1887

Chapter 14 : The Way Forward: Improving Genetic Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Way Forward: Improving Genetic Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap14-2.gif

Abstract:

This chapter reviews the research that has led to the first successes in genetic transformation of arthropod-borne bacteria belonging to the order in the subdivision. Seminal results provided the very first evidence that direct genetic manipulation of rickettsiae was achievable, and that the bacteria were able to maintain and express foreign genetic sequences inserted via allelic exchange/homologous recombination under control of rickettsial or promoters. This work set the stage for all subsequent research efforts aspiring to manipulate and analyze rickettsiae in a manner that is nearly commonplace in extracellular bacteria. The transposase allele A7 has been successfully used for mutagenesis of and fever groups of rickettsial tick symbionts have been spotted using fluorescent markers and antibiotic resistance. Selection of mutants using growth inhibitors is an indispensible strategy to recover mutants from the background of nontransformed bacteria. The most common strategy is incorporation of an antibiotic resistance gene in the transformation cassette. When working with human or animal pathogens, this is a sensitive issue, as introduction of resistance to antibiotics used to treat disease induced by the pathogen to be transformed is not encouraged. This poses a dilemma, as the most effective selection is likely achieved by using the clinically most effective antibiotics. The authors suggests that shuttle vectors would be useful for testing the function of genes that are naturally defective in certain spp., in complementation assays, overexpression of native or foreign genes, testing gene regulation, and other applications carried out in .

Citation: Munderloh U, Felsheim R, Burkhardt N, Herron M, Oliva Chávez A, Nelson C, Kurtti T. 2012. The Way Forward: Improving Genetic Systems, p 416-432. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch14

Key Concept Ranking

Mobile Genetic Elements
0.65582335
Outer Membrane Proteins
0.473067
Fatty Acid Biosynthesis
0.43347782
0.65582335
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General features of plasmid constructs being developed for use in genetics. (A) Construct for transposon-mediated mutagenesis of . Depicted is a -plasmid construct: both transposase () and a transposon containing a (spectinomycin resistance) gene and GFPuv are encoded on a single plasmid (pCis GFPuv Himar1 A7) in order to improve efficiency. In this construct two Am tr promoters are used to drive expression of and the reporter and resistance genes. (B) Confocal fluorescent microscopic image of GFPuv-expressing infecting a rhesus cell (RF/6A) expressing DsRed2, a red fluorescent protein. (C) Shuttle vector for transformation of rickettsiae. Depicted is a generalized example of the essential elements of shuttle vectors based on pRAM18 from . A fragment of pRAM18 containing and the DnaA-likeprotein gene was ligated into an cloning vector containing genes for rifampin resistance and GFPuv. (D) Fluorescent microscopic image of pRAM18dRGA-transformed strain 369 in an cell (cell line ISE6). Bars (B and D), 5 µm. doi:10.1128/9781555817336.ch14.f1

