Chapter 4 : Invasion of the Mammalian Host: Early Events at the Cellular and Molecular Levels

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Invasion of the Mammalian Host: Early Events at the Cellular and Molecular Levels, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap04-2.gif


The majority of species belonging to the genus are divided into two groups, the spotted fever group rickettsiae (SFGR) and typhus group rickettsiae (TGR), based on the diseases that they cause, the presence of major surface antigens, and the ability to promote intracellular actin-based motility. This chapter focuses on the cell biology involved in the internalization of SFGR into nonphagocytic mammalian cells using as a model organism. It highlights the current knowledge regarding the bacterial proteins and cognate host cell receptors involved in initiating this process. Early studies on the mechanism(s) utilized by rickettsiae to invade nonphagocytic mammalian cells identified cellular actin dynamics as playing an important role. In some invasive pathogens, depletion of membrane cholesterol using methyl-β-cyclodextrin disrupts the composition of lipid rafts and inhibits invasion of nonphagocytic cells, suggesting that the presence of Ku70 within these microdomains is important for efficient bacterial entry. Mechanistic similarities to the invasion pathways utilized by zippering pathogens suggested that also usurps these types of signaling events. Bioinformatic analyses of sequenced rickettsial genomes revealed the presence of a gene family. Four genes in this family, namely , , , and , are present as intact open reading frames in the genomes of the majority of SFGR. The signals involved in rickettsial outer membrane protein B (rompB)-dependent invasion closely resemble those observed during the invasion of into Vero cells and include the activation of actin and microtubule dynamics and the stimulation of protein tyrosine kinase and PI-kinase activities.

Citation: Martinez J. 2012. Invasion of the Mammalian Host: Early Events at the Cellular and Molecular Levels, p 142-153. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch4

Key Concept Ranking

Rocky Mountain Spotted Fever
Outer Membrane Protein B
Type III Secretion System
Bacterial Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

recruits actin to site of entry on mammalian cells. Fluorescence microscopy of infected mammalian cells reveals colocalization of actin-rich structures (green) with invading bacteria (red). Arrows indicate areas of colocalization (yellow). White scale bar represents 2 μm. Stimulation of actin dynamics is critical to the rickettsial invasion of mammalian cells. (Reprinted from with permission of the publisher.) doi:10.1128/9781555817336.ch4.f1

Citation: Martinez J. 2012. Invasion of the Mammalian Host: Early Events at the Cellular and Molecular Levels, p 142-153. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Model of -induced signaling pathways in mammalian cells. The interaction of with Ku70 and other mammalian receptors initiates signaling events that are coordinated to ultimately recruit actin and components of the endocytic machinery to localized areas of the membrane. These pathways include the activation of protein tyrosine kinases, PI3-kinase, Cdc42, Src, FAK, and cortactin, which are likely involved in Arp2/3-mediated actin polymerization at entry sites. c-Cbl-mediated ubiquitination (Ub) of Ku70 and the involvement of clathrin and caveolin-2 implicate the host endocytic machinery in the invasion pathway. Pathways involved in the Ku70-rOmpB invasion pathway are highlighted in light blue boxes. Putative protein-protein interactions and pathways involved in rickettsial invasion are demarcated by dashed arrows and questions marks. (Reprinted from with permission of the publisher.) doi:10.1128/9781555817336.ch4.f 2

