911. PubMed CrossRef
81. Raoult, D.,, V. Roux,, J. B. Ndihokubwayo,, G. Bise,, D. Baudon,, G. Marte,, and R. Birtles. 1997. Jail fever (epidemic typhus) outbreak in Burundi. Emerg. Infect. Dis. 3:357360. PubMed CrossRef
82. Ribeiro, J. M.,, F. Alarcon-Chaidez,, I. M. Francischetti,, B. J. Mans,, T. N. Mather,, J. G. Valenzuela,, and S. K. Wikel. 2006. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36:111129. PubMed CrossRef
83. Ribeiro, J. M.,, and I. M. Francischetti. 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48:7388. PubMed CrossRef
84. Satta, G.,, V. Chisu,, P. Cabras,, F. Fois,, and G. Masala. 2011. Pathogens and symbionts in ticks: a survey on tick species distribution and presence of tick-transmitted micro-organisms in Sardinia, Italy. J. Med. Microbiol. 60:6368. PubMed CrossRef
85. Silverman, J.,, M. K. Rust,, and D. A. Reierson. 1981. Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). J. Med. Entomol. 18:7883. PubMed
86. Simser, J. A.,, K. R. Macaluso,, A. Mulenga,, and A. F. Azad. 2004a. Immune-responsive lysozymes from hemocytes of the American dog tick, Dermacentor variabilis and an embryonic cell line of the Rocky Mountain wood tick, D. andersoni. Insect Biochem. Mol. Biol. 34:12351246. PubMed CrossRef
87. Simser, J. A.,, A. Mulenga,, K. R. Macaluso,, and A. F. Azad. 2004b. An immune responsive factor D-like serine proteinase homologue identified from the American dog tick, Dermacentor variabilis. Insect Mol. Biol. 13:2535. PubMed CrossRef
88. Sonenshine, D. E. 1991. Biology of Ticks, vol. 1. Oxford University Press, New York, NY.
89. Sonenshine, D. E. 1993. Biology of Ticks, vol. 2. Oxford University Press, New York, NY.
90. Sonenshine, D. E.,, W. L. Hynes,, S. M. Ceraul,, R. Mitchell,, and T. Benzine. 2005. Host blood proteins and peptides in the midgut of the tick Dermacentor variabilis contribute to bacterial control. Exp. Appl. Acarol. 36:207223. PubMed CrossRef
91. Sonenshine, D. E.,, R. S. Lane,, and W. L. Nicholson,. 2002. Ticks (Ixodida), p. 597. In G. Mullen, and L. Durden (ed.), Medical and Veterinary Entomology. Academic Press, San Diego, CA.
92. Tarasevich, I.,, E. Rydkina,, and D. Raoult. 1998. Outbreak of epidemic typhus in Russia. Lancet 352:1151. PubMed CrossRef
93. Telford, S. R., III. 2009. Status of the “East Side Hypothesis” (transovarial interference) 25 years later. Ann. N. Y. Acad. Sci. 1166:144150. PubMed CrossRef
94. Traub, R.,, and C. L. Wisseman, Jr. 1974. The ecology of chigger-borne rickettsiosis (scrub typhus). J. Med. Entomol. 11:237303. PubMed
95. Ueti, M. W.,, D. P. Knowles,, C. M. Davitt,, G. A. Scoles,, T. V. Baszler,, and G. H.. Palmer. 2009. Quantitative differences in salivary pathogen load during tick transmission underlie strain-specific variation in transmission efficiency ofAnaplasma marginale. Infect. Immun. 77:7075. PubMed CrossRef
96. Ueti, M. W.,, J. O. Reagan, Jr.,, D. P. Knowles, Jr.,, G. A. Scoles,, V. Shkap,, and G. H. Palmer. 2007. Identification of midgut and salivary glands as specific and distinct barriers to efficient tick-borne transmission of Anaplasma marginale. Infect. Immun. 75:29592964. PubMed CrossRef
97. Valenzuela, J. G.,, I. M. Francischetti,, V. M. Pham,, M. K. Garfield,, T. N. Mather,, and J. M. Ribeiro. 2002. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205:28432864. PubMed
98. Valenzuela, J. G.,, I. M. Francischetti,, V. M. Pham,, M. K. Garfield,, and J. M. Ribeiro. 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33:717732. PubMed
99. Vasse, J.,, F. d. Billy,, and G. Truchet. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. The Plant Journal 4: 555566.
100. Walker, D. H. 2007. Rickettsiae and rickettsial infections: the current state of knowledge. Clin. Infect. Dis. 45(Suppl. 1):S39S44. PubMed CrossRef
101. Walker, D. H.,, C. D. Paddock,, and J. S. Dumler. 2008. Emerging and re-emerging tick-transmitted rickettsial and ehrlichial infections. Med. Clin. North Am. 92:13451361, x. PubMed CrossRef
102. Wang, J.,, Y. Wu,, G. Yang,, and S. Aksoy. 2009. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc. Natl. Acad. Sci. USA 106:1213312138. PubMed CrossRef
103. Wilson, L. B.,, and W. M. Chowning. 1904. Studies in pyroplasmosis hominis (‘spotted fever’ or ‘tick fever’ of the Rocky Mountains). J. Infect. Dis. I:3133.
104. Zaidman-Rémy, A.,, M. Hervé,, M. Poidevin,, S. Pili-Floury,, M. S. Kim,, D. Blanot,, B. H. Oh,, R. Ueda,, D. Mengin-Lecreulx,, and B. Lemaitre. 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463473. PubMed CrossRef

Tables

Generic image for table
TABLE 1a

List of rickettsial diseases

The following sources were used to compile this table: .

Reservoirs are identified through isolation or detection in field-collected samples.

Exposed animals are those that serve as host for ticks but may not contract the rickettsiae. When no information was available the blocks were left blank.

Detection method.

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13
Generic image for table
TABLE 1b

List of rickettsial diseases

The following sources were used to compile this table: .

Reservoirs are identified through isolation or detection in field-collected samples.

Exposed animals are those that serve as host for ticks but may not contract the rickettsiae. When no information was available the blocks were left blank.

Detection method.

Citation: Ceraul S. 2012. Transmission and the Determinants of Transmission Efficiency, p 391-415. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error