Citation: Munderloh U, Felsheim R, Burkhardt N, Herron M, Oliva Chávez A, Nelson C, Kurtti T. 2012. The Way Forward: Improving Genetic Systems, p 416-432. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817336.chap14
1. Andersson, J. O.,, and S. E. G. Andersson. 1999. Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol. 16: 1178 1191. PubMed CrossRef
2. Arora, S. K.,, M. Bangera,, S. Lory,, and R. Ramphal. 2001. A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc. Natl. Acad. Sci. USA 98: 9342 9347. PubMed CrossRef
3. Baldridge, G. D.,, N. Y. Burkhardt,, R. E. Felsheim,, T. J. Kurtti,, and U. G. Munderloh. 2007a. Transposon insertion reveals pRM, a plasmid of Rickettsia monacensis. Appl. Environ. Microbiol. 73: 4984 4995. PubMed CrossRef
4. Baldridge, G. D.,, N. Y. Burkhardt,, R. F. Felsheim,, T. J. Kurtti,, and U. G. Munderloh. 2008. Plasmids of the pRM/pRF family occur in diverse Rickettsia species. Appl. Environ. Microbiol. 74: 645 652. PubMed CrossRef
5. Baldridge, G. D.,, N. Burkhardt,, M. J. Herron,, T. J. Kurtti,, and U. G. Munderloh. 2005. Analysis of fluorescent protein expression in transformants of Rickettsia monacensis, an obligate intracellular tick symbiont. Appl. Environ. Microbiol. 71: 2095 2105. PubMed CrossRef
6. Baldridge, G. D.,, N. Y. Burkhardt,, M. B. Labruna,, R. C. Pacheco,, C. D. Paddock,, P. C. Williamson,, P. M. Billingsley,, R. F. Felsheim,, T. J. Kurtti,, and U. G. Munderloh. 2010a. Wide dispersal and possible multiple origins of low-copy-number plasmids in Rickettsia species associated with blood-feeding arthropods. Appl. Environ. Microbiol. 76: 1718 1731. PubMed CrossRef
7. Baldridge, G. D.,, N. Y. Burkhardt,, A. S. Oliva,, T. J. Kurtti,, and U. G. Munderloh. 2010b. Rickettsial ompB promoter regulated expression of GFP uv in transformed Rickettsia montanensis. PLoS One 5: e8965. PubMed CrossRef
8. Baldridge, G. D.,, T. J. Kurtti,, N. Burkhardt,, A. S. Baldridge,, C. M. Nelson,, A. S. Oliva,, and U. G. Munderloh. 2007b. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J. Invertebr. Pathol. 94: 163 174. PubMed CrossRef
9. Barbet, A. F.,, J. T. Agnes,, A. L. Moreland,, A. M. Lundgren,, A. R. Alleman,, S. M. Noh,, K. A. Brayton,, U. G. Munderloh,, and G. H. Palmer. 2005. Identification of functional promoters in the msp2 expression loci of Anaplasma marginale and Anaplasma phagocytophilum. Gene 353: 89 97. PubMed CrossRef
10. Bassler, L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582 587. PubMed CrossRef
11. Bechah, Y.,, K. El Karkouri,, O. Mediannikov,, Q. Leroy,, N. Pelletier,, C. Robert,, C. Médigue,, J. L. Mege,, and D. Raoult. 2010. Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res. 20: 655 663. PubMed CrossRef
12. Bertram, R.,, and W. Hillen. 2008. The application of Tet repressor in prokaryotic gene regulation and expression. Microb. Biotechnol. 1: 2 16. PubMed CrossRef
13. Blanc, G.,, H. Ogata,, C. Robert,, S. Audic,, J. M.. Claverie, and D. Raoult. 2007. Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res. 17: 1657 1664. PubMed CrossRef
14. Bouet, J.-Y.,, K. Nordstrom,, and D. Lane. 2007. Plasmid partition and incompatibility—the focus shifts. Mol. Microbiol. 65: 1405 1414. PubMed CrossRef