Citation: Martinez J. 2012. Invasion of the Mammalian Host: Early Events at the Cellular and Molecular Levels, p 142-153. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agerer, F.,, A. Michel,, K. Ohlsen,, and C. R. Hauck. 2003. Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases. J. Biol. Chem. 278:4252442531.PubMed CrossRef
2. Alrutz, M. A.,, A. Srivastava,, K. W. Wong,, C. D’Souza-Schorey,, M. Tang,, L. E. Ch’Ng,, S. B. Snapper,, and R. R. Isberg. 2001. Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp 2/3 pathway that bypasses N-WASP function. Mol. Microbiol. 42:689703.PubMed CrossRef
3. Andersson, S. G.,, A. Zomorodipour,, J. O. Andersson,, T. Sicheritz-Ponten,, U. C. Alsmark,, R. M. Podowski,, A. K. Naslund,, A. S. Eriksson,, H. H. Winkler,, and C. G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133140.PubMed CrossRef
4. Bear, J. E.,, M. Krause,, and F. B. Gertler. 2001. Regulating cellular actin assembly. Curr. Opin. Cell Biol. 13:158166.PubMed
5. Bear, J. E.,, T. M. Svitkina,, M. Krause,, D. A. Schafer,, J. J. Loureiro,, G. A. Strasser,, I. V. Maly,, O. Y. Chaga,, J. A. Cooper,, G. G. Borisy,, and F. B. Gertler. 2002. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509521.PubMed CrossRef
6. Bechah, Y.,, C. Capo,, J. L. Mege,, and D. Raoult. 2008. Epidemic typhus. Lancet Infect. Dis. 8:417426.PubMed CrossRef
7. Blanc, G.,, M. Ngwamidiba,, H. Ogata,, P. E. Fournier,, J. M. Claverie,, and D. Raoult. 2005. Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol. Biol. Evol. 20:20732083.PubMed CrossRef
8. Cardwell, M. M.,, and J. J. Martinez. 2009. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77:52725280.PubMed CrossRef
9. Carpenter, C. L.,, K. R. Auger,, M. Chanudhuri,, M. Yoakim,, B. Schaffhausen,, S. Shoelson,, and L. C. Cantley. 1993. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J. Biol. Chem. 268:94789483.PubMed
10. Carpenter, C. L.,, and L. C. Cantley. 1996. Phosphoinositide kinases. Curr. Opin. Cell Biol. 8:153158.PubMed
11. Chan, Y. G. Y.,, M. M. Cardwell,, T. M. Hermanas,, T. Uchiyama,, and J. J. Martinez. 2009. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11:629644.PubMed CrossRef
12. Chan, Y. G. Y.,, S. P. Riley,, and J. J. Martinez. 2010. Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front. Microbiol. 1:19.PubMed CrossRef
13. Conner, S. D.,, and S. L. Schmid. 2003. Regulated portals of entry into the cell. Nature 422:3744.PubMed CrossRef
14. Cossart, P. 2004. Bacterial invasion: a new strategy to dominate cytoskeleton plasticity. Dev. Cell 6:314315.PubMed CrossRef
15. Dasch, G. A. 1981. Isolation of species-specific protein antigens of Rickettsia typhi and Rickettsia prowazekii for immunodiagnosis and immunoprophylaxis. J. Clin. Microbiol. 14:333341.PubMed
16. Dasch, G. A.,, J. R. Samms,, and J. C. Williams. 1981. Partial purification and characterization of the major species-specific protein antigens of Rickettsia typhi and Rickettsia prowazekii identified by rocket immunoelectrophoresis. Infect. Immun. 31:276288.PubMed
17. Dekker, L. V.,, and A. W. Segal. 2000. Perspectives: signal transduction. Signals to move cells. Science 287:982983.PubMed CrossRef
18. Dumenil, G.,, P. Sansonetti,, and G. Tran Van Nhieu. 2000. Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fibre formation. J. Cell Sci. 113:7180.PubMed
19. Ellison, D. W.,, T. R. Clark,, D. E. Sturdevant,, K. Virtaneva,, S. F. Porcella,, and T. Hackstadt. 2008. Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect. Immun. 76:542550.PubMed CrossRef
20. Eremeeva, M. E.,, R. M. Klemt,, L. A. Santucci-Domotor,, D. J. Silverman,, and G. A. Dasch. 2003. Genetic analysis of isolates of Rickettsia rickettsii that differ in virulence. Ann. N. Y. Acad. Sci. 990:717722.PubMed CrossRef
21. Fawaz, F. S.,, C. van Ooij,, E. Homola,, S. C. Mutka,, and J. N. Engel. 1997. Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect. Immun. 65:53015308.PubMed
22. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276:718725.PubMed CrossRef
23. Galan, J. E.,, and D. Zhou. 2000. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. USA 97:87548761.PubMed CrossRef
24. Gouin, E.,, H. Gantelet,, C. Egile,, I. Lasa,, H. Ohayon,, V. Villiers,, P. Gounon,, P. J. Sansonetti,, and P. Cossart. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112:16971708.PubMed