15. Boussau, B.,, E. O. Karlberg,, A. C. Frank,, B. A. Legault,, and S. G. E. Andersson. 2004. Computational inference of scenarios for α-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 101: 9722 9727. PubMed CrossRef
16. Brayton, K. A.,, L. S. Kappmeyer,, D. R. Herndon,, M. J. Dark,, D. L. Tibbals,, G. H. Palmer,, T. C. McGuire,, and D. P. Knowles, Jr. 2005. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl. Acad. Sci. USA 102: 844 849. PubMed CrossRef
17. Brouqui, P.,, J. R. Harle,, J. Delmont,, C. Frances,, P. J. Weiller,, and D. Raoult. 1997. African tick-bite fever. An imported spotless rickettsiosis. Arch. Intern. Med. 157: 119 124. PubMed CrossRef
18. Burkhardt, N. Y.,, G. D. Baldridge,, P. C. Williamson,, P. M. Billingsley,, R. F. Felsheim,, T. J. Kurtti,, and U. G. Munderloh. 2010. Development of shuttle vectors for transformation of diverse Rickettsia species, PLoS One 6: e29511. PubMed CrossRef
19. Cardwell, M. M.,, and J. J. Martinez. 2009. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77: 5272 5280. PubMed CrossRef
20. Cevallos, M. A.,, R. Cervantes-Rivera,, and R. M.. Gutiérrez-Ríos. 2008. The repABC plasmid family. Plasmid 60: 19 37. PubMed CrossRef
21. Chan, Y. G.,, M. M. Cardwell,, T. M. Hermanas,, T. Uchiyama,, and J. J. Martinez. 2009. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11: 629 644. PubMed CrossRef
22. Clark, T. R.,, D. W. Ellison,, B. Kleba,, and T. Hackstadt. 2011. Complementation of Rickettsia rickettsii RelA/SpoT restores a non-lytic plaque phenotype. Infect. Immun. 79: 1631 1637. PubMed CrossRef
23. Collins, N. E.,, J. Liebenberg,, E. P. de Villiers,, K. A. Brayton,, E. Louw,, A. Pretorius,, F. E. Faber,, H. van Heerden,, A. Josemans,, M. van Kleef,, H. C. Steyn,, M. F. van Strijp,, E. Zweygarth,, F. Jongejan,, J. C. Maillard,, D. Berthier,, M. Botha,, F. Joubert,, C. H. Corton,, N. R. Thomson,, M. T. Allsopp,, and B. A. Allsopp. 2005. The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proc. Natl. Acad. Sci. USA 102: 838 843. PubMed CrossRef
24. Crameri, A.,, E. A. Whitehorn,, E. Tate,, and W. P.. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14: 315 319. PubMed CrossRef
25. de la Fuente, J.,, J. C. Garcia-Garcia,, E. F. Blouin,, and K. M. Kocan. 2001. Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. Int. J. Parasitol. 31: 145 153. PubMed CrossRef
26. de Sousa, R.,, L. Duque,, J. Poças,, J. Torgal,, F. Bacellar,, J. P. Olano,, and D. H. Walker. 2008. Lymphangitis in a Portuguese patient infected with Rickettsia sibirica. Emerg. Infect. Dis. 14: 529 531. PubMed CrossRef
27. Donovan, B. J.,, D. J. Weber,, J. C. Rublein,, and R. H. Raasch. 2002. Treatment of tick-borne diseases. Ann. Pharmacother. 36: 1590 1597. PubMed CrossRef
28. Doré, M.,, R. J. Korthuis,, D. N. Granger,, M. L. Entman,, and C. W. Smith. 1993. P-selectin mediates spontaneous leukocyte rolling in vivo. Blood 82: 1308 1316. PubMed
29. Driskell, L. O.,, X.-J. Yu,, L. Zhang,, Y. Liu,, V. L. Popov,, D. H. Walker,, A. M. Tucker,, and D. O. Wood. 2009. Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect. Immun. 77: 3244 3248. PubMed CrossRef
30. Dunning Hotopp, J. C.,, M. Lin,, R. Madupu,, J. Crabtree,, S. V. Angiuoli,, J. Eisen,, R. Seshadri,, Q. Ren,, M. Wu,, T. R. Utterback,, S. Smith,, M. Lewis,, H. Khouri,, C. Zhang,, H. Niu,, Q. Lin,, N. Ohashi,, N. Zhi,, W. Nelson,, L. M. Brinkac,, R. J. Dodson,, M. J. Rosovitz,, J. Sundaram,, S. C. Daugherty,, T. Davidsen,, A. S. Durkin,, M. Gwinn,, D. H. Haft,, J. D. Selengut,, S. A. Sullivan,, N. Zafar,, L. Zhou,, F. Benahmed,, H. Forberger,, R. Halpin,, S. Mulligan,, J. Robinson,, O. White,, Y. Rikihisa,, and H. Tettelin. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2: e21. PubMed CrossRef
31. Ellison, D. W.,, T. R. Clark,, D. E. Sturdevant,, K. Virtaneva,, S. F. Porcella,, and T. Hackstadt. 2008. Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect. Immun. 76: 542 550. PubMed CrossRef
32. Ettema, T. J. G.,, and S. G. E. Andersson. 2009. The α-proteobacteria: the Darwin finches of the bacterial world. Biol. Lett. 5: 429 432. PubMed CrossRef
33. Felsheim, R. F.,, M. J. Herron,, C., and U. G. Munderloh. 2007. Selection of Anaplasma phagocytophilum transformants with an herbicide resistance system, abstr. 3. 21st Meet. Am. Soc. Rickettsiol., Colorado Springs, CO, 8 to 11 September 2007.
34. Felsheim, R. F.,, M. J. Herron,, C. M. Nelson,, N. Y. Burkhardt,, A. F. Barbet,, T. J. Kurtti,, and U. G. Munderloh. 2006. Transformation of Anaplasma phagocytophilum. BMC Biotechnol. 6: 42. PubMed CrossRef
35. Felsheim, R. F.,, T. J. Kurtti,, and U. G. Munderloh. 2009. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS One 4: e8361. PubMed CrossRef
36. Felsheim, R. F.,, A. S. Oliva Chávez,, G. H. Palmer,, L. Crosby,, A. F. Barbet,, T. J. Kurtti,, and U. G. Munderloh. 2010. Transformation of Anaplasma marginale. Vet. Parasitol. 167: 167 174. PubMed CrossRef
37. Fournier, P. E.,, K. El Karkouri,, Q. Leroy,, C. Robert,, B. Giumelli,, P. Renesto,, C. Socolovschi,, P. Parola,, S. Audic,, and D. Raoult. 2009. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10: 166. PubMed CrossRef
38. Fournier, P. E.,, F. Gouriet,, P. Brouqui,, F. Lucht,, and D. Raoult. 2005. Lymphangitis-associated rickettsiosis, a new rickettsiosis caused by Rickettsia sibirica mongolotimonae: seven new cases and review of the literature. Clin. Infect. Dis. 40: 1435 1444. PubMed CrossRef
39. Funnell, B. 2005. Partition-mediated plasmid pairing. Plasmid 53: 119 125. PubMed CrossRef
40. Fuxelius, H. H.,, A. C. Darby,, N. H. Cho,, and S. G. E. Andersson. 2008. Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol. 9: R42. PubMed CrossRef
41. Fuxelius, H. H.,, A. Darby,, C. K. Min,, N. M. Cho,, and S. G. E. Andersson. 2007. The genomic and metabolic diversity of Rickettsia. Res. Microbiol. 158: 745 753.
42. Garcia-Garcia, J. C.,, J. de la Fuente,, G. Bell-Eunice,, E. F. Blouin,, and K. M. Kocan. 2004. Glycosylation of Anaplasma marginale major surface protein 1a and its putative role in adhesion to tick cells. Infect. Immun. 72: 3022 3030. PubMed CrossRef
43. Gill, H. S.,, and D. Eisenberg. 2001. The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. Biochemistry 40: 1903 1912. PubMed CrossRef
44. Gillespie, J. J.,, M. S. Beier,, M. S. Rahman,, N. C. Ammerman,, J. M. Shallom,, A. Purkayastha,, B. S. Sobral,, and A. F. Azad. 2007. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2: e266. PubMed CrossRef
45. Gillespie, J. J.,, K. Williams,, M. Shukla,, E. E. Snyder,, E. K. Nordberg,, S. M. Ceraul,, C. Dharmanolla,, D. Rainey,, J. Soneja,, J. M. Shallom,, N. D. Vishnubhat,, R. Wattam,, A. Purkayastha,, M. Czar,, O. Crasta,, J. C. Setubal,, A. F. Azad,, and B. S. Sobral. 2008. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3: e2018. PubMed