25. Hackstadt, T.,, R. Messer,, W. Cieplak,, and M. G. Peacock. 1992. Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing. Infect. Immun. 60:159165.PubMed
26. Haglund, C. M.,, J. E. Choe,, C. T. Skau,, D. R. Kovar,, and M. D. Welch. 2010. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12:10571063.PubMed CrossRef
27. Haglund, K.,, S. Sigismund,, S. Polo,, I. Szymkiewicz,, P. P. Di Fiore,, and I. Dikic. 2003. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5:461466.PubMed CrossRef
28. Hall, A. 1998. G proteins and small GTPases: distant relatives keep in touch. Science 280:20742075.PubMed CrossRef
29. Hartwig, J. H.,, G. M. Bokoch,, C. L. Carpenter,, P. A. Janmey,, L. A. Taylor,, A. Toker,, and T. P. Stossel. 1995. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643653.PubMed CrossRef
30. Higgs, H. N.,, and T. D. Pollard. 2001. Regulation of actin filament network formation through Arp2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70:649676.PubMed CrossRef
31. Isberg, R. R.,, and P. Barnes. 2001. Subversion of integrins by enteropathogenic Yersinia. J. Cell Sci. 114:2128.PubMed
32. Jacob-Dubuisson, F.,, R. Fernandez,, and L. Coutte. 2004. Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694:235257.PubMed CrossRef
33. Kleba, B.,, T. R. Clark,, E. I. Lutter,, D. W. Ellison,, and T. Hackstadt. 2010. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 78:22402247.PubMed CrossRef
34. Koike, M. 2002. Dimerization, translocation and localization of Ku70 and Ku80 proteins. J. Radiat. Res. (Tokyo) 43:223236.PubMed
35. Leevers, S. J.,, B. Vanhaesebroeck,, and M. D. Waterfield. 1999. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol. 11:219225.PubMed
36. Li, H.,, and D. H. Walker. 1998. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb. Pathog. 24:289298.PubMed CrossRef
37. Lucero, H.,, D. Gae,, and G. E. Taccioli. 2003. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J. Biol. Chem. 278:2213622143.PubMed CrossRef
38. Machesky, L. M.,, R. D. Mullins,, H. N. Higgs,, D. A. Kaiser,, L. Blachoin,, R. C. May,, M. E. Hall,, and T. D. Pollard. 1999. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl. Acad. Sci. USA 96:37393744.PubMed CrossRef
39. Marmor, M. D.,, and Y. Yarden. 2004. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23:20572070.PubMed CrossRef
40. Martinez, J. J.,, and P. Cossart. 2004. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell Sci. 117:50975106.PubMed CrossRef
41. Martinez, J. J.,, and S. J. Hultgren. 2002. Requirement of Rho-family GTPases in the invasion of type 1-piliated uropathogenic Escherichia coli. Cell. Microbiol. 4:1928.PubMed CrossRef
42. Martinez, J. J.,, M. A. Mulvey,, J. D. Schilling,, J. S. Pinkner,, and S. J. Hultgren. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19:28032812.PubMed CrossRef
43. Martinez, J. J.,, S. Seveau,, E. Veiga,, S. Matsuyama,, and P. Cossart. 2005. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123:10131023.PubMed CrossRef
44. Miki, H.,, T. Sasaki,, Y. Takai,, and T. Takenawa. 1998. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:9396.PubMed CrossRef
45. Monferran, S.,, C. Muller,, L. Mourey,, P. Frit,, and B. Salles. 2004a. The membrane-associated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin. J. Mol. Biol. 337:503511.PubMed CrossRef
46. Monferran, S.,, J. Paupert,, S. Dauvillier,, B. Salles,, and C. Muller. 2004b. The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO J. 23:37583768.PubMed CrossRef
47. Ngwamidiba, M.,, G. Blanc,, D. Raoult,, and P. E. Fournier. 2006. Sca1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol. 6:12.PubMed CrossRef
48. Ogata, H.,, S. Audic,, P. Renesto-Audiffren,, P. E. Fournier,, V. Barbe,, D. Samson,, V. Roux,, P. Cossart,, J. Weissenbach,, J. M. Claverie,, and D. Raoult. 2001. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:20932098.PubMed CrossRef
49. Ogata, H.,, P. Renesto,, S. Audic,, C. Robert,, G. Blanc,, P. E. Fournier,, H. Parinello,, J. M. Claverie,, and D. Raoult. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3:e248.PubMed CrossRef
50. Olson, M. F.,, A. Ashworth,, and A. Hall. 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:12701272.PubMed CrossRef
51. Palmer, E. L.,, L. P. Mallavia,, T. Tzianabos,, and J. F. Obijeski. 1974a. Electron microscopy of the cell wall of Rickettsia prowazeki. J. Bacteriol. 118:11581166.PubMed