46. Grundy, F. J., and T. M. Henkin. 2006. From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit. Rev. Biochem. Mol. Biol. 41: 329 338. PubMed CrossRef
47. Herron, M. J.,, C. M. Nelson,, J. Larson,, K. R. Snapp,, G. S. Kansas,, and J. L. Goodman. 2000. Intracellular parasitism by the human granulocytic ehrlichiosis bacterium through the P-selectin ligand, PSGL-1. Science 288: 1653 1656. PubMed CrossRef
48. Herron, P. R.,, G. Hughes,, G. Chandra,, S. Fielding,, and P. J. Dyson. 2004. Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic Acids Res. 32: e113. PubMed CrossRef
49. Holman, R. C.,, C. D. Paddock,, A. T. Curns,, J. W. Krebs,, J. H. McQuiston,, and J. E. Childs. 2001. Analysis of risk factors for fatal Rocky Mountain spotted fever: evidence for superiority of tetracyclines for treatment. J. Infect. Dis. 184: 1437 1444. PubMed CrossRef
50. Kenyon, R. H.,, W. M. Acree,, G. G. Wright,, and F. W. Melchior, Jr. 1972. Preparation of vaccines for Rocky Mountain spotted fever from rickettsiae propagated in cell culture. J. Infect. Dis. 125: 146 152. PubMed CrossRef
51. Kurtti, T. J.,, J. A. Simser,, G. D. Baldridge,, A. T. Palmer,, and U. G. Munderloh. 2005. Factors influencing in vitro infectivity and growth of Rickettsia peacockii (Rickettsiales: Rickettsiaceae), an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni (Acari, Ixodidae). J. Invertebr. Pathol. 90: 177 186. PubMed CrossRef
52. Lampe, D. J.,, B. J. Akerley,, E. J. Rubin,, J. J. Mekalanos,, and H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. USA 96: 11428 11433. PubMed CrossRef
53. Lampe, D. J.,, M. E. Churchill,, and H. M. Robertson. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15: 5470 5479. PubMed
54. Lampe, D. J.,, T. E. Grant,, and H. M. Robertson. 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149: 179 187. PubMed
55. Li, H.,, and D. H. Walker. 1998. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb. Pathog. 24: 289 298. PubMed CrossRef
56. Lin, M.,, T. Kikuchi,, H. M. Brewer,, A. D. Norbeck,, and Y. Rikihisa. 2011. Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front. Microbiol. 2: 24. PubMed CrossRef
57. Liu, Z.-M.,, A. M. Tucker,, L. O. Driskell,, and D. O. Wood. 2007. Mariner-based transposon mutagenesis of Rickettsia prowazekii. Appl. Environ. Microbiol. 73: 6644 6649. PubMed CrossRef
58. Lutz, K. A.,, J. E. Knapp,, and P. Maliga. 2001. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol. 125: 1585 1590. PubMed CrossRef
59. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686 688. PubMed CrossRef
60. Martinez, J. J.,, S. Seveau,, E. Veiga,, S. Matsuyama,, and P. Cossart. 2005. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123: 1013 1023. PubMed CrossRef
61. McClintock, B. 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36: 344 355. PubMed CrossRef
62. McGarey, D. J.,, A. F. Barbet,, G. H. Palmer,, T. C.. McGuire, and D. R. Allred. 1994. Putative adhesins of Anaplasma marginale: major surface polypeptides 1a and 1b. Infect. Immun. 62: 4594 4601. PubMed
63. Moran, J. S.,, and W. C. Levine. 1995. Drugs of choice for the treatment of uncomplicated gonococcal infections. Clin. Infect. Dis. 1: S47 S65. PubMed CrossRef
64. Munderloh, U. G.,, S. D. Jauron,, V. Fingerle,, L. Leitritz,, S. F. Hayes,, J. M. Hautman,, C. M. Nelson,, B. W. Huberty,, T. J. Kurtti,, G. G. Ahlstrand,, B. Greig,, M. A. Mellencamp,, and J. L. Goodman. 1999. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J. Clin. Microbiol. 37: 2518 2524. PubMed
65. Munderloh, U. G.,, and T. J. Kurtti. 1995. Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Annu. Rev. Entomol. 40: 221 243. PubMed CrossRef
66. Munderloh, U. G.,, M. J. Lynch,, M. J. Herron,, A. T. Palmer,, T. J. Kurtti,, R. D. Nelson,, and J. L. Goodman. 2004. Infection of endothelial cells with Anaplasma marginale and A. phagocytophilum. Vet. Microbiol. 101: 53 64. PubMed CrossRef
67. Nelson, C. M.,, M. J. Herron,, R. F. Felsheim,, B. R. Schloeder,, S. M. Grindle,, A. O. Chavez,, T. J. Kurtti,, and U. G. Munderloh. 2008. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9: 364. PubMed CrossRef
68. Niebylski, M. L.,, M. E. Schrumpf,, W. Burgdorfer,, E. R. Fischer,, K. L. Gage,, and T. G.. Schwan. 1997. Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in western Montana. Int. J. Syst. Bacteriol. 47: 446 452. PubMed CrossRef
69. Ogata, H.,, P. Renesto,, S. Audic,, C. Robert,, G. Blanc,, P. E. Fournier,, H. Parinello,, J. M. Claverie,, and D. Raoult. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3: e248. PubMed CrossRef
70. Oliva Chávez, A. S.,, R. F. Felsheim,, N. Y. Burkhardt,, T. J. Kurtti,, and U. G. Munderloh. 2010. Identification of genes involved in the infection process of tick (ISE6) and human (HL-60) cells by the tick-borne pathogen Anaplasma phagocytophilum. 42nd Annu. Conf. Soc. Vector Ecol., Raleigh, NC, 26 to 30 September 2010.
71. Purvis, J. J.,, and M. S. Edwards. 2000. Doxycycline use for rickettsial disease in pediatric patients. Pediatr. Infect. Dis. J. 19: 871 874. PubMed CrossRef
72. Qin, A.,, A. M. Tucker,, A. Hines,, and D. O. Wood. 2004. Transposon mutagenesis of the obligate intracellular pathogen Rickettsia prowazekii. Appl. Environ. Microbiol. 70: 2816 2822. PubMed
73. Rachek, L. I.,, A. Hines,, A. M. Tucker,, H. H. Winkler,, and D. O. Wood. 2000. Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J. Bacteriol. 182: 3289 3291. PubMed
74. Rachek, L. I.,, A. M. Tucker,, H. H. Winkler,, and D. O. Wood. 1998. Transformation of Rickettsia prowazekii to rifampin resistance. J. Bacteriol. 180: 2118 2124. PubMed
75. Ramabu, S. S.,, M. W. Ueti,, K. A. Brayton,, T. V. Baszler,, and G. H. Palmer. 2010. Identification of Anaplasma marginale proteins specifically upregulated during colonization of the tick vector. Infect. Immun. 78: 3047 3052. PubMed CrossRef
76. Renesto, P.,, E. Gouin,, and D. Raoult. 2002. Expression of green fluorescent protein in Rickettsia conorii. Microb. Pathog. 33: 17 21. PubMed CrossRef
77. Renesto, P.,, L. Samson,. H. Ogata,, S. Azza,, P. Fourquet,, J. P. Gorvel,, R. A. Heinzen,, and D. Raoult. 2006. Identification of two putative rickettsial adhesins by proteomic analysis. Res. Microbiol. 157: 605 612. PubMed CrossRef
78. Riley, S. P.,, K. C. Goh,, T. M. Hermanas,, M. M. Cardwell,, Y. G. Chan,, and J. J. Martinez. 2010. The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 78: 1895 1904. PubMed CrossRef
79. Sahni, S. K., and E. Rydkina. 2009. Progress in the functional analysis of rickettsial genes through directed mutagenesis of Rickettsia prowazekii phospholipase D. Future Microbiol. 4: 1249 1253. PubMed CrossRef