52. Palmer, E. L.,, M. L. Martin,, and L. Mallavia. 1974b. Ultrastucture of the surface of Rickettsia prowazeki and Rickettsia akari. Appl. Microbiol. 28:713716.PubMed
53. Persson, C.,, N. Carballeira,, H. Wolf-Watz,, and M. Fallman. 1997. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16:23072318.PubMed CrossRef
54. Popov, V. L.,, and V. F. Ignatovich. 1976. Electron microscopy of surface structures of Rickettsia prowazeki stained with ruthenium red. Acta Virologica 20:424428.PubMed
55. Ramm, L. E.,, and H. H. Winkler. 1976. Identification of cholesterol in the receptor site for rickettsiae on sheep erythrocyte membranes. Infect. Immun. 13:120126.PubMed
56. Renesto, P.,, L. Samson,, H. Ogata,, S. Azza,, P. Fourquet,, J. P. Gorvel,, R. A. Heinzen,, and D. Raoult. 2006. Identification of two putative rickettsial adhesins by proteomic analysis. Res. Microbiol. 157:605612.PubMed CrossRef
57. Richardson, A.,, and T. Parsons. 1996. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK. Nature 380:538540.PubMed CrossRef
58. Ridley, A. J.,, and A. Hall. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389399.PubMed CrossRef
59. Ridley, A. J.,, H. F. Paterson,, C. L. Johnston,, D. Diekmann,, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401410.PubMed CrossRef
60. Riley, S. P.,, K. C. Goh,, T. M. Hermanas,, M. M. Cardwell,, Y. G. Y. Chan,, and J. J. Martinez. 2010. The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 78:18951904.PubMed CrossRef
61. Rohatgi, R.,, H. Y. Ho,, and M. W. Kirschner. 2000. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150:12991310.PubMed CrossRef
62. Rohatgi, R.,, L. Ma,, H. Miki,, M. Lopez,, T. Kirchhausen,, T. Takenawa,, and M. W. Kirschner. 1999. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221231.PubMed CrossRef
63. Seveau, S.,, H. Bierne,, S. Giroux,, M. C. Prevost,, and P. Cossart. 2004. Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 166:743753.PubMed CrossRef
64. Silverman, D. J.,, and C. L. Wisseman, Jr. 1978. Comparative ultrastructural study on the cell envelopes of Rickettsia prowazekii, Rickettsia rickettsii, and Rickettsia tsutsugamushi. Infect. Immun. 21:10201023.PubMed
65. Silverman, D. J.,, C. L. Wisseman, Jr.,, A. D. Waddell,, and M. Jones. 1978. External layers of Rickettsia prowazekii and Rickettsia rickettsii: occurrence of a slime layer. Infect. Immun. 22:233246.PubMed
66. Smith, D. K.,, and H. H. Winkler. 1979. Separation of inner and outer membranes of Rickettsia prowazeki and characterization of their polypeptide compositions. J. Bacteriol. 137:963971.PubMed
67. Teysseire, N.,, J. A. Boudier,, and D. Raoult. 1995. Rickettsia conorii entry into Vero cells. Infect. Immun. 63:366374.PubMed
68. Thomas, J. W.,, B. Ellis,, R. J. Boerner,, W. B. Knight,, G. C. White II,, and M. D. Schaller. 1998. SH2- and SH3-mediated interactions between focal adhesion kinase and Src. J. Biol. Chem. 273:577583.PubMed CrossRef
69. Tran Van Nhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18:32493262.PubMed CrossRef
70. Uchiyama, T.,, H. Kawano,, and Y. Kusuhara. 2006. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 8:801809.PubMed CrossRef
71. Vanhaesebroeck, B.,, and M. D. Waterfield. 1999. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253:239254.PubMed CrossRef
72. Veiga, E.,, J. A. Guttman,, M. Bonazzi,, E. Boucrot,, A. Toledo-Arana,, A. E. Lin,, J. Enninga,, J. Pizarro-Cerda,, B. B. Finlay,, T. Kirchhausen,, and P. Cossart. 2007. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe 2:340351.PubMed CrossRef
73. Walker, D. H. 1989a. Rickettsioses of the spotted fever group around the world. J. Dermatol. 16:169177.PubMed
74. Walker, D. H. 1989b. Rocky Mountain spotted fever: a disease in need of microbiological concern. Clin. Microbiol. Rev. 2:227240.PubMed
75. Weaver, A. M.,, J. E. Heuser,, A. V. Karginov,, W. L. Lee,, J. T. Parsons,, and J. A. Cooper. 2002. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr. Biol. 12:12701278.PubMed CrossRef
76. Winkler, H. H. 1977. Rickettsial hemolysis: adsorption, desorption, readsorption, and hemagglutination. Infect. Immun. 17:607612.PubMed
77. Wu, H.,, and J. T. Parsons. 1993. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120:14171426.PubMed CrossRef
78. Yoshida, S.,, E. Katayama,, A. Kuwae,, H. Mimuro,, T. Suzuki,, and C. Sasakawa. 2002. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21:29232935.PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error