80. Sakharkar, K. R.,, M. K. Sakharkar,, C. Verma,, and V. T. K. Chow. 2005. Comparative study of overlapping genes in bacteria, with special reference to Rickettsia prowazekii and Rickettsia conorii. Int. J. Syst. Evol. Microbiol. 55: 1205 1209. PubMed CrossRef
81. Shaner, N. C.,, P. A. Steinbach,, and R. Y. Tsien. 2005. A guide to choosing fluorescent proteins. Nat. Methods 2: 905 909. PubMed CrossRef
82. Shapiro, J. A. 1999. Transposable elements as the key to a 21st century view of evolution. Genetica 107: 171 179. PubMed CrossRef
83. Simser, J. A.,, M. S. Rahman,, S. M. Dreher-Lesnick,, and A. F. Azad. 2005. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol. Microbiol. 58: 71 79. PubMed CrossRef
84. Stary, E.,, R. Gaupp,, S. Lechner,, M. Leibig,, E. Tichy,, M. Kolb,, and R. Bertram. 2010. New architectures for Tet-on and Tet-off regulation in Staphylococcus aureus. Appl. Environ. Microbiol. 76: 680 687. PubMed CrossRef
85. Stewart, P. E.,, and P. A. Rosa. 2008. Transposon mutagenesis of the Lyme disease agent Borrelia burgdorferi. Methods Mol. Biol. 431: 85 95. PubMed CrossRef
86. Suk, J. E.,, A. Zmorzynska,, A. Hunger,, W. Biederbick,, J. Sasse,, H. Maidhof,, and J. C. Semenza. 2011. Dual-use research and technological diffusion: reconsidering the bioterrorism threat spectrum. PLoS Pathog. 7: e1001253. PubMed CrossRef
87. Troyer, J. M.,, S. Radulovic,, and A. F. Azad. 1999. Green fluorescent protein as a marker in Rickettsia typhi transformation. Infect. Immun. 67: 3308 3311. PubMed
88. Uchiyama, T. 2003. Adherence to and invasion of Vero cells by recombinant Escherichia coli expressing the outer membrane protein rOmpB of Rickettsia japonica. Ann. N. Y. Acad. Sci. 990: 585 590. PubMed
89. Uchiyama, T.,, H. Kawano,, and Y. Kusuhara. 2006. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 8: 801 809. PubMed CrossRef
90. Vellaiswamy, M.,, M. Kowalczewska,, V. Merhej,, C. Nappez,, R. Vincentelli,, P. Renesto,, and D. Raoult. 2011. Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb. Pathog. 50: 233 242. PubMed CrossRef
91. Walker, D. H.,, G. A. Valbuena,, and J. P. Olano. 2003. Pathogenic mechanisms of diseases caused by Rickettsia. Ann. N. Y. Acad. Sci. 990: 1 11. PubMed CrossRef
92. Wu, Q.,, J. Pei,, C. Turse,, and T. A. Ficht. 2006. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol. 6: 102. PubMed CrossRef

Tables

Generic image for table
TABLE 1a

genetic transformation systems

Rifampin-resistant mutant gene of Madrid E.

gene.

promoter.

-adapted rifampin resistance gene.

CAT, chloramphenicol acetyltransferase.

Citation: Munderloh U, Felsheim R, Burkhardt N, Herron M, Oliva Chávez A, Nelson C, Kurtti T. 2012. The Way Forward: Improving Genetic Systems, p 416-432. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch14
Generic image for table
TABLE 1b

genetic transformation systems

Rifampin-resistant mutant gene of Madrid E.

gene.

promoter.

-adapted rifampin resistance gene.

CAT, chloramphenicol acetyltransferase.

Citation: Munderloh U, Felsheim R, Burkhardt N, Herron M, Oliva Chávez A, Nelson C, Kurtti T. 2012. The Way Forward: Improving Genetic Systems, p 416-432. